Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Parasit Vectors ; 17(1): 317, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044218

RESUMO

BACKGROUND: The primary pathogenic mechanism of schistosomiasis-associated liver fibrosis involves the deposition of schistosome eggs, leading to the formation of liver egg granulomas and subsequent liver fibrosis. Hepatic stellate cells are abnormally activated, resulting in excessive collagen deposition and fibrosis development. While specific long non-coding RNAs (lncRNAs) have been associated with fibrotic processes, their roles in schistosomiasis-associated liver fibrosis remain unclear. METHODS: Our previous research indicated that downregulating the ICOSL/ICOS could partially alleviate liver fibrosis. In this study, we established a schistosomiasis infection model in C57BL/6 and ICOSL knockout (KO) mice, and the liver pathology changes were observed at various weeks postinfection (wpi) using hematoxylin and eosin and Masson's trichrome staining. Within the first 4 wpi, no significant liver abnormalities were observed. However, mice exhibited evident egg granulomas and fibrosis in their livers at 7 wpi. Notably, ICOSL-KO mice had significantly smaller pathological variations compared with simultaneously infected C57BL/6 mice. To investigate the impact of lncRNAs on schistosomiasis-associated liver fibrosis, quantitative real-time polymerase chain reaction (RT-qPCR) was used to monitor the dynamic changes of lncRNAs in hepatic stellate cells of infected mice. RESULTS: The results demonstrated that lncRNA-H19, -MALAT1, -PVT1, -P21 and -GAS5 all participated in liver fibrosis formation after schistosome infection. In addition, ICOSL-KO mice exhibited significantly inhibited expression of lncRNA-H19, -MALAT1 and -PVT1 after 7 wpi. In contrast, they showed enhanced expression of lncRNA-P21 and -GAS5 compared with C57BL/6 mice, influencing liver fibrosis development. Furthermore, small interfering RNA transfection (siRNA) in JS-1 cells in vitro confirmed that lncRNA-H19, -MALAT1, and -PVT1 promoted liver fibrosis, whereas lncRNA-P21 and -GAS5 had the opposite effect on key fibrotic molecules, including α- smooth muscle actin and collagen I expression. CONCLUSIONS: This study uncovers that ICOSL/ICOS may play a role in activating hepatic stellate cells and promoting liver fibrosis in mice infected with Schistosoma japonicum by dynamically regulating the expression of specific lncRNAs. These findings offer potential therapeutic targets for schistosomiasis-associated liver fibrosis.


Assuntos
Ligante Coestimulador de Linfócitos T Induzíveis , Cirrose Hepática , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Longo não Codificante , Schistosoma japonicum , Esquistossomose Japônica , Animais , RNA Longo não Codificante/genética , Esquistossomose Japônica/parasitologia , Esquistossomose Japônica/patologia , Cirrose Hepática/parasitologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Camundongos , Schistosoma japonicum/genética , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Células Estreladas do Fígado/parasitologia , Modelos Animais de Doenças , Fígado/parasitologia , Fígado/patologia , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Feminino
2.
Proc Natl Acad Sci U S A ; 121(29): e2408649121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38980909

RESUMO

Elevated levels of miR-155 in solid and liquid malignancies correlate with aggressiveness of the disease. In this manuscript, we show that miR-155 targets transcripts encoding IcosL, the ligand for Inducible T-cell costimulator (Icos), thus impairing the ability of T cells to recognize and eliminate malignant cells. We specifically found that overexpression of miR-155 in B cells of Eµ-miR-155 mice causes loss of IcosL expression as they progress toward malignancy. Similarly, in mice where miR-155 expression is controlled by a Cre-Tet-OFF system, miR-155 induction led to malignant infiltrates lacking IcosL expression. Conversely, turning miR-155 OFF led to tumor regression and emergence of infiltrates composed of IcosL-positive B cells and Icos-positive T cells forming immunological synapses. Therefore, we next engineered malignant cells to express IcosL, in order to determine whether IcosL expression would increase tumor infiltration by cytotoxic T cells and reduce tumor progression. Indeed, overexpressing an IcosL-encoding cDNA in MC38 murine colon cancer cells before injection into syngeneic C57BL6 mice reduced tumor size and increased intratumor CD8+ T cell infiltration, that formed synapses with IcosL-expressing MC38 cells. Our results underscore the fact that by targeting IcosL transcripts, miR-155 impairs the infiltration of tumors by cytotoxic T cells, as well as the importance of IcosL on enhancing the immune response against malignant cells. These findings should lead to the development of more effective anticancer treatments based on maintaining, increasing, or restoring IcosL expression by malignant cells, along with impairing miR-155 activity.


Assuntos
Ligante Coestimulador de Linfócitos T Induzíveis , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Humanos , Linfócitos T Citotóxicos/imunologia , Regulação Neoplásica da Expressão Gênica , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/patologia
3.
J Cardiothorac Surg ; 19(1): 321, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845009

RESUMO

BACKGROUND: Long QT Syndrome (LQTS) and Beckwith-Wiedemann Syndrome (BWS) are complex disorders with unclear origins, underscoring the need for in-depth molecular investigations into their mechanisms. The main aim of this study is to identify the shared key genes between LQTS and BWS, shedding light on potential common molecular pathways underlying these syndromes. METHODS: The LQTS and BWS datasets are available for download from the GEO database. Differential expression genes (DEGs) were identified. Weighted gene co-expression network analysis (WGCNA) was used to detect significant modules and central genes. Gene enrichment analysis was performed. CIBERSORT was used for immune cell infiltration analysis. The predictive protein interaction (PPI) network of core genes was constructed using STRING, and miRNAs regulating central genes were screened using TargetScan. RESULTS: Five hundred DEGs associated with Long QT Syndrome and Beckwith-Wiedemann Syndrome were identified. GSEA analysis revealed enrichment in pathways such as T cell receptor signaling, MAPK signaling, and adrenergic signaling in cardiac myocytes. Immune cell infiltration indicated higher levels of memory B cells and naive CD4 T cells. Four core genes (CD8A, ICOS, CTLA4, LCK) were identified, with CD8A and ICOS showing low expression in the syndromes and high expression in normal samples, suggesting potential inverse regulatory roles. CONCLUSION: The expression of CD8A and ICOS is low in long QT syndrome and Beckwith-Wiedemann syndrome, indicating their potential as key genes in the pathogenesis of these syndromes. The identification of shared key genes between LQTS and BWS provides insights into common molecular mechanisms underlying these disorders, potentially facilitating the development of targeted therapeutic strategies.


Assuntos
Síndrome de Beckwith-Wiedemann , Antígenos CD8 , Proteína Coestimuladora de Linfócitos T Induzíveis , Síndrome do QT Longo , Humanos , Síndrome do QT Longo/genética , Síndrome de Beckwith-Wiedemann/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Antígenos CD8/genética , Antígenos CD8/metabolismo , Perfilação da Expressão Gênica/métodos
4.
Immunity ; 57(7): 1603-1617.e7, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38761804

RESUMO

Recent evidence reveals hyper T follicular helper (Tfh) cell responses in systemic lupus erythematosus (SLE); however, molecular mechanisms responsible for hyper Tfh cell responses and whether they cause SLE are unclear. We found that SLE patients downregulated both ubiquitin ligases, casitas B-lineage lymphoma (CBL) and CBLB (CBLs), in CD4+ T cells. T cell-specific CBLs-deficient mice developed hyper Tfh cell responses and SLE, whereas blockade of Tfh cell development in the mutant mice was sufficient to prevent SLE. ICOS was upregulated in SLE Tfh cells, whose signaling increased BCL6 by attenuating BCL6 degradation via chaperone-mediated autophagy (CMA). Conversely, CBLs restrained BCL6 expression by ubiquitinating ICOS. Blockade of BCL6 degradation was sufficient to enhance Tfh cell responses. Thus, the compromised expression of CBLs is a prevalent risk trait shared by SLE patients and causative to hyper Tfh cell responses and SLE. The ICOS-CBLs axis may be a target to treat SLE.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteína Coestimuladora de Linfócitos T Induzíveis , Lúpus Eritematoso Sistêmico , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-6 , Proteínas Proto-Oncogênicas c-cbl , Células T Auxiliares Foliculares , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/genética , Animais , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/deficiência , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Camundongos , Humanos , Células T Auxiliares Foliculares/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteólise , Ubiquitinação , Feminino , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Autofagia/imunologia
5.
Immunobiology ; 229(3): 152804, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615511

RESUMO

BACKGROUND: Inducible co-stimulatory factor (ICOS) has a dual role: activating cytotoxic T cells against tumors or exacerbating immunosuppression of regulatory T cells (Tregs) to participate in immune evasion. However, the correlation between ICOS and its co-expression with inhibitory immune checkpoints (IICs) and prognosis in acute myeloid leukemia (AML) is little known. METHODS: The prognostic importance of ICOS and IICs in 62 bone marrow (BM) samples of de novo AML patients from our clinical center (GZFPH) was explored and then the RNA sequencing data of 155 AML patients from the Cancer Genome Atlas (TCGA) database was used for validation. RESULTS: In both GZFPH and TCGA cohorts, high expression of ICOS was significantly associated with poor overall survival (OS) in patients with AML (P < 0.05). Importantly, co-expression of ICOS and PD-1, PD-L1, PD-L2, CTLA-4, and LAG-3 predicted poor OS in AML; among them, ICOS/PD-1 was the optimal combination of immune checkpoints (ICs). The co-expression of ICOS and PD-1 was correlated with poor OS in non-acute promyelocytic leukemia (non-APL) patients following chemotherapy. Additionally, ICOS/PD-1 was an independent OS-predicting factor (P < 0.05). Notably, a nomogram model was constructed by combining ICOS/PD-1, age, European Leukemia Net (ELN) risk stratification, and therapy to visually and personalized predict the 1-, 3-, and 5-year OS of patients with non-APL. CONCLUSION: Increased expression of ICOS predicted poor outcomes, and ICOS/PD-1 was the optimal combination of ICs to predict outcomes in patients with AML, which might be a potential immune biomarker for designing novel AML therapy.


Assuntos
Proteína Coestimuladora de Linfócitos T Induzíveis , Leucemia Mieloide Aguda , Receptor de Morte Celular Programada 1 , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Adulto , Biomarcadores Tumorais , Idoso , Regulação Leucêmica da Expressão Gênica
6.
Int J Med Sci ; 21(5): 795-808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616999

RESUMO

Background: Inducible co-stimulator (ICOS) shows great potential in the regulation of innate and adaptive immunity. However, previous studies of ICOS have often been limited to one or two levels. Methods: Using the data from the online database, the immunohistochemistry, and enzyme-linked immunosorbent assays, we investigated the role of ICOS / PD-L1 on patients with NSCLC at the mRNA, protein, and serum levels. Results: Our data revealed that unlike most solid tumors, the mRNA expression of ICOS was down-regulated in NSCLC. In addition, our data also showed that mRNA expression levels in ICOS are negatively associated with poor clinicopathologic grading but positively associated with better prognostic outcomes and higher Tregs infiltration level. Immunohistochemistry showed that ICOS correlated negatively with the T stage; while PD-L1 levels correlated positively with the N stage and FOXP3 levels. Serological biomarker analysis showed that patients with NSCLC had lower sICOS levels, which increased significantly post-surgery, and combined sICOS and sPD-L1 diagnosis improved efficacy and accuracy of disease diagnosis. Conclusion: Our findings support that ICOS suggests lower pathological staging and better prognosis. ICOS is a potential diagnostic and prognostic biomarker for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Prognóstico , Multiômica , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , RNA Mensageiro/genética , Biomarcadores , Proteína Coestimuladora de Linfócitos T Induzíveis/genética
7.
Int Immunopharmacol ; 132: 111949, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38552290

RESUMO

BACKGROUND: Immune effector dysfunction (IED) is mainly manifested as immune exhaustion and senescence, which are the primary obstacles to the success of cancer immunotherapy. In the current study, we characterized the prognostic relevance of IED signatures in patients with colorectal cancer (CRC). METHODS: Immunohistochemistry (IHC) data of CRC tissue samples from 41 newly diagnosed patients in our clinical center (HDPH cohort) were used to investigate the prognostic importance of IED signatures. The results were validated by the RNA sequencing data of 372 CRC patients from the Cancer Genome Atlas (TCGA) database. RESULTS: In the HDPH cohorts, high Natural Killer (NK) and CD8+ tumor-infiltrating lymphocytes (TILs) were associated with poor overall survival (OS) and relapse-free survival (RFS) in CRC patients. Optimal IED signatures, including high expression of CCR9, ISG20, and low expression of ICOS, and CACNA2D2, predicted poor OS and RFS. Moreover, high-risk scores estimated by a weighted combination of these four IED genes were associated with poor OS and RFS. Notably, risk stratification was constructed by combining risk score and tumor node metastasis (TNM) stage better than TNM stage alone in predicting OS and RFS for CRC patients. The above results were confirmed in the TCGA cohort. CONCLUSION: CCR9, ISG20, ICOS, and CACNA2D2 were optimal IED signatures for predicting the outcomes of CRC patients, which might be a potential biomarker for prognostic stratification and designing novel CRC therapy.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Linfócitos do Interstício Tumoral , Humanos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/diagnóstico , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Linfócitos do Interstício Tumoral/imunologia , Biomarcadores Tumorais/genética , Idoso , Células Matadoras Naturais/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Linfócitos T CD8-Positivos/imunologia , Regulação Neoplásica da Expressão Gênica
8.
PLoS One ; 18(12): e0293469, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127899

RESUMO

ICOS (Inducible T Cell Costimulator), one of the co-stimulatory B7 superfamily members, was characterized as a co-stimulatory receptor for T-cell enhancement. However, the role of ICOS in breast cancer remains largely unknown. The present study systematically investigated the expression pattern and its relation to clinical characteristics and immunotherapy by integrating multiple clinical cohorts and large-scale gene expression data. This study included 2994 breast tumor samples with transcriptome data and matched clinical data. To make our findings more reliable, we set the TCGA cohort as the discovery set and the METABRIC cohort as the validation set. The expression of ICOS in breast cancer is strongly associated with major clinical and molecular characteristics. There is an association between higher ICOS expression and malignant subtypes and grades of tumors. In addition, gene ontology analysis based on genes significantly correlated with ICOS expression indicated that the expression of ICOS is mainly associated with immune responses and inflammation. We also observed strong correlations between ICOS and other promising immune-checkpoint molecules, including PD1, PDL1, CTLA4, and IDO1. Furthermore, we found that ICOS expression is associated with the response to anti-PDL1 immunotherapy and may serve as a biomarker for immunotherapy prediction. Our results indicated higher ICOS expression is significantly associated with favorable survival in triple-negative breast cancer (TNBC) patients, but not for all subtypes of breast cancer patients. In summary, ICOS correlates with higher malignant breast cancers, and it contributes to the regulation of the immune microenvironment of breast tumors, making it a potential biomarker and immunotherapy target.


Assuntos
Transcriptoma , Neoplasias de Mama Triplo Negativas , Humanos , Linfócitos T , Imunoterapia/métodos , Microambiente Tumoral/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/genética
9.
Animal Model Exp Med ; 6(5): 464-473, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37850501

RESUMO

BACKGROUND: Immunotherapy has become the fastest-adopting treatment paradigm for lung cancer with improved survival. By binding with its ligand (inducible T-cell co-stimulator and its ligand [ICOSL]), an inducible T-cell co-stimulator (ICOS) could contribute to reversing immunosuppression and improving immune response and thus be a potential target for cancer immunotherapy. METHODS: We selected 54 formalin-fixed, paraffin-embedded tumor tissues from cases with stage I-III lung adenocarcinoma cancer. Immunohistochemical expression of ICOS and ICOSL was evaluated. The correlation with clinical parameters in Chinese patients was also compared with TCGA results. RESULTS: The positive rates of ICOS and ICOSL were 68% and 81.5%, respectively, in lung tumor tissues. Of these, 9 cases had a low expression of ICOS, and 22 cases had a high expression of ICOS; ICOSL expression was low in 20 cases and high in 24 cases. According to the International Association for the Study of Lung Cancer (8th edition), phase I lesions were detected in 21 cases, phase II lesions in 15 cases, and phase III lesions in 18 cases. The median survival time of all patients was 44.5 months, and the median disease-free survival was 32 months. Univariate analysis showed that the factors significantly associated with overall survival were tumor size, regional lymph node involvement, stage, and expression level of ICOS/ICOSL. Survival analysis using log-rank test indicated that the lower ICOS+ cell infiltration may predict poor prognosis, whereas lower ICOSL protein expression may be associated with better prognosis, but ICOSL data need further validation in larger samples due to inconsistency in TCGA mRNA prediction. CONCLUSION: ICOS/ICOSL might be associated with prognosis of lung cancer, and ICOS and its ligand may be potential therapeutic targets in non-small cell lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Ligante Coestimulador de Linfócitos T Induzíveis , Proteína Coestimuladora de Linfócitos T Induzíveis , Humanos , Adenocarcinoma de Pulmão/genética , Carcinoma Pulmonar de Células não Pequenas/genética , População do Leste Asiático , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Ligantes , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Prognóstico , Ligante Coestimulador de Linfócitos T Induzíveis/genética
10.
BMC Cancer ; 23(1): 194, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855091

RESUMO

BACKGROUND: The immunological checkpoint known as Inducible T Cell Costimulatory Factor (ICOS, Cluster of Differentiation, CD278) is activated and expressed on T cells. Both somatic cells and antigen-presenting cells expressed its ligand, ICOSL (including tumor cells in the tumor microenvironment).It is important for immunosuppression. Uncertainty surrounds the function of ICOS in tumor immunity. METHODS: Several bioinformatics techniques were employed by us to thoroughly examine the expression and prognostic value of ICOS in 33 cancers based on data collected from TCGA and GTEx. In addition, ICOS was explored with pathological stage, tumor-infiltrating cells, immune checkpoint genes, mismatch repair (MMR) genes, DNA methyltransferases (DNMTs), microsatellite instability (MSI),and tumor mutation burden (TMB).In addition,To ascertain the level of ICOS expression in various cells, qRT-PCR was employed. RESULTS: The findings revealed that ICOS expression was up regulation in most cancer types. The high expression of ICOS in tumor samples was related to the poor prognosis of UVM and LGG; The positive prognosis was boosted by the strong expression of ICOS in OV, SARC, SKCM, THYM, UCEC, and HNSC. The result is that the expression of malignancy was revealed by the immune cells' invasion.profile of ICOS in different types of cancer. Different ways that ICOS expression is connected to immune cell infiltration account for variations in patient survival. Additionally, the TMB, MSI, MMR, and DNMT genes as well as ICOS expression are linked in many cancer types.The results of PCR showed that it is highly expressed in gastric, breast, liver and renal cell carcinoma cell lines compared with normal cells. CONCLUSION: This study suggests that ICOS may be a potential tumor immunotherapy target and prognostic marker.


Assuntos
Imunoterapia , Neoplasias , Humanos , Terapia de Imunossupressão , Fígado , Células Apresentadoras de Antígenos , Mama , Metilases de Modificação do DNA , Neoplasias/genética , Neoplasias/terapia , Proteína Coestimuladora de Linfócitos T Induzíveis/genética
11.
Stem Cell Res ; 64: 102896, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36067639

RESUMO

Induced pluripotent stem cells (iPSCs) was successfully generated from skin fibroblast obtained from patient with cystic fibrosis by using non-integrating, viral CytoTune™-iPS 2.0 Sendai Reprogramming Kit, which contain three vectors preparation: polycistronic Klf4-Oct3/4-Sox2, cMyc, and Klf4. Created iPSC lines showed a normal karyotype, expressed pluripotency markers and demonstrated the potential to differentiate into three germ layers in spontaneous differentiation assay.


Assuntos
Fibrose Cística , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Mutação , Diferenciação Celular , Fibroblastos/metabolismo
12.
Front Immunol ; 13: 992614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119089

RESUMO

Inducible T cell co-stimulator (ICOS), an immune checkpoint protein expressed on activated T cells and its unique ligand, ICOSL, which is expressed on antigen-presenting cells and non-hematopoietic cells, have been extensively investigated in the immune response. Recent findings showed that a soluble recombinant form of ICOS (ICOS-Fc) can act as an innovative immunomodulatory drug as both antagonist of ICOS and agonist of ICOSL, modulating cytokine release and cell migration to inflamed tissues. Although the ICOS-ICOSL pathway has been poorly investigated in the septic context, a few studies have reported that septic patients have reduced ICOS expression in whole blood and increased serum levels of osteopontin (OPN), that is another ligand of ICOSL. Thus, we investigated the pathological role of the ICOS-ICOSL axis in the context of sepsis and the potential protective effects of its immunomodulation by administering ICOS-Fc in a murine model of sepsis. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in five-month-old male wild-type (WT) C57BL/6, ICOS-/-, ICOSL-/- and OPN-/- mice. One hour after the surgical procedure, either CLP or Sham (control) mice were randomly assigned to receive once ICOS-Fc, F119SICOS-Fc, a mutated form uncapable to bind ICOSL, or vehicle intravenously. Organs and plasma were collected 24 h after surgery for analyses. When compared to Sham mice, WT mice that underwent CLP developed within 24 h a higher clinical severity score, a reduced body temperature, an increase in plasma cytokines (TNF-α, IL-1ß, IL-6, IFN-γ and IL-10), liver injury (AST and ALT) and kidney (creatinine and urea) dysfunction. Administration of ICOS-Fc to WT CLP mice reduced all of these abnormalities caused by sepsis. Similar beneficial effects were not seen in CLP-mice treated with F119SICOS-Fc. Treatment of CLP-mice with ICOS-Fc also attenuated the sepsis-induced local activation of FAK, P38 MAPK and NLRP3 inflammasome. ICOS-Fc seemed to act at both sides of the ICOS-ICOSL interaction, as the protective effect was lost in septic knockout mice for the ICOS or ICOSL genes, whereas it was maintained in OPN knockout mice. Collectively, our data show the beneficial effects of pharmacological modulation of the ICOS-ICOSL pathway in counteracting the sepsis-induced inflammation and organ dysfunction.


Assuntos
Osteopontina , Sepse , Animais , Masculino , Camundongos , Creatinina , Citocinas/metabolismo , Proteínas de Checkpoint Imunológico , Imunidade , Imunomodulação , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Inflamassomos , Inflamação , Interleucina-10 , Interleucina-6 , Ligantes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Quinases p38 Ativadas por Mitógeno , Sepse/tratamento farmacológico , Fator de Necrose Tumoral alfa , Ureia
13.
J Invest Dermatol ; 142(9): 2435-2445, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35276224

RESUMO

Recalcitrant warts, caused by human papillomaviruses (HPVs), can be a cutaneous manifestation of inborn error of immunity. This study investigated the clinical manifestations, immunodeficiency, single-gene susceptibility, and HPV repertoire in a consanguineous family with severe sinopulmonary infections and recalcitrant warts. Clinical and immunologic evaluations, including FACS and lymphocyte transformation test, provided evidence for immunodeficiency. Combined whole-exome sequencing and genome-wide homozygosity mapping were utilized to disclose candidate sequence variants. Whole-transcriptome sequencing was used to concomitantly investigate the HPV genotypes and the consequences of detected sequence variants in the host. The proband, a male aged 41 years, was found to be homozygous for the c.6delG, p.Lys2Asnfs∗17 variant in ICOS, encoding the inducible T-cell costimulator. This variant was located inside the 5 megabase of runs of homozygosity on 2q33.2. RNA sequencing confirmed the deleteriousness of the ICOS variant in three skin biopsies revealing significant downregulation of ICOS and its ligand, ICOSLG. Reads unaligned to the human genome were applied to 926 different viruses, and α-HPV57, ß-HPV107, ß-HPV14, and ß-HPV17 were detected. Collectively, we describe a previously unrecognized inborn error of T-cell immunity to HPVs, indicating that autosomal recessive ICOS deficiency can underlie recalcitrant warts, emphasizing the immunologic underpinnings of recalcitrant warts at the nexus of human and viral genomic variation.


Assuntos
Proteína Coestimuladora de Linfócitos T Induzíveis , Infecções por Papillomavirus , Verrugas , Adulto , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Masculino , Papillomaviridae , Infecções por Papillomavirus/genética , Pele/patologia , Verrugas/genética , Verrugas/patologia , Sequenciamento do Exoma
14.
Hepatology ; 75(2): 297-308, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34510503

RESUMO

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a deadly and highly therapy-refractory cancer of the bile ducts, with early results from immune checkpoint blockade trials showing limited responses. Whereas recent molecular assessments have made bulk characterizations of immune profiles and their genomic correlates, spatial assessments may reveal actionable insights. APPROACH AND RESULTS: Here, we have integrated immune checkpoint-directed immunohistochemistry with next-generation sequencing of resected intrahepatic CCA samples from 96 patients. We found that both T-cell and immune checkpoint markers are enriched at the tumor margins compared to the tumor center. Using two approaches, we identify high programmed cell death protein 1 or lymphocyte-activation gene 3 and low CD3/CD4/inducible T-cell costimulator specifically in the tumor center as associated with poor survival. Moreover, loss-of-function BRCA1-associated protein-1 mutations are associated with and cause elevated expression of the immunosuppressive checkpoint marker, B7 homolog 4. CONCLUSIONS: This study provides a foundation on which to rationally improve and tailor immunotherapy approaches for this difficult-to-treat disease.


Assuntos
Antígenos CD/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/genética , Antígenos B7/genética , Neoplasias dos Ductos Biliares/imunologia , Ductos Biliares Intra-Hepáticos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linfócitos T CD4-Positivos , Linhagem Celular Tumoral , Colangiocarcinoma/imunologia , Feminino , Expressão Gênica , Genes Supressores de Tumor , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Oncogenes/genética , Receptor de Morte Celular Programada 1/genética , Taxa de Sobrevida , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Inibidor 1 da Ativação de Células T com Domínio V-Set/genética , Adulto Jovem , Proteína do Gene 3 de Ativação de Linfócitos
15.
Front Immunol ; 12: 786680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925367

RESUMO

The liver capacity to recover from acute liver injury is a critical factor in the development of acute liver failure (ALF) caused by viral infections, ischemia/reperfusion or drug toxicity. Liver healing requires the switching of pro-inflammatory monocyte-derived macrophages(MoMFs) to a reparative phenotype. However, the mechanisms involved are still incompletely characterized. In this study we investigated the contribution of T-lymphocyte/macrophage interaction through the co-stimulatory molecule Inducible T-cell co-stimulator (ICOS; CD278) and its ligand (ICOSL; CD275) in modulating liver repair. The role of ICOS/ICOSL dyad was investigated during the recovery from acute liver damage induced by a single dose of carbon tetrachloride (CCl4). Flow cytometry of non-parenchymal liver cells obtained from CCl4-treated wild-type mice revealed that the recovery from acute liver injury associated with a specific up-regulation of ICOS in CD8+ T-lymphocytes and with an increase in ICOSL expression involving CD11bhigh/F4-80+ hepatic MoMFs. Although ICOS deficiency did not influence the severity of liver damage and the evolution of inflammation, CCl4-treated ICOS knockout (ICOS-/- ) mice showed delayed clearance of liver necrosis and increased mortality. These animals were also characterized by a significant reduction of hepatic reparative MoMFs due to an increased rate of cell apoptosis. An impaired liver healing and loss of reparative MoMFs was similarly evident in ICOSL-deficient mice or following CD8+ T-cells ablation in wild-type mice. The loss of reparative MoMFs was prevented by supplementing CCl4-treated ICOS-/- mice with recombinant ICOS (ICOS-Fc) which also stimulated full recovery from liver injury. These data demonstrated that CD8+ T-lymphocytes play a key role in supporting the survival of reparative MoMFs during liver healing trough ICOS/ICOSL-mediated signaling. These observations open the possibility of targeting ICOS/ICOSL dyad as a novel tool for promoting efficient healing following acute liver injury.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Falência Hepática Aguda/imunologia , Regeneração Hepática/imunologia , Macrófagos/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Tetracloreto de Carbono/administração & dosagem , Tetracloreto de Carbono/toxicidade , Comunicação Celular/imunologia , Modelos Animais de Doenças , Humanos , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/imunologia
16.
Nat Commun ; 12(1): 5208, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471108

RESUMO

Post-transcriptional gene regulation in T cells is dynamic and complex as targeted transcripts respond to various factors. This is evident for the Icos mRNA encoding an essential costimulatory receptor that is regulated by several RNA-binding proteins (RBP), including Roquin-1 and Roquin-2. Here, we identify a core RBPome of 798 mouse and 801 human T cell proteins by utilizing global RNA interactome capture (RNA-IC) and orthogonal organic phase separation (OOPS). The RBPome includes Stat1, Stat4 and Vav1 proteins suggesting unexpected functions for these transcription factors and signal transducers. Based on proximity to Roquin-1, we select ~50 RBPs for testing coregulation of Roquin-1/2 targets by induced expression in wild-type or Roquin-1/2-deficient T cells. Besides Roquin-independent contributions from Rbms1 and Cpeb4 we also show Roquin-1/2-dependent and target-specific coregulation of Icos by Celf1 and Igf2bp3. Connecting the cellular RBPome in a post-transcriptional context, we find contributions from multiple RBPs to the prototypic regulation of mRNA targets by individual trans-acting factors.


Assuntos
RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Células HEK293 , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Camundongos , Proteínas Proto-Oncogênicas c-vav , Fator de Transcrição STAT1 , Fator de Transcrição STAT4 , Transdução de Sinais , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/genética
17.
Cell Immunol ; 368: 104420, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418679

RESUMO

CD40-CD40L and inducible co-stimulatory molecule (ICOS)-ICOSL ligations are demonstrated to play critical roles in CD4+T-B interaction for B cell activation and differentiation in mouse models. Herein, by using a micropipette adhesion assay and an in vitro CD4+T-B cell coculture system simultaneously, we intended to dissect their roles in human CD4+T-B adhesion and IgG/IgM production. With the upregulation of CD40L and ICOS expressions on CD4+ T cells upon TCR/CD28 stimulation in vitro, activated CD4+ T cells exhibited enhanced adhesion with autologous B cells at a single cell level when compared to the resting counterparts. Blockade of ICOS dramatically damped the adhesion between CD4+ T and B cells whereas less effect of CD40L blockade was observed. On the contrary, blockade of CD40L led to the dramatic decrease in IgG/IgM production when B cells were cocultured with activated CD4+ T cells together with the decrease in the induction of CD19hi B cells. However, ICOS blockade displayed less attenuation on IgG/IgM production. Distinct roles of CD40-CD40L and ICOS-ICOSL in cell adhesion and IgG/IgM production were also observed in CD4+T-B cell interaction in system lupus erythematosus patients. The blockade of CD40L, rather than ICOS, led to the dramatic decrease in the phosphorylation of Pyk2 in CD19hi B cells and total B cells. Our study thus provides the evidence that CD40L and ICOS on activated CD4+ T cells either upon in vitro activation or at the pathogenic state function diversely during CD4+T-B cell interactions. While ICOS-ICOSL ligation is more likely to be engaged in cell adhesion, CD40-CD40L provides indispensable signal for B cell differentiation and IgG/IgM production. Our results are thus indicative for the segregating costimulation of CD40-CD40L and ICOS-ICOSL on CD4+ T cells for B cell activation and differentiation, which might be helpful for the dissection of SLE pathogenesis.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Ligante de CD40/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Adolescente , Adulto , Formação de Anticorpos , Ligante de CD40/genética , Adesão Celular , Comunicação Celular , Células Cultivadas , Feminino , Quinase 2 de Adesão Focal/metabolismo , Humanos , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Cytotherapy ; 23(8): 715-723, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33863641

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy is a promising therapeutic strategy against lymphoma. However, post-treatment relapses due to antigen loss remain a challenge. Here the authors designed a novel bicistronic CAR construct and tested its functions in vitro and in vivo. The CAR construct consisted of individual anti-CD19 and anti-CD20 single-chain fragment variables equipped with ICOS-CD3ζ and 4-1BB-CD3ζ intracellular domains, respectively. The CD19 and CD20 bicistronic CAR T cells exhibited tumor lytic capacities equivalent to corresponding monospecific CAR T cells. Moreover, when stimulated with CD19 and CD20 simultaneously, the bicistronic CAR T cells showed prolonged persistence and enhanced cytokine generation compared with single stimulations. Interestingly, the authors found that the 4-1BB signal was predominant in the signaling profiles of ICOS and 4-1BB doubly activated CAR T cells. In vivo study using a CD19/CD20 double-positive tumor model revealed that the bicistronic CAR T cells were more efficient than monospecific CD19 CAR T cells in eradicating tumors and prolonging mouse survival. The authors' novel bicistronic CD19/CD20 CAR T cells demonstrate improved anti-tumor efficacy in response to dual antigen stimulations. These data provide optimism that this novel bicistronic CAR construct can improve treatment outcomes in patients with relapsed/refractory B cell malignancy.


Assuntos
Receptores de Antígenos Quiméricos , Animais , Antígenos CD19/genética , Humanos , Imunoterapia Adotiva , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Camundongos , Recidiva Local de Neoplasia , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos/genética , Linfócitos T
19.
Immunol Lett ; 233: 2-10, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675861

RESUMO

PURPOSE: A recently identified population of T cells, phenotypically CD4+PD-1hiCXCR5-, has been firstly termed as peripheral helper T cells (Tph) and found to be pathogenic in autoimmune diseases. However, the potential role of Tph in ulcerative colitis (UC) remains unclear. We aim to investigate the changes of circulating Tph in UC patients and their potential significance in the pathogenesis of UC. METHODS: Totally 68 UC patients and 34 age- and sex-matched healthy controls were enrolled. Circulating Tph and B cell subsets were analyzed by flow cytometry. Expressions of inducible T-cell co-stimulator (ICOS) on Tph cells were analyzed. Serum IL-4, IL-10, IL-12 and IL-21 were detected using ELISA. Correlation analyses were conducted between Tph cells and disease severity, functional B cell subsets and serum cytokines. RESULTS: Both the frequency and absolute number of Tph were significantly increased in active UC patients and ICOS levels in Tph cells were also elevated, compared with remission UC patients and healthy controls. Tph and ICOS expression were significantly positively correlated with Mayo score and serum CRP in active UC patients, and were significantly decreased when achieving remission after treatment. Tph levels were correlated with new memory B cells, plasmablasts, serum IL-4 and IL-21. Meanwhile, serum IL-10 showed negative correlation while IL-12 exhibited positive correlation with circulating Tph cells in UC patients. CONCLUSIONS: Circulating Tph cells are elevated in active UC patients and are associated with the disease activity, which may contribute to the pathogenesis of UC.


Assuntos
Colite Ulcerativa/diagnóstico , Colite Ulcerativa/etiologia , Contagem de Linfócitos , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR5/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Biomarcadores , Colite Ulcerativa/metabolismo , Colite Ulcerativa/terapia , Citocinas/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Imunoglobulina G/imunologia , Imunofenotipagem , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Prognóstico , Índice de Gravidade de Doença
20.
Mol Ther ; 28(7): 1585-1599, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32454027

RESUMO

HIV infection preferentially depletes HIV-specific CD4+ T cells, thereby impairing antiviral immunity. In this study, we explored the therapeutic utility of adoptively transferred CD4+ T cells expressing an HIV-specific chimeric antigen receptor (CAR4) to restore CD4+ T cell function to the global HIV-specific immune response. We demonstrated that CAR4 T cells directly suppressed in vitro HIV replication and eliminated virus-infected cells. Notably, CAR4 T cells containing intracellular domains (ICDs) derived from the CD28 receptor family (ICOS and CD28) exhibited superior effector functions compared to the tumor necrosis factor receptor (TNFR) family ICDs (CD27, OX40, and 4-1BB). However, despite demonstrating limited in vitro efficacy, only HIV-resistant CAR4 T cells expressing the 4-1BBζ ICD exhibited profound expansion, concomitant with reduced rebound viremia after antiretroviral therapy (ART) cessation and protection of CD4+ T cells (CAR-) from HIV-induced depletion in humanized mice. Moreover, CAR4 T cells enhanced the in vivo persistence and efficacy of HIV-specific CAR-modified CD8+ T cells expressing the CD28ζ ICD, which alone exhibited poor survival. Collectively, these studies demonstrate that HIV-resistant CAR4 T cells can directly control HIV replication and augment the virus-specific CD8+ T cell response, highlighting the therapeutic potential of engineered CD4+ T cells to engender a functional HIV cure.


Assuntos
Antígenos CD28/química , Linfócitos T CD4-Positivos/transplante , Infecções por HIV/terapia , HIV/fisiologia , Proteína Coestimuladora de Linfócitos T Induzíveis/química , Receptores de Antígenos Quiméricos/metabolismo , Animais , Antígenos CD28/genética , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Farmacorresistência Viral , HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Imunoterapia Adotiva , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Camundongos , Domínios Proteicos , Receptores de Antígenos Quiméricos/genética , Resultado do Tratamento , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA