Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 17(12): e2000743, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33155352

RESUMO

Both Raptor and Rictor are the key components in the complexes of mammalian target of rapamycin (mTOR), which play a vital role in mediating autophagy. Unlike mTOR, the regulatory role of either Raptor or Rictor in the regulation of autophagic process is relatively less explored. In present study, we found that rasfonin, which isolated from Talaromyces sp. 3656-A1 and was a fungal natural product, activated both caspase-dependent apoptosis and autophagy in ACHN, a renal carcinoma cell line. Knockdown of Raptor decreased both rasfonin-induced autophagic flux and PARP-1 cleavage, and in contrast, Rictor silencing increased apoptosis concomitantly enhancing rasfonin-induced autophagy. Unexpectedly, API-2, which was widely used as an inhibitor of Akt, promoted rasfonin-dependent autophagy in Raptor-depleted but not Rictor-deprived cells. Collectively, these results demonstrated that Raptor and Rictor could play a distinctly regulatory role in rasfonin-enhanced autophagy and apoptosis.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Carcinoma de Células Renais/patologia , Ácidos Graxos Insaturados/farmacologia , Neoplasias Renais/patologia , Pironas/farmacologia , Proteína Companheira de mTOR Insensível à Rapamicina/fisiologia , Proteína Regulatória Associada a mTOR/fisiologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos
2.
FASEB J ; 34(5): 6984-6998, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32232913

RESUMO

Rictor is an essential component that directly activates the mammalian target of rapamycin (mTOR) activity, which contributes to the intrinsic axon growth capacity of adult sensory neurons after injury. However, whether its action also applies to regeneration after spinal cord injury (SCI) remains unknown. In this study, rats were given spinal cord contusion at the T9-10 level to establish the SCI model and were subsequently treated with intraspinal cord injection of a Rictor overexpression lentiviral vector to locally upregulate the Rictor expression in the injured spinal cord. Thereafter, we investigated the therapeutic effects of Rictor overexpression in the injured spinal cords of SCI rats. Rictor overexpression not only significantly attenuated the acute inflammatory response and cell death after SCI but also markedly increased the shift in macrophages around the lesion from the M1 to M2 phenotype compared to those of the control lentiviral vector injection-treated group. Furthermore, Rictor overexpression dramatically increased neurogenesis in the lesion epicenter, subsequently promoting the tissue repair and functional recovery in SCI rats. Interestingly, the mechanism underlying the beneficial effects of Rictor overexpression on SCI may be associated with the Rictor overexpression playing a role in the anti-inflammatory response and driving macrophage polarization toward the M2 phenotype, which benefits resident neuronal and oligodendrocyte survival. Our findings demonstrate that Rictor is an effective target that affects the generation of molecules that inhibit spinal cord regeneration. In conclusion, localized Rictor overexpression represents a promising potential strategy for the repair of SCI.


Assuntos
Proteína Companheira de mTOR Insensível à Rapamicina/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Apoptose , Sobrevivência Celular , Modelos Animais de Doenças , Feminino , Humanos , Macrófagos/classificação , Macrófagos/metabolismo , Macrófagos/patologia , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Plasticidade Neuronal , Oligodendroglia/patologia , Oligodendroglia/fisiologia , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recuperação de Função Fisiológica/genética , Recuperação de Função Fisiológica/fisiologia , Remielinização , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Regulação para Cima
3.
Hepatology ; 72(2): 454-469, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31782176

RESUMO

BACKGROUND AND AIMS: Hepatic macrophages can be activated by many factors such as gut-derived bacterial components and factors released from damaged hepatocytes. Macrophage polarization toward a proinflammatory phenotype (M1) represents an important event in the disease progression of nonalcoholic fatty liver disease (NAFLD). However, the underlying molecular mechanisms remain incompletely understood. Exosomes have been identified as important mediators for cell-cell communication by transferring various biological components such as microRNAs (miRs), proteins, and lipids. The role of exosomes in crosstalk between hepatocytes and macrophages in disease progression of NAFLD is yet to be explored. APPROACH AND RESULTS: In the present study, we reported that lipotoxic injury-induced release of hepatocyte exosomes enriched with miR-192-5p played a critical role in the activation of M1 macrophages and hepatic inflammation. Serum miR-192-5p levels in patients with NAFLD positively correlated with hepatic inflammatory activity score and disease progression. Similarly, the serum miR-192-5p level and the number of M1 macrophages, as well as the expression levels of the hepatic proinflammatory mediators, were correlated with disease progression in high-fat high-cholesterol diet-fed rat models. Lipotoxic hepatocytes released more miR-192-5p-enriched exosomes than controls, which induced M1 macrophage (cluster of differentiation 11b-positive [CD11b+ ]/CD86+ ) activation and increase of inducible nitric oxide synthase, interleukin 6, and tumor necrosis factor alpha expression. Furthermore, hepatocyte-derived exosomal miR-192-5p inhibited the protein expression of the rapamycin-insensitive companion of mammalian target of rapamycin (Rictor), which further inhibited the phosphorylation levels of Akt and forkhead box transcription factor O1 (FoxO1) and resulted in activation of FoxO1 and subsequent induction of the inflammatory response. CONCLUSIONS: Hepatocyte-derived exosomal miR-192-5p plays a critical role in the activation of proinflammatory macrophages and disease progression of NAFLD through modulating Rictor/Akt/FoxO1 signaling. Serum exosomal miR-192-5p represents a potential noninvasive biomarker and therapeutic target for nonalcoholic steatohepatitis.


Assuntos
Exossomos/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Hepatócitos/metabolismo , Ativação de Macrófagos/fisiologia , MicroRNAs/fisiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteína Companheira de mTOR Insensível à Rapamicina/fisiologia , Transdução de Sinais/fisiologia , Animais , Masculino , MicroRNAs/biossíntese , Ratos , Ratos Sprague-Dawley
4.
J Biol Chem ; 294(17): 6831-6842, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30858178

RESUMO

Mitochondria are major sites of energy metabolism that influence numerous cellular events, including immunity and cancer development. Previously, we reported that the mitochondrion-specific antioxidant enzyme, manganese-containing superoxide dismutase (MnSOD), has dual roles in early- and late-carcinogenesis stages. However, how defective MnSOD impacts the chain of events that lead to cell transformation in pathologically normal epidermal cells that have been exposed to carcinogens is unknown. Here, we show that UVB radiation causes nitration and inactivation of MnSOD leading to mitochondrial injury and mitophagy. In keratinocytes, exposure to UVB radiation decreased mitochondrial oxidative phosphorylation, increased glycolysis and the expression of autophagy-related genes, and enhanced AKT Ser/Thr kinase (AKT) phosphorylation and cell growth. Interestingly, UVB initiated a prosurvival mitophagy response by mitochondria-mediated reactive oxygen species (ROS) signaling via the mammalian target of the mTOR complex 2 (mTORC2) pathway. Knockdown of rictor but not raptor abrogated UVB-induced mitophagy responses. Furthermore, fractionation and proximity-ligation assays reveal that ROS-mediated mTOC2 activation in mitochondria is necessary for UVB-induced mitophagy. Importantly, pretreatment with the MnSOD mimic MnTnBuOE-2-PyP5+ (MnP) attenuates mTORC2 activation and suppresses UVB-induced mitophagy. UVB radiation exposure also increased cell growth as assessed by soft-agar colony survival and cell growth assays, and pretreatment with MnP or the known autophagy inhibitor 3-methyladenine abrogated UVB-induced cell growth. These results indicate that MnSOD is a major redox regulator that maintains mitochondrial health and show that UVB-mediated MnSOD inactivation promotes mitophagy and thereby prevents accumulation of damaged mitochondria.


Assuntos
Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mitofagia/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/antagonistas & inibidores , Raios Ultravioleta , Animais , Autofagia/fisiologia , Linhagem Celular , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Nitratos/metabolismo , Oxirredução , Proteína Companheira de mTOR Insensível à Rapamicina/fisiologia , Proteína Regulatória Associada a mTOR/fisiologia
5.
Elife ; 72018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29809146

RESUMO

Natural killer (NK) cells are innate lymphoid cells that are essential for innate and adaptive immunity. Mechanistic target of rapamycin (mTOR) is critical for NK cell development; however, the independent roles of mTORC1 or mTORC2 in regulating this process remain unknown. Ncr1iCre-mediated deletion of Rptor or Rictor in mice results in altered homeostatic NK cellularity and impaired development at distinct stages. The transition from the CD27+CD11b- to the CD27+CD11b+ stage is impaired in Rptor cKO mice, while, the terminal maturation from the CD27+CD11b+ to the CD27-CD11b+ stage is compromised in Rictor cKO mice. Mechanistically, Raptor-deficiency renders substantial alteration of the gene expression profile including transcription factors governing early NK cell development. Comparatively, loss of Rictor causes more restricted transcriptome changes. The reduced expression of T-bet correlates with the terminal maturation defects and results from impaired mTORC2-AktS473-FoxO1 signaling. Collectively, our results reveal the divergent roles of mTORC1 and mTORC2 in NK cell development.


Assuntos
Células Matadoras Naturais/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Feminino , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Companheira de mTOR Insensível à Rapamicina/fisiologia , Proteína Regulatória Associada a mTOR/fisiologia , Transdução de Sinais , Proteínas com Domínio T/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA