Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.108
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 91, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835038

RESUMO

BACKGROUND: The aberrant amplification of mammary luminal progenitors is at the origin of basal-like breast cancers associated with BRCA1 mutations. Integrins mediate cell-matrix adhesion and transmit mechanical and chemical signals that drive epithelial stem cell functions and regulate tumor progression, metastatic reactivation, and resistance to targeted therapies. Consistently, we have recently shown that laminin-binding integrins are essential for the expansion and differentiation of mammary luminal progenitors in physiological conditions. As over-expression of the laminin-binding α6 integrin (Itgα6) is associated with poor prognosis and reduced survival in breast cancer, we here investigate the role of Itgα6 in mammary tumorigenesis. METHODS: We used Blg-Cre; Brca1F/F; Trp53F/F mice, a model that phenocopies human basal-like breast cancer with BRCA1 mutations. We generated mutant mice proficient or deficient in Itgα6 expression and followed tumor formation. Mammary tumors and pretumoral tissues were characterized by immunohistochemistry, flow cytometry, RT-qPCR, Western blotting and organoid cultures. Clonogenicity of luminal progenitors from preneoplastic glands was studied in 3D Matrigel cultures. RESULTS: We show that Itga6 deletion favors activation of p16 cell cycle inhibitor in the preneoplastic tissue. Subsequently, the amplification of luminal progenitors, the cell of origin of Brca1-deficient tumors, is restrained in Itgα6-deficient gland. In addition, the partial EMT program operating in Brca1/p53-deficient epithelium is attenuated in the absence of Itgα6. As a consequence of these events, mammary tumor formation is delayed in Itgα6-deficient mice. After tumor formation, the lack of Itgα6 does not affect tumor growth but rather alters their differentiation, resulting in reduced expression of basal cell markers. CONCLUSIONS: Our data indicate that Itgα6 has a pro-tumorigenic role in Blg-Cre; Brca1F/F; Trp53F/F mice developing basal-like mammary tumors. In particular, we reveal that Itgα6 is required for the luminal progenitor expansion and the aberrant partial EMT program that precedes the formation of BRCA1 deficient tumors.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Integrina alfa6 , Proteína Supressora de Tumor p53 , Animais , Integrina alfa6/metabolismo , Integrina alfa6/genética , Feminino , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Camundongos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proliferação de Células , Células-Tronco/metabolismo , Deleção de Genes , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo
2.
Nat Commun ; 15(1): 4430, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789420

RESUMO

Histone H2AX plays a key role in DNA damage signalling in the surrounding regions of DNA double-strand breaks (DSBs). In response to DNA damage, H2AX becomes phosphorylated on serine residue 139 (known as γH2AX), resulting in the recruitment of the DNA repair effectors 53BP1 and BRCA1. Here, by studying resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient mammary tumours, we identify a function for γH2AX in orchestrating drug-induced replication fork degradation. Mechanistically, γH2AX-driven replication fork degradation is elicited by suppressing CtIP-mediated fork protection. As a result, H2AX loss restores replication fork stability and increases chemoresistance in BRCA1/2-deficient tumour cells without restoring homology-directed DNA repair, as highlighted by the lack of DNA damage-induced RAD51 foci. Furthermore, in the attempt to discover acquired genetic vulnerabilities, we find that ATM but not ATR inhibition overcomes PARP inhibitor (PARPi) resistance in H2AX-deficient tumours by interfering with CtIP-mediated fork protection. In summary, our results demonstrate a role for H2AX in replication fork biology in BRCA-deficient tumours and establish a function of H2AX separable from its classical role in DNA damage signalling and DSB repair.


Assuntos
Proteína BRCA1 , Proteína BRCA2 , Replicação do DNA , Resistencia a Medicamentos Antineoplásicos , Histonas , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA1/deficiência , Proteína BRCA1/genética , Histonas/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Replicação do DNA/efeitos dos fármacos , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/deficiência , Linhagem Celular Tumoral , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Quebras de DNA de Cadeia Dupla , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Camundongos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Reparo do DNA , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Dano ao DNA , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética
3.
Cells ; 13(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38786046

RESUMO

Our study focused on assessing the effects of three newly identified BRCA1 exon 11 variants (c.1019T>C, c.2363T>G, and c.3192T>C) on breast cancer susceptibility. Using computational predictions and experimental splicing assays, we evaluated their potential as pathogenic mutations. Our in silico analyses suggested that the c.2363T>G and c.3192T>C variants could impact both splicing and protein function, resulting in the V340A and V788G mutations, respectively. We further examined their splicing effects using minigene assays in MCF7 and SKBR3 breast cancer cell lines. Interestingly, we found that the c.2363T>G variant significantly altered splicing patterns in MCF7 cells but not in SKBR3 cells. This finding suggests a potential influence of cellular context on the variant's effects. While attempts to correlate in silico predictions with RNA binding factors were inconclusive, this observation underscores the complexity of splicing regulation. Splicing is governed by various factors, including cellular contexts and protein interactions, making it challenging to predict outcomes accurately. Further research is needed to fully understand the functional consequences of the c.2363T>G variant in breast cancer pathogenesis. Integrating computational predictions with experimental data will provide valuable insights into the role of alternative splicing regulation in different breast cancer types and stages.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Éxons , Precursores de RNA , Splicing de RNA , Humanos , Éxons/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Linhagem Celular Tumoral , Mutação/genética , Células MCF-7 , Processamento Alternativo/genética , Predisposição Genética para Doença
4.
Nat Commun ; 15(1): 4292, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769345

RESUMO

Deficiencies in the BRCA1 tumor suppressor gene are the main cause of hereditary breast and ovarian cancer. BRCA1 is involved in the Homologous Recombination DNA repair pathway and, together with BARD1, forms a heterodimer with ubiquitin E3 activity. The relevance of the BRCA1/BARD1 ubiquitin E3 activity for tumor suppression and DNA repair remains controversial. Here, we observe that the BRCA1/BARD1 ubiquitin E3 activity is not required for Homologous Recombination or resistance to Olaparib. Using TULIP2 methodology, which enables the direct identification of E3-specific ubiquitination substrates, we identify substrates for BRCA1/BARD1. We find that PCNA is ubiquitinated by BRCA1/BARD1 in unperturbed conditions independently of RAD18. PCNA ubiquitination by BRCA1/BARD1 avoids the formation of ssDNA gaps during DNA replication and promotes continuous DNA synthesis. These results provide additional insight about the importance of BRCA1/BARD1 E3 activity in Homologous Recombination.


Assuntos
Proteína BRCA1 , Replicação do DNA , Ftalazinas , Piperazinas , Antígeno Nuclear de Célula em Proliferação , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Ftalazinas/farmacologia , Piperazinas/farmacologia , Recombinação Homóloga , Feminino , Células HEK293 , Linhagem Celular Tumoral , DNA/metabolismo
5.
Nat Commun ; 15(1): 4634, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821984

RESUMO

The master DNA damage repair histone protein, H2AX, is essential for orchestrating the recruitment of downstream mediator and effector proteins at damaged chromatin. The phosphorylation of H2AX at S139, γH2AX, is well-studied for its DNA repair function. However, the extended C-terminal tail is not characterized. Here, we define the minimal motif on H2AX for the canonical function in activating the MDC1-RNF8-RNF168 phosphorylation-ubiquitination pathway that is important for recruiting repair proteins, such as 53BP1 and BRCA1. Interestingly, H2AX recruits 53BP1 independently from the MDC1-RNF8-RNF168 pathway through its evolved C-terminal linker region with S139 phosphorylation. Mechanistically, 53BP1 recruitment to damaged chromatin is mediated by the interaction between the H2AX C-terminal tail and the 53BP1 Oligomerization-Tudor domains. Moreover, γH2AX-linker mediated 53BP1 recruitment leads to camptothecin resistance in H2AX knockout cells. Overall, our study uncovers an evolved mechanism within the H2AX C-terminal tail for regulating DNA repair proteins at damaged chromatin.


Assuntos
Cromatina , Dano ao DNA , Reparo do DNA , Histonas , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitinação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Histonas/metabolismo , Histonas/genética , Humanos , Cromatina/metabolismo , Fosforilação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Camptotecina/farmacologia , Células HEK293 , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteínas de Ciclo Celular , Proteínas Adaptadoras de Transdução de Sinal
6.
BMC Cancer ; 24(1): 566, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711004

RESUMO

BACKGROUND: Resveratrol has demonstrated its ability to regulate BRCA1 gene expression in breast cancer cells, and previous studies have established the binding of MBD proteins to BRCA1 gene promoter regions. However, the molecular mechanism underlying these interactions remains to be elucidated. The aimed to evaluate the impact of MBD proteins on the regulation of BRCA1, BRCA2, and p16 genes and their consequential effects on breast cancer cells. METHODS: Efficacy of resveratrol was assessed using the MTT assay. Binding interactions were investigated through EMSA, ChIP, & MeIP assay. Expression analyses of MBD genes and proteins were conducted using qRT-PCR and western blotting, respectively. Functional assays, including clonogenic, migratory, and sphere formation assays were used to assess cancer cells' colony-forming, metastatic, and tumor-forming abilities. The cytotoxicity of resveratrol on cancer cells was also tested using an apoptosis assay. RESULTS: The study determined an IC50 of 30µM for resveratrol. MBD proteins were found to bind to the BRCA1 gene promoter. Resveratrol exhibited regulatory effects on MBD gene expression, subsequently impacting BRCA1 gene expression and protein levels. Higher concentrations of resveratrol resulted in reduced colony and sphere formation, decreases migration of cancer cells, and an increases number of apoptotic cells in breast cancer cells. Impact Identification of MBD2-BRCA1 axis indicates their significant role in the induction of apoptosis and reduction of metastasis and proliferation in breast cancer cells. Further therapy can be designed to target these MBD proteins and resveratrol could be used along with other anticancer drugs to target breast cancer. CONCLUSIONS: In conclusion MBD2 protein interact to the BRCA1 gene promoter, and resveratrol modulates MBD2 gene expression, which in turn regulates BRCA1 gene expression, and inhibits cell proliferation, migration, and induces apoptosis in ER+, PR+ & Triple negative breast cancer cells.


Assuntos
Proteína BRCA1 , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Regiões Promotoras Genéticas , Resveratrol , Neoplasias de Mama Triplo Negativas , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico
7.
Cell Rep ; 43(5): 114205, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753485

RESUMO

The advent of PARP inhibitors (PARPis) has profoundly changed the treatment landscape of BRCA1/BRCA2-mutated cancers. Despite this, the development of resistance to these compounds has become a major challenge. Hence, a detailed understanding of the mechanisms underlying PARPi sensitivity is crucially needed. Here, we show that loss of the POLE3-POLE4 subunits of DNA polymerase epsilon (Polε) strongly sensitizes cancer cells to PARPis in a Polε level-independent manner. Loss of POLE3-POLE4 is not associated with defective RAD51 foci formation, excluding a major defect in homologous recombination. On the contrary, treatment with PARPis triggers replicative gap accumulation in POLE3-POLE4 knockout (KO) cells in a PRIMPOL-dependent manner. In addition to this, the loss of POLE3-POLE4 further sensitizes BRCA1-silenced cells to PARPis. Importantly, the knockdown of 53BP1 does not rescue PARPi sensitivity in POLE3-POLE4 KO cells, bypassing a common PARPi resistance mechanism and outlining a potential strategy to sensitize cancer cells to PARPis.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos , Replicação do DNA/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , DNA Polimerase II/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Rad51 Recombinase/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(19): e2401386121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696471

RESUMO

In the meiotic prophase, programmed DNA double-strand breaks are repaired by meiotic recombination. Recombination-defective meiocytes are eliminated to preserve genome integrity in gametes. BRCA1 is a critical protein in somatic homologous recombination, but studies have suggested that BRCA1 is dispensable for meiotic recombination. Here we show that BRCA1 is essential for meiotic recombination. Interestingly, BRCA1 also has a function in eliminating recombination-defective oocytes. Brca1 knockout (KO) rescues the survival of Dmc1 KO oocytes far more efficiently than removing CHK2, a vital component of the DNA damage checkpoint in oocytes. Mechanistically, BRCA1 activates chromosome asynapsis checkpoint by promoting ATR activity at unsynapsed chromosome axes in Dmc1 KO oocytes. Moreover, Brca1 KO also rescues the survival of asynaptic Spo11 KO oocytes. Collectively, our study not only unveils an unappreciated role of chromosome asynapsis in eliminating recombination-defective oocytes but also reveals the dual functions of BRCA1 in safeguarding oocyte genome integrity.


Assuntos
Proteína BRCA1 , Proteínas de Ciclo Celular , Camundongos Knockout , Oócitos , Oócitos/metabolismo , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Feminino , Camundongos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Meiose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Quebras de DNA de Cadeia Dupla , Pareamento Cromossômico/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Recombinação Genética , Recombinação Homóloga , Instabilidade Genômica
9.
Cancer Lett ; 589: 216820, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574883

RESUMO

One in three Triple Negative Breast Cancer (TNBC) is Homologous Recombination Deficient (HRD) and susceptible to respond to PARP inhibitor (PARPi), however, resistance resulting from functional HR restoration is frequent. Thus, pharmacologic approaches that induce HRD are of interest. We investigated the effectiveness of CDK-inhibition to induce HRD and increase PARPi sensitivity of TNBC cell lines and PDX models. Two CDK-inhibitors (CDKi), the broad range dinaciclib and the CDK12-specific SR-4835, strongly reduced the expression of key HR genes and impaired HR functionality, as illustrated by BRCA1 and RAD51 nuclear foci obliteration. Consequently, both CDKis showed synergism with olaparib, as well as with cisplatin and gemcitabine, in a range of TNBC cell lines and particularly in olaparib-resistant models. In vivo assays on PDX validated the efficacy of dinaciclib which increased the sensitivity to olaparib of 5/6 models, including two olaparib-resistant and one BRCA1-WT model. However, no olaparib response improvement was observed in vivo with SR-4835. These data support that the implementation of CDK-inhibitors could be effective to sensitize TNBC to olaparib as well as possibly to cisplatin or gemcitabine.


Assuntos
Antineoplásicos , Piperazinas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Gencitabina , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral
10.
Sci Rep ; 14(1): 9906, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689033

RESUMO

CUL4B, a crucial scaffolding protein in the largest E3 ubiquitin ligase complex CRL4B, is involved in a broad range of physiological and pathological processes. While previous research has shown that CUL4B participates in maintaining intestinal homeostasis and function, its involvement in facilitating intestinal recovery following ionizing radiation (IR) damage has not been fully elucidated. Here, we utilized in vivo and in vitro models to decipher the role of CUL4B in intestinal repair after IR-injury. Our findings demonstrated that prior to radiation exposure, CUL4B inhibited the ubiquitination modification of PSME3, which led to the accumulation of PSME3 and subsequent negative regulation of p53-mediated apoptosis. In contrast, after radiation, CUL4B dissociated from PSME3 and translocated into the nucleus at phosphorylated histones H2A (γH2AX) foci, thereby impeding DNA damage repair and augmenting p53-mediated apoptosis through inhibition of BRCA1 phosphorylation and RAD51. Our study elucidated the dynamic role of CUL4B in the repair of radiation-induced intestinal damage and uncovered novel molecular mechanisms underlying the repair process, suggesting a potential therapeutic strategy of intestinal damage after radiation therapy for cancers.


Assuntos
Apoptose , Proteínas Culina , Intestinos , Regeneração , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Apoptose/efeitos da radiação , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteínas Culina/metabolismo , Proteínas Culina/genética , Dano ao DNA , Reparo do DNA , Histonas/metabolismo , Intestinos/efeitos da radiação , Intestinos/patologia , Camundongos Endogâmicos C57BL , Fosforilação/efeitos da radiação , Rad51 Recombinase/metabolismo , Radiação Ionizante , Regeneração/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação
11.
Cell Rep ; 43(4): 114064, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38578830

RESUMO

Assembly of TopBP1 biomolecular condensates triggers activation of the ataxia telangiectasia-mutated and Rad3-related (ATR)/Chk1 signaling pathway, which coordinates cell responses to impaired DNA replication. Here, we used optogenetics and reverse genetics to investigate the role of sequence-specific motifs in the formation and functions of TopBP1 condensates. We propose that BACH1/FANCJ is involved in the partitioning of BRCA1 within TopBP1 compartments. We show that Chk1 is activated at the interface of TopBP1 condensates and provide evidence that these structures arise at sites of DNA damage and in primary human fibroblasts. Chk1 phosphorylation depends on the integrity of a conserved arginine motif within TopBP1's ATR activation domain (AAD). Its mutation uncouples Chk1 activation from TopBP1 condensation, revealing that optogenetically induced Chk1 phosphorylation triggers cell cycle checkpoints and slows down replication forks in the absence of DNA damage. Together with previous work, these data suggest that the intrinsically disordered AAD encodes distinct molecular steps in the ATR/Chk1 pathway.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Quinase 1 do Ponto de Checagem , Proteínas de Ligação a DNA , Humanos , Quinase 1 do Ponto de Checagem/metabolismo , Fosforilação , Proteínas de Ligação a DNA/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Proteínas de Transporte/metabolismo , Replicação do DNA , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteína BRCA1/metabolismo , Transdução de Sinais , Proteínas Nucleares/metabolismo , Fibroblastos/metabolismo , Pontos de Checagem do Ciclo Celular
12.
Nat Commun ; 15(1): 2853, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565883

RESUMO

Aberrant glycosylation is a crucial strategy employed by cancer cells to evade cellular immunity. However, it's unclear whether homologous recombination (HR) status-dependent glycosylation can be therapeutically explored. Here, we show that the inhibition of branched N-glycans sensitizes HR-proficient, but not HR-deficient, epithelial ovarian cancers (EOCs) to immune checkpoint blockade (ICB). In contrast to fucosylation whose inhibition sensitizes EOCs to anti-PD-L1 immunotherapy regardless of HR-status, we observe an enrichment of branched N-glycans on HR-proficient compared to HR-deficient EOCs. Mechanistically, BRCA1/2 transcriptionally promotes the expression of MGAT5, the enzyme responsible for catalyzing branched N-glycans. The branched N-glycans on HR-proficient tumors augment their resistance to anti-PD-L1 by enhancing its binding with PD-1 on CD8+ T cells. In orthotopic, syngeneic EOC models in female mice, inhibiting branched N-glycans using 2-Deoxy-D-glucose sensitizes HR-proficient, but not HR-deficient EOCs, to anti-PD-L1. These findings indicate branched N-glycans as promising therapeutic targets whose inhibition sensitizes HR-proficient EOCs to ICB by overcoming immune evasion.


Assuntos
Proteína BRCA1 , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Proteína BRCA1/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos/metabolismo , Glicosilação , Proteína BRCA2/metabolismo , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Antígeno B7-H1/metabolismo
13.
Biol Cell ; 116(4): e202300072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514439

RESUMO

BACKGROUND INFORMATION: The precise etiology of breast cancer is not completely understood, although women with BRCA1 gene mutations have a significantly increased risk of developing the disease. In addition, sporadic breast cancer is frequently associated with decreased BRCA1 gene expression. Growing evidence of Human papillomaviruses (HPVs) infections in breast tumors has raised the possibility of the involvement of HPVs in the pathogenesis of breast cancer. We investigated whether the effects of HPV oncoproteins E6 and E7 were influenced by the expression levels of BRCA1. HPV16E6E7 (prototype or E6D25E/E7N29S Asian variant type) were stably expressed in MDA-MB231 breast cancer cells, wild type for BRCA1, or with BRCA1 knocked down. RESULTS: Expression of HPV16E6E7 oncogenes did not affect BRCA1 levels and the abundance of HPV16E6E7 was not altered by BRCA1 knockdown. BRCA1 levels did not alter HPV16E6E7-dependent degradation of G1-S cell cycle proteins p53 and pRb. However, we found that the expression of G2-M cell cycle protein cyclin B1 enhanced by HPV16E6E7 was impacted by BRCA1 levels. Especially, we found the correlation between BRCA1 and cyclin B1 expression and this was also confirmed in breast cancer samples from a Thai cohort. We further demonstrated that the combination of HPV oncoproteins and low levels of BRCA1 protein appears to enhance proliferation and invasion. Transactivation activities of HPV16E6E7 on genes regulating cell proliferation and invasion (TGF-ß and vimentin) were significantly increased in BRCA1-deficient cells. CONCLUSIONS: Our results indicate that a deficiency of BRCA1 promotes the transactivation activity of HPV16E6E7 leading to increase of cell proliferation and invasion. SIGNIFICANCE: HPV infection appears to have the potential to enhance the aggressiveness of breast cancers, especially those deficient in BRCA1.


Assuntos
Neoplasias da Mama , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Feminino , Humanos , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Ciclina B1/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Infecções por Papillomavirus/genética , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo
14.
DNA Repair (Amst) ; 137: 103668, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460389

RESUMO

Alovudine is a chain-terminating nucleoside analog (CTNA) that is frequently used as an antiviral and anticancer agent. Generally, CTNAs inhibit DNA replication after their incorporation into nascent DNA during DNA synthesis by suppressing subsequent polymerization, which restricts the proliferation of viruses and cancer cells. Alovudine is a thymidine analog used as an antiviral drug. However, the mechanisms underlying the removal of alovudine and DNA damage tolerance pathways involved in cellular resistance to alovudine remain unclear. Here, we explored the DNA damage tolerance pathways responsible for cellular tolerance to alovudine and found that BRCA1-deficient cells exhibited the highest sensitivity to alovudine. Moreover, alovudine interfered with DNA replication in two distinct mechanisms: first: alovudine incorporated at the end of nascent DNA interfered with subsequent DNA synthesis; second: DNA replication stalled on the alovudine-incorporated template strand. Additionally, BRCA1 facilitated the removal of the incorporated alovudine from nascent DNA, and BRCA1-mediated homologous recombination (HR) contributed to the progressive replication on the alovudine-incorporated template. Thus, we have elucidated the previously unappreciated mechanism of alovudine-mediated inhibition of DNA replication and the role of BRCA1 in cellular tolerance to alovudine.


Assuntos
Didesoxinucleosídeos , Nucleosídeos , Nucleosídeos/farmacologia , Nucleosídeos/genética , Nucleosídeos/metabolismo , Replicação do DNA , Proteína BRCA1/metabolismo , DNA
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167138, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537683

RESUMO

Obg-like ATPase 1 (OLA1) is a binding protein of Breast cancer gene 1 (BRCA1), germline pathogenic variants of which cause hereditary breast cancer. Cancer-associated variants of BRCA1 and OLA1 are deficient in the regulation of centrosome number. Although OLA1 might function as a tumor suppressor, the relevance of OLA1 deficiency to carcinogenesis is unclear. Here, we generated Ola1 knockout mice. Aged female Ola1+/- mice developed lymphoproliferative diseases, including malignant lymphoma. The lymphoma tissues had low expression of Ola1 and an increase in the number of cells with centrosome amplification. Interestingly, the proportion of cells with centrosome amplification in normal spleen from Ola1+/- mice was higher in male mice than in female mice. In human cells, estrogen stimulation attenuated centrosome amplification induced by OLA1 knockdown. Previous reports indicate that prominent centrosome amplification causes cell death but does not promote tumorigenesis. Thus, in the current study, the mild centrosome amplification observed under estrogen stimulation in Ola1+/- female mice is likely more tumorigenic than the prominent centrosome amplification observed in Ola1+/- male mice. Our findings provide a possible sex-dependent mechanism of the tumor suppressor function of OLA1.


Assuntos
Proteína BRCA1 , Centrossomo , Estrogênios , Camundongos Knockout , Animais , Feminino , Humanos , Masculino , Camundongos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Centrossomo/metabolismo , Estrogênios/metabolismo , Linfoma/metabolismo , Linfoma/genética , Linfoma/patologia
16.
J Radiat Res ; 65(3): 263-271, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38461549

RESUMO

Ionizing radiation (IR)-induced double-strand breaks (DSBs) are primarily repaired by non-homologous end joining or homologous recombination (HR) in human cells. DSB repair requires adenosine-5'-triphosphate (ATP) for protein kinase activities in the multiple steps of DSB repair, such as DNA ligation, chromatin remodeling, and DNA damage signaling via protein kinase and ATPase activities. To investigate whether low ATP culture conditions affect the recruitment of repair proteins at DSB sites, IR-induced foci were examined in the presence of ATP synthesis inhibitors. We found that p53 binding protein 1 foci formation was modestly reduced under low ATP conditions after IR, although phosphorylated histone H2AX and mediator of DNA damage checkpoint 1 foci formation were not impaired. Next, we examined the foci formation of breast cancer susceptibility gene I (BRCA1), replication protein A (RPA) and radiation 51 (RAD51), which are HR factors, in G2 phase cells following IR. Interestingly, BRCA1 and RPA foci in the G2 phase were significantly reduced under low ATP conditions compared to that under normal culture conditions. Notably, RAD51 foci were drastically impaired under low ATP conditions. These results suggest that HR does not effectively progress under low ATP conditions; in particular, ATP shortages impair downstream steps in HR, such as RAD51 loading. Taken together, these results suggest that the maintenance of cellular ATP levels is critical for DNA damage response and HR progression after IR.


Assuntos
Trifosfato de Adenosina , Proteína BRCA1 , Recombinação Homóloga , Rad51 Recombinase , Radiação Ionizante , Humanos , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Recombinação Homóloga/efeitos da radiação , Rad51 Recombinase/metabolismo , Proteína BRCA1/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Proteína de Replicação A/metabolismo , Linhagem Celular Tumoral , Espaço Intracelular/metabolismo , Espaço Intracelular/efeitos da radiação , Reparo do DNA , Histonas/metabolismo
17.
Cell Rep ; 43(4): 114006, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38554279

RESUMO

Reprogramming to pluripotency is associated with DNA damage and requires the functions of the BRCA1 tumor suppressor. Here, we leverage separation-of-function mutations in BRCA1/2 as well as the physical and/or genetic interactions between BRCA1 and its associated repair proteins to ascertain the relevance of homology-directed repair (HDR), stalled fork protection (SFP), and replication gap suppression (RGS) in somatic cell reprogramming. Surprisingly, loss of SFP and RGS is inconsequential for the transition to pluripotency. In contrast, cells deficient in HDR, but proficient in SFP and RGS, reprogram with reduced efficiency. Conversely, the restoration of HDR function through inactivation of 53bp1 rescues reprogramming in Brca1-deficient cells, and 53bp1 loss leads to elevated HDR and enhanced reprogramming in mouse and human cells. These results demonstrate that somatic cell reprogramming is especially dependent on repair of replication-associated double-strand breaks (DSBs) by the HDR activity of BRCA1 and BRCA2 and can be improved in the absence of 53BP1.


Assuntos
Proteína BRCA1 , Reprogramação Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Replicação do DNA , Reparo de DNA por Recombinação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
18.
Chem Res Toxicol ; 37(4): 561-570, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38534178

RESUMO

Loss-of-function mutations in the Breast Cancer Susceptibility Gene (BRCA1 and BRCA2) are often detected in patients with breast cancer. Poly(ADP-ribose) polymerase-1 (PARP1) plays a key role in the repair of DNA strand breaks, and PARP inhibitors have been shown to induce highly selective killing of BRCA1/2-deficient tumor cells, a mechanism termed synthetic lethality. In our previous study, a novel PARP1 inhibitor─(E)-2-(2,3-dibromo-4,5-dimethoxybenzylidene)-N-(4-fluorophenyl) hydrazine-1-carbothioamide (4F-DDC)─was synthesized, which significantly inhibited PARP1 activity with an IC50 value of 82 ± 9 nM. The current study aimed to explore the mechanism(s) underlying the antitumor activity of 4F-DDC under in vivo and in vitro conditions. 4F-DDC was found to selectively inhibit the proliferation of BRCA mutant cells, with highly potent effects on HCC-1937 (BRCA1-/-) cells. Furthermore, 4F-DDC was found to induce apoptosis and G2/M cell cycle arrest in HCC-1937 cells. Interestingly, immunofluorescence and Western blot results showed that 4F-DDC induced DNA double strand breaks and further activated the cGAS-STING pathway in HCC-1937 cells. In vivo analysis results revealed that 4F-DDC inhibited the growth of HCC-1937-derived tumor xenografts, possibly via the induction of DNA damage and activation of the cGAS-STING pathway. In summary, the current study provides a new perspective on the antitumor mechanism of PARP inhibitors and showcases the therapeutic potential of 4F-DDC in the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/farmacologia
19.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542081

RESUMO

Breast cancer (BC) and ovarian cancer (OC) are rapidly increasing in Saudi Arabia. BRCA1 and MGMT epimutations have been linked to a higher risk of these malignancies. The present research investigated the impact of these epimutations on the prevalence of BC and OC among Saudi women. DNA methylation was evaluated using methylation-specific PCR, whereas mRNA expression levels were assessed using qRT-PCR. We evaluated white blood cell (WBC)-BRCA1 methylation in 1958 Saudi women (908 BC patients, 223 OC patients, and 827 controls). MGMT methylation was determined in 1534 of the 1958 women (700 BC patients, 223 OC patients, and 611 controls). BRCA1 methylation was detected in 8.6% of the controls and 11% of the BC patients. This epimutation was linked to 13.8% of the early-onset BC patients (p = 0.003) and 20% of the triple-negative breast cancer (TNBC) patients (p = 0.0001). BRCA1 methylation was also detected in 14% of the OC patients (p = 0.011), 19.4% of patients aged <55 years (p = 0.0007), and 23.4% of high-grade serous ovarian cancer (HGSOC) patients. In contrast, the BRCA1 mutation was detected in 24% of the OC patients, 27.4% of patients aged ≥55 years, and 26.7% of the HGSOC patients. However, MGMT methylation was detected in 10% of the controls and 17.4% of the BC patients (p = 0.0003). This epimutation was linked to 26.4% of the late-onset BC patients (p = 0.0001) and 11% of the TNBC patients. MGMT methylation was also found in 15.2% of the OC patients (p = 0.034) and 19.1% of HGSOC patients (p = 0.054). Furthermore, 36% of the BRCA1-methylated patients and 34.5% of the MGMT-methylated patients had a family history of cancer, including breast and ovarian cancer. Notably, BRCA1 and MGMT mRNA levels were greater in the WBC RNA of the BC patients and cancer-free methylation carriers than in that of the OC patients. Our data indicate that BRCA1 and MGMT epimutations significantly contribute to the development of breast cancer and ovarian cancer in Saudi cancer patients. These blood-based biomarkers could help identify female patients at high risk of developing TNBC and HGSOC at an early age.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/epidemiologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias da Mama/metabolismo , Arábia Saudita/epidemiologia , Regiões Promotoras Genéticas , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Metilação de DNA , Fatores de Risco , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Predisposição Genética para Doença , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo
20.
Free Radic Res ; 58(2): 130-143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38394084

RESUMO

Pathogenic variants of BRCA1/2 constitute hereditary breast and ovarian cancer (HBOC) syndrome, and BRCA1/2 mutant is a risk for various cancers. Whereas the clinical guideline for HBOC patients has been organized for the therapy and prevention of cancer, there is no recommendation on the female reproductive discipline. Indeed, the role of BRCA1/2 pathogenic variants in ovarian reserve has not been established due to the deficiency of appropriate animal models. Here, we used a rat model of Brca2(p.T1942fs/+) mutant of Sprague-Dawley strain with CRISPR-Cas9 editing to evaluate ovarian reserve in females. Fertility and ovarian follicles were evaluated and anti-Müllerian hormone (AMH) was measured at 8-32 weeks of age with a comparison between the wild-type and the mutant rats (MUT). MUT revealed a significantly smaller number of deliveries with fewer total pups. Furthermore, MUT showed a significant decrease in primordial follicles at 20 weeks and a low AMH level at 28 weeks. RNA-sequencing of the ovary at 10 weeks detected acceleration of the DNA damage repair pathway, which was accompanied by oxidative stress-induced DNA double-strand breaks, a decrease in PTEN, and an increase in mTOR in follicular granulosa cells. In conclusion, Brca2(p.T1942fs/+) dissipates primordial follicles via early activation of granulosa cells through oxidative stress, leading to earlier termination of fertility.


Assuntos
Reserva Ovariana , Humanos , Ratos , Feminino , Animais , Reserva Ovariana/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Ratos Sprague-Dawley , Células da Granulosa/metabolismo , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA