Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34971379

RESUMO

Understanding the molecular mechanisms underlying pituitary organogenesis and function is essential for improving therapeutics and molecular diagnoses for hypopituitarism. We previously found that deletion of the forkhead factor, Foxo1, in the pituitary gland early in development delays somatotrope differentiation. While these mice grow normally, they have reduced growth hormone expression and free serum insulin-like growth factor-1 (IGF1) levels, suggesting a defect in somatotrope function. FOXO factors show functional redundancy in other tissues, so we deleted both Foxo1 and its closely related family member, Foxo3, from the primordial pituitary. We find that this results in a significant reduction in growth. Consistent with this, male and female mice in which both genes have been deleted in the pituitary gland (dKO) exhibit reduced pituitary growth hormone expression and serum IGF1 levels. Expression of the somatotrope differentiation factor, Neurod4, is reduced in these mice. This suggests a mechanism underlying proper somatotrope function is the regulation of Neurod4 expression by FOXO factors. Additionally, dKO mice have reduced Lhb expression and females also have reduced Fshb and Prl expression. These studies reveal FOXO transcription factors as important regulators of pituitary gland function.


Assuntos
Fatores de Transcrição Forkhead/fisiologia , Somatotrofos/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Feminino , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/fisiologia , Proteína Forkhead Box O3/deficiência , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/fisiologia , Expressão Gênica , Hormônio do Crescimento/genética , Fator de Crescimento Insulin-Like I/análise , Masculino , Camundongos , Camundongos Knockout , Hipófise/química , Hipófise/fisiologia , RNA Mensageiro/análise , Somatotrofos/química
2.
J Clin Invest ; 131(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34263740

RESUMO

Patients with congenital lymphedema suffer from tissue swelling in part due to mutations in genes regulating lymphatic valve development. Lymphatic valve leaflets grow and are maintained throughout life in response to oscillatory shear stress (OSS), which regulates gene transcription in lymphatic endothelial cells (LECs). Here, we identified the first transcription factor, Foxo1, that repressed lymphatic valve formation by inhibiting the expression of valve-forming genes. We showed that both embryonic and postnatal ablation of Foxo1 in LECs induced additional valve formation in postnatal and adult mice in multiple tissues. Our quantitative analyses revealed that after deletion, the total number of valves in the mesentery was significantly (P < 0.01) increased in the Foxo1LEC-KO mice compared with Foxo1fl/fl controls. In addition, our quantitative real-time PCR (RT-PCR) data from cultured LECs showed that many valve-forming genes were significantly (P < 0.01) upregulated upon knockdown of FOXO1. To confirm our findings in vivo, rescue experiments showed that Foxc2+/- mice, a model of lymphedema-distichiasis, had 50% fewer lymphatic valves and that the remaining valves exhibited backleak. Both valve number and function were completely restored to control levels upon Foxo1 deletion. These findings established FOXO1 as a clinically relevant target to stimulate de novo lymphatic valve formation and rescue defective valves in congenital lymphedema.


Assuntos
Proteína Forkhead Box O1/deficiência , Deleção de Genes , Linfangiogênese , Vasos Linfáticos/metabolismo , Animais , Proteína Forkhead Box O1/metabolismo , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/metabolismo , Camundongos , Camundongos Knockout
3.
Sci Immunol ; 6(60)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145066

RESUMO

The nutrient-sensing mammalian target of rapamycin (mTOR) is integral to cell fate decisions after T cell activation. Sustained mTORC1 activity favors the generation of terminally differentiated effector T cells instead of follicular helper and memory T cells. This is particularly pertinent for T cell responses of older adults who have sustained mTORC1 activation despite dysfunctional lysosomes. Here, we show that lysosome-deficient T cells rely on late endosomes rather than lysosomes as an mTORC1 activation platform, where mTORC1 is activated by sensing cytosolic amino acids. T cells from older adults have an increased expression of the plasma membrane leucine transporter SLC7A5 to provide a cytosolic amino acid source. Hence, SLC7A5 and VPS39 deficiency (a member of the HOPS complex promoting early to late endosome conversion) substantially reduced mTORC1 activities in T cells from older but not young individuals. Late endosomal mTORC1 is independent of the negative-feedback loop involving mTORC1-induced inactivation of the transcription factor TFEB that controls expression of lysosomal genes. The resulting sustained mTORC1 activation impaired lysosome function and prevented lysosomal degradation of PD-1 in CD4+ T cells from older adults, thereby inhibiting their proliferative responses. VPS39 silencing of human T cells improved their expansion to pertussis and to SARS-CoV-2 peptides in vitro. Furthermore, adoptive transfer of CD4+ Vps39-deficient LCMV-specific SMARTA cells improved germinal center responses, CD8+ memory T cell generation, and recall responses to infection. Thus, curtailing late endosomal mTORC1 activity is a promising strategy to enhance T cell immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Endossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais/genética , Transferência Adotiva/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas Relacionadas à Autofagia/deficiência , Proteínas Relacionadas à Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , COVID-19/virologia , Células Cultivadas , Feminino , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Voluntários Saudáveis , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/imunologia , Transfecção , Proteínas de Transporte Vesicular/deficiência , Proteínas de Transporte Vesicular/genética , Adulto Jovem
4.
Mol Metab ; 53: 101256, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34048961

RESUMO

OBJECTIVE: Genetic and acquired abnormalities contribute to pancreatic ß-cell failure in diabetes. Transcription factors Hnf4α (MODY1) and FoxO1 are respective examples of these two components and act through ß-cell-specific enhancers. However, their relationship is unclear. METHODS: In this report, we show by genome-wide interrogation of chromatin modifications that ablation of FoxO1 in mature ß-cells enriches active Hnf4α enhancers according to a HOMER analysis. RESULTS: To model the functional significance of this predicted unusual enhancer utilization, we generated single and compound knockouts of FoxO1 and Hnf4α in ß-cells. Single knockout of either gene impaired insulin secretion in mechanistically distinct fashions as indicated by their responses to sulfonylurea and calcium fluxes. Surprisingly, the defective ß-cell secretory function of either single mutant in hyperglycemic clamps and isolated islets treated with various secretagogues was completely reversed in double mutants lacking FoxO1 and Hnf4α. Gene expression analyses revealed distinct epistatic modalities by which the two transcription factors regulate networks associated with reversal of ß-cell dysfunction. An antagonistic network regulating glycolysis, including ß-cell "disallowed" genes, and a synergistic network regulating protocadherins emerged as likely mediators of the functional restoration of insulin secretion. CONCLUSIONS: The findings provide evidence of antagonistic epistasis as a model of gene/environment interactions in the pathogenesis of ß-cell dysfunction.


Assuntos
Proteína Forkhead Box O1/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Epistasia Genética/genética , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Fator 4 Nuclear de Hepatócito/deficiência , Fator 4 Nuclear de Hepatócito/genética , Camundongos , Camundongos Knockout , Mutação
5.
Cell Rep ; 35(1): 108935, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826891

RESUMO

Type 2 diabetes (T2D) increases the risk for diabetic cardiomyopathy and is characterized by diastolic dysfunction. Myocardial forkhead box O1 (FoxO1) activity is enhanced in T2D and upregulates pyruvate dehydrogenase (PDH) kinase 4 expression, which inhibits PDH activity, the rate-limiting enzyme of glucose oxidation. Because low glucose oxidation promotes cardiac inefficiency, we hypothesize that FoxO1 inhibition mitigates diabetic cardiomyopathy by stimulating PDH activity. Tissue Doppler echocardiography demonstrates improved diastolic function, whereas myocardial PDH activity is increased in cardiac-specific FoxO1-deficient mice subjected to experimental T2D. Pharmacological inhibition of FoxO1 with AS1842856 increases glucose oxidation rates in isolated hearts from diabetic C57BL/6J mice while improving diastolic function. However, AS1842856 treatment fails to improve diastolic function in diabetic mice with a cardiac-specific FoxO1 or PDH deficiency. Our work defines a fundamental mechanism by which FoxO1 inhibition improves diastolic dysfunction, suggesting that it may be an approach to alleviate diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Diástole/fisiologia , Proteína Forkhead Box O1/metabolismo , Miocárdio/enzimologia , Complexo Piruvato Desidrogenase/metabolismo , Animais , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/fisiopatologia , Fibrose , Proteína Forkhead Box O1/antagonistas & inibidores , Proteína Forkhead Box O1/deficiência , Glucose/metabolismo , Homeostase , Lipídeos/toxicidade , Masculino , Camundongos Endogâmicos C57BL
6.
Am J Physiol Heart Circ Physiol ; 320(4): H1470-H1485, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33577435

RESUMO

The insulin-like growth factor 1 receptor (IGF1R) and phosphoinositide 3-kinase p110α (PI3K) are critical regulators of exercise-induced physiological cardiac hypertrophy and provide protection in experimental models of pathological remodeling and heart failure. Forkhead box class O1 (FoxO1) is a transcription factor that regulates cardiomyocyte hypertrophy downstream of IGF1R/PI3K activation in vitro, but its role in physiological hypertrophy in vivo was unknown. We generated cardiomyocyte-specific FoxO1 knockout (cKO) mice and assessed the phenotype under basal conditions and settings of physiological hypertrophy induced by 1) swim training or 2) cardiac-specific transgenic expression of constitutively active PI3K (caPI3KTg+). Under basal conditions, male and female cKO mice displayed mild interstitial fibrosis compared with control (CON) littermates, but no other signs of cardiac pathology were present. In response to exercise training, female CON mice displayed an increase (∼21%) in heart weight normalized to tibia length vs. untrained mice. Exercise-induced hypertrophy was blunted in cKO mice. Exercise increased cardiac Akt phosphorylation and IGF1R expression but was comparable between genotypes. However, differences in Foxo3a, Hsp70, and autophagy markers were identified in hearts of exercised cKO mice. Deletion of FoxO1 did not reduce cardiac hypertrophy in male or female caPI3KTg+ mice. Cardiac Akt and FoxO1 protein expressions were significantly reduced in hearts of caPI3KTg+ mice, which may represent a negative feedback mechanism from chronic caPI3K, and negate any further effect of reducing FoxO1 in the cKO. In summary, FoxO1 contributes to exercise-induced hypertrophy. This has important implications when one is considering FoxO1 as a target for treating the diseased heart.NEW & NOTEWORTHY Regulators of exercise-induced physiological cardiac hypertrophy and protection are considered promising targets for the treatment of heart failure. Unlike pathological hypertrophy, the transcriptional regulation of physiological hypertrophy has remained largely elusive. To our knowledge, this is the first study to show that the transcription factor FoxO1 is a critical mediator of exercise-induced cardiac hypertrophy. Given that exercise-induced hypertrophy is protective, this finding has important implications when one is considering FoxO1 as a target for treating the diseased heart.


Assuntos
Cardiomegalia Induzida por Exercícios , Cardiomegalia/enzimologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Proteína Forkhead Box O1/metabolismo , Miócitos Cardíacos/enzimologia , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Ativação Enzimática , Feminino , Fibrose , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Masculino , Camundongos Knockout , Miócitos Cardíacos/patologia , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Natação
7.
J Biol Chem ; 296: 100287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33450223

RESUMO

Autophagy is vital for maintaining cellular homeostasis through removing impaired organelles. It has recently been found to play pivotal roles in diabetes mellitus (DM), which is associated with increased bone fracture risk and loss of bone density. However, the mechanism whereby autophagy modulates DM-induced bone loss is not fully elucidated. Previous work has shown that 1α,25-Dihydroxyvitamin D3 (1,25D) exerts positive effects on autophagy, thus affecting bone metabolism. Here, we investigated whether autophagy was involved in the regulation of diabetic bone metabolism. Using Micro-CT, Elisa, histology, and histomorphometry analysis, we demonstrated that 1,25D rescues glucose metabolism dysfunction and ameliorates bone loss in diabetic mice. In vitro, 1,25D alleviated primary osteoblast dysfunction and intracellular oxidative stress through reducing prolonged high-glucose-mediated excessive autophagy in primary osteoblasts, reflected by decreased protein level of Beclin1 and LC3. Of note, the autophagy activator rapamycin (RAP) ablated the positive effects of 1,25D in diabetic environment, leading to a marked increase in autolysosomes and autophagosomes, examined by mRFP-GFP-LC3 fluorescence double labeling. The excessive autophagy induced by high glucose was deleterious to proliferation and differentiation of primary osteoblasts. Additionally, biochemical studies identified that PI3K/Akt signaling could be activated by 1,25D, resulting in the inhibition of FoxO1. We confirmed that FoxO1 deficiency alleviated high-glucose-induced autophagy and improved biological functions of primary osteoblasts. Together, our results suggest that the PI3K/Akt/FoxO1 signaling pathway is involved in the osteoprotective effect of 1,25D by attenuating autophagy in diabetes, providing a novel insight for the prevention and treatment of diabetes-caused bone loss.


Assuntos
Autofagia/efeitos dos fármacos , Calcitriol/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Proteína Forkhead Box O1/genética , Glucose/metabolismo , Osteoporose/tratamento farmacológico , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/genética , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Densidade Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Fêmur/patologia , Proteína Forkhead Box O1/deficiência , Regulação da Expressão Gênica , Glucose/antagonistas & inibidores , Glucose/farmacologia , Lisossomos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoporose/induzido quimicamente , Osteoporose/genética , Osteoporose/patologia , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Estreptozocina , Resultado do Tratamento
8.
FEBS Open Bio ; 10(7): 1373-1388, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32433820

RESUMO

Peroxisome proliferator-activated receptor-gamma coactivator-1ß (PGC-1ß) is a transcriptional regulator whose increased expression activates energy expenditure-related genes in skeletal muscles. However, how PGC-1ß is regulated remains largely unclear. Here, we show that PGC-1ß gene expression is negatively correlated with the expression of a transcription factor, forkhead box protein O1 (FOXO1), whose expression is increased during muscle atrophy. In the skeletal muscles of FOXO1-overexpressing transgenic mice, PGC-1ß gene expression is decreased. Denervation or plaster cast-based unloading, as well as fasting, increases endogenous FOXO1 expression in skeletal muscles, with decreased PGC-1ß expression. In the skeletal muscles of FOXO1-knockout mice, the decrease in PGC-1ß expression caused by fasting was attenuated. Tamoxifen-inducible FOXO1 activation in C2C12 myoblasts causes a marked decrease of PGC-1ß expression. These findings together reveal that FOXO1 activation suppresses PGC-1ß expression. During atrophy with FOXO1 activation, decreased PGC-1ß may decrease energy expenditure and avoid wasting energy.


Assuntos
Proteína Forkhead Box O1/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Animais , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
9.
Mol Metab ; 34: 97-111, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32180563

RESUMO

OBJECTIVE: Diabetes is characterized by pancreatic ß-cell dedifferentiation. Dedifferentiating ß cells inappropriately metabolize lipids over carbohydrates and exhibit impaired mitochondrial oxidative phosphorylation. However, the mechanism linking the ß-cell's response to an adverse metabolic environment with impaired mitochondrial function remains unclear. METHODS: Here we report that the oxidoreductase cytochrome b5 reductase 3 (Cyb5r3) links FoxO1 signaling to ß-cell stimulus/secretion coupling by regulating mitochondrial function, reactive oxygen species generation, and nicotinamide actin dysfunction (NAD)/reduced nicotinamide actin dysfunction (NADH) ratios. RESULTS: The expression of Cyb5r3 is decreased in FoxO1-deficient ß cells. Mice with ß-cell-specific deletion of Cyb5r3 have impaired insulin secretion, resulting in glucose intolerance and diet-induced hyperglycemia. Cyb5r3-deficient ß cells have a blunted respiratory response to glucose and display extensive mitochondrial and secretory granule abnormalities, consistent with altered differentiation. Moreover, FoxO1 is unable to maintain expression of key differentiation markers in Cyb5r3-deficient ß cells, suggesting that Cyb5r3 is required for FoxO1-dependent lineage stability. CONCLUSIONS: The findings highlight a pathway linking FoxO1 to mitochondrial dysfunction that can mediate ß-cell failure.


Assuntos
Citocromo-B(5) Redutase/metabolismo , Proteína Forkhead Box O1/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Animais , Citocromo-B(5) Redutase/deficiência , Citocromo-B(5) Redutase/genética , Feminino , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Tumorais Cultivadas
10.
Lab Invest ; 99(11): 1689-1701, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31243340

RESUMO

Transforming growth factor ß (TGF-ß) is the key cytokine involved in causing fibrosis through cross-talk with major profibrotic pathways. However, inhibition of TGF-ß to prevent fibrosis would also abrogate its anti-inflammatory and wound-healing effects. ß-catenin is a common co-factor in most TGF-ß signaling pathways. ß-catenin binds to T-cell factor (TCF) to activate profibrotic genes and binds to Forkhead box O (Foxo) to promote cell survival under oxidative stress. Using a proximity ligation assay in human kidney biopsies, we found that ß-catenin/Foxo interactions were higher in kidney with little fibrosis, whereas ß-catenin/TCF interactions were upregulated in the kidney of patients with fibrosis. We hypothesised that ß-catenin/Foxo is protective against kidney fibrosis. We found that Foxo1 protected against rhTGF-ß1-induced profibrotic protein expression using a CRISPR/cas9 knockout of Foxo1 or TCF1 in murine kidney tubular epithelial C1.1 cells. Co-administration of TGF-ß with a small molecule inhibitor of ß-catenin/TCF (ICG-001), protected against kidney fibrosis in unilateral ureteral obstruction. Collectively, our human, animal and in vitro findings suggest ß-catenin/Foxo as a therapeutic target in kidney fibrosis.


Assuntos
Proteína Forkhead Box O1/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , beta Catenina/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Fibrose , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Técnicas de Inativação de Genes , Fator 1-alfa Nuclear de Hepatócito/deficiência , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/patologia , Nefropatias/prevenção & controle , Masculino , Camundongos , Pirimidinonas/farmacologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , beta Catenina/antagonistas & inibidores
11.
Front Immunol ; 10: 1016, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139183

RESUMO

We previously reported that deletion of Foxo1, via Ncr1-iCre mice from the expression of NKp46 onward, led to enhanced natural killer (NK) cell maturation and effector function. In this model, however, the role of Foxo1 in regulating NK cell specification and early development remains exclusive. Herein, we utilized a murine model of hematopoietic-specific deletion of Foxo1 before lymphoid specification, by crossing mice carrying floxed Foxo1 alleles (Foxo1fl/fl) with Vav1-iCre mice, to revisit the role of Foxo1 on NK cell specification and early development. The data showed that hematopoietic-specific deletion of Foxo1 resulted in increased proportion and numbers of common lymphoid progenitors (CLP) (Lin-CD127+c-Kit+Sca-1+), pre-pro NK b cells (Lin-Sca-1+c-Kit-CD135-CD127+), as well as committed Lin-CD122+ cells and CD3-CD19-NKp46+ NK cells in bone marrow. Hematopoietic-specific deletion of Foxo1 also promoted NK cells proliferation in a cell-intrinsic manner, indicated by increased Ki-67 expression and more expansion of NK cell after ex vivo stimulation with IL-15. The reason for Foxo1 suppressing NK cell proliferation might be its direct transcription of the cell-cycle inhibitory genes, such as p21cip1, p27kip1, p130, Gadd45a, and Ccng2 (cyclin G2) in NK cells, supported by the evidence of decreased mRNA expression of p21cip1, p27kip1, p130, Gadd45a, and Ccng2 in Foxo1-deficient NK cells and direct binding of Foxo1 on their promoter region. Furthermore, hematopoietic-specific deletion of Foxo1 resulted in increased ratio of mature NK subsets, such as CD11b+CD27- and CD43+KLRG1+ NK cells, but decreased ratio of immature NK subsets, such as CD27+CD11b- and CD27+CD11b+ NK cells, consistent with the findings in the murine model of Ncr1-iCre mediated Foxo1 deletion. Conclusively, Foxo1 not only acts as a negative checkpoint on NK cell maturation, but also represses NK cell specification and proliferation. The relative higher expression of Foxo1 in CLP and early NK precursors may also contribute to the later NK cell proliferation and responsiveness, which warranties another separate study in the future.


Assuntos
Proliferação de Células , Proteína Forkhead Box O1/deficiência , Deleção de Genes , Hematopoese/imunologia , Células Matadoras Naturais/imunologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Proteína Forkhead Box O1/imunologia , Hematopoese/genética , Camundongos , Camundongos Transgênicos
12.
Bone ; 123: 159-167, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30904630

RESUMO

Diabetes increases the risk of fracture, impairs fracture healing and causes rapid loss of the fracture callus cartilage, which was linked to increased FOXO1 expression in chondrocytes. We recently demonstrated that deletion of FOXO1 in chondrocytes blocked the premature removal of cartilage associated with endochondral bone formation during fracture healing. However, the ultimate impact of this deletion on mechanical strength was not investigated and remains unknown. Closed fractures were induced in Col2α1Cre+.FOXO1L/L mice with lineage specific deletion of FOXO1 in chondrocytes compared to littermate controls. Type 1 diabetes was induced by multiple low dose streptozotocin treatment. Thirty-five days after fracture micro CT analysis showed that diabetes significantly reduced callus volume and bone volume (P < 0.05), both which were reversed by FOXO1 deletion in chondrocytes. Diabetes significantly reduced mechanical strength measured by maximum torque, stiffness, modulus of rigidity and toughness and FOXO1 deletion in diabetic mice rescued each parameter (P < 0.05). Diabetes also reduced both bone volume and mechanical strength in non-fractured femurs. However, FOXO1 deletion did not affect bone volume or strength in non-fractured bone. These results point to the important effect that diabetes has on chondrocytes and show for the first time that the premature removal of cartilage induced by FOXO1 in chondrocytes has a significant impact on the mechanical strength of the healing bone.


Assuntos
Condrócitos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fraturas do Colo Femoral/metabolismo , Proteína Forkhead Box O1/deficiência , Consolidação da Fratura/fisiologia , Deleção de Genes , Animais , Fenômenos Biomecânicos/fisiologia , Condrócitos/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Fraturas do Colo Femoral/genética , Fraturas do Colo Femoral/patologia , Proteína Forkhead Box O1/genética , Camundongos , Camundongos Transgênicos
13.
Diabetes ; 68(2): 291-304, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30487265

RESUMO

Premenopausal women exhibit enhanced insulin sensitivity and reduced incidence of type 2 diabetes (T2D) compared with age-matched men, but this advantage disappears after menopause with disrupted glucose homeostasis, in part owing to a reduction in circulating 17ß-estradiol (E2). Fasting hyperglycemia is a hallmark of T2D derived largely from dysregulation of hepatic glucose production (HGP), in which Foxo1 plays a central role in the regulation of gluconeogenesis. Here, we investigated the action of E2 on glucose homeostasis in male and ovariectomized (OVX) female control and liver-specific Foxo1 knockout (L-F1KO) mice and sought to understand the mechanism by which E2 regulates gluconeogenesis via an interaction with hepatic Foxo1. In both male and OVX female control mice, subcutaneous E2 implant improved insulin sensitivity and suppressed gluconeogenesis; however, these effects of E2 were abolished in L-F1KO mice of both sexes. In our use of mouse primary hepatocytes, E2 suppressed HGP and gluconeogenesis in hepatocytes from control mice but failed in hepatocytes from L-F1KO mice, suggesting that Foxo1 is required for E2 action on the suppression of gluconeogenesis. We further demonstrated that E2 suppresses hepatic gluconeogenesis through activation of estrogen receptor (ER)α-phosphoinositide 3-kinase-Akt-Foxo1 signaling, which can be independent of insulin receptor substrates 1 and 2 (Irs1 and Irs2), revealing an important mechanism for E2 in the regulation of glucose homeostasis. These results may help explain why premenopausal women have lower incidence of T2D than age-matched men and suggest that targeting ERα can be a potential approach to modulate glucose metabolism and prevent diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1/metabolismo , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/genética , Estradiol/farmacologia , Feminino , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Glucose/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Immunoblotting , Resistência à Insulina/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Ovariectomia , Reação em Cadeia da Polimerase em Tempo Real
14.
Elife ; 72018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30511639

RESUMO

Impaired angiogenesis is a hallmark of metabolically dysfunctional adipose tissue in obesity. However, the underlying mechanisms restricting angiogenesis within this context remain ill-defined. Here, we demonstrate that induced endothelial-specific depletion of the transcription factor Forkhead Box O1 (FoxO1) in male mice led to increased vascular density in adipose tissue. Upon high-fat diet feeding, endothelial cell FoxO1-deficient mice exhibited even greater vascular remodeling in the visceral adipose depot, which was paralleled with a healthier adipose tissue expansion, higher glucose tolerance and lower fasting glycemia concomitant with enhanced lactate levels. Mechanistically, FoxO1 depletion increased endothelial proliferative and glycolytic capacities by upregulating the expression of glycolytic markers, which may account for the improvements at the tissue level ultimately impacting whole-body glucose metabolism. Altogether, these findings reveal the pivotal role of FoxO1 in controlling endothelial metabolic and angiogenic adaptations in response to high-fat diet and a contribution of the endothelium to whole-body energy homeostasis.


Assuntos
Endotélio Vascular/crescimento & desenvolvimento , Endotélio Vascular/metabolismo , Proteína Forkhead Box O1/deficiência , Obesidade/metabolismo , Animais , Dieta Hiperlipídica , Proteína Forkhead Box O1/metabolismo , Glucose/metabolismo , Glicólise , Homeostase , Gordura Intra-Abdominal/irrigação sanguínea , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos Knockout , Microvasos/metabolismo , Modelos Biológicos , Músculo Esquelético/irrigação sanguínea , Obesidade/sangue , Tamanho do Órgão , Especificidade de Órgãos , Fenótipo , Triglicerídeos/sangue , Regulação para Cima , Remodelação Vascular
15.
PLoS Genet ; 14(11): e1007787, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30452456

RESUMO

Successful embryo implantation requires a receptive endometrium. Poor uterine receptivity can account for implantation failure in women who experience recurrent pregnancy loss or multiple rounds of unsuccessful in vitro fertilization cycles. Here, we demonstrate that the transcription factor Forkhead Box O1 (FOXO1) is a critical regulator of endometrial receptivity in vivo. Uterine ablation of Foxo1 using the progesterone receptor Cre (PgrCre) mouse model resulted in infertility due to altered epithelial cell polarity and apoptosis, preventing the embryo from penetrating the luminal epithelium. Analysis of the uterine transcriptome after Foxo1 ablation identified alterations in gene expression for transcripts involved in the activation of cell invasion, molecular transport, apoptosis, ß-catenin (CTNNB1) signaling pathway, and an increase in PGR signaling. The increase of PGR signaling was due to PGR expression being retained in the uterine epithelium during the window of receptivity. Constitutive expression of epithelial PGR during this receptive period inhibited expression of FOXO1 in the nucleus of the uterine epithelium. The reciprocal expression of PGR and FOXO1 was conserved in human endometrial samples during the proliferative and secretory phase. This demonstrates that expression of FOXO1 and the loss of PGR during the window of receptivity are interrelated and critical for embryo implantation.


Assuntos
Implantação do Embrião/genética , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Animais , Núcleo Celular/metabolismo , Polaridade Celular/genética , Polaridade Celular/fisiologia , Decídua/fisiologia , Endométrio/citologia , Feminino , Proteína Forkhead Box O1/deficiência , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Gravidez , Receptores de Progesterona/deficiência , Transdução de Sinais
16.
Biochem Biophys Res Commun ; 503(3): 1401-1408, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30025894

RESUMO

Accumulation of reactive oxygen species (ROS) induced by oxidative stress (OS) affects cell survival, cell function and even results in cell death. As a major transcription factor of forkhead O (FoxOs) family, FoxO1 orchestrates multiple osteoblastic biological processes, thus regulating osteoblast physiology and bone metabolism. However, the outcome of osteoblast behaviors varies under different physiological and pathological conditions. Also, the underlying impact of FoxO1 on oxidative stress and further on bone metabolism still remains unclear. In this study, using osteoblast-specific FoxO1 knockout (FoxO1OB-/-) mice, we investigated the potential roles of FoxO1 on bone formation and osteoblast bioactivity under physiological condition. We show herein that FoxO1-knockout decreased bone volume and bone formation rate in FoxO1OB-/- mice, which might be related to the decreased osteoblasts number. We also found that FoxO1-knockout increased apoptosis-related caspase-3 activity of osteoblasts, and inhibited the expression of osteogenic phenotypic markers (i.e. Runx2, Osx, ALP and OPN), leading to reduced osteoblasts differentiation. The alterations of bone formation and osteoblasts bioactivity were further testified to be linked to the elevated intracellular oxidative stress levels in FoxO1-deficient osteoblasts. Besides, administration of the antioxidant N-acetyl-l-cysteine (NAC) normalized the increased ROS levels in FoxO1-deficient osteoblasts, restoring the decreased osteoblasts differentiation, suppressing apoptosis-related caspase-3 activity, and promoting the expression of osteogenic markers in FoxO1-deficient osteoblasts. These results together illustrated that as a major regulator in redox homeostasis and osteoblast physiology, FoxO1 provides a favorable intracellular environment for osteoblast functions by defensing against the adverse effects of oxidative stress.


Assuntos
Proteína Forkhead Box O1/metabolismo , Osteoblastos/metabolismo , Osteogênese , Estresse Oxidativo , Animais , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Homeostase , Camundongos , Camundongos Knockout , Oxirredução
17.
Aging Cell ; 17(5): e12800, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29963746

RESUMO

Intervertebral disk (IVD) degeneration is a prevalent age-associated musculoskeletal disorder and a major cause of chronic low back pain. Aging is the main risk factor for the disease, but the molecular mechanisms regulating IVD homeostasis during aging are unknown. The aim of this study was to investigate the function of FOXO, a family of transcription factors linked to aging and longevity, in IVD aging and age-related degeneration. Conditional deletion of all FOXO isoforms (FOXO1, 3, and 4) in IVD using the Col2a1Cre and AcanCreER mouse resulted in spontaneous development of IVD degeneration that was driven by severe cell loss in the nucleus pulposus (NP) and cartilaginous endplates (EP). Conditional deletion of individual FOXO in mature mice showed that FOXO1 and FOXO3 are the dominant isoforms and have redundant functions in promoting IVD homeostasis. Gene expression analyses indicated impaired autophagy and reduced antioxidant defenses in the NP of FOXO-deficient IVD. In primary human NP cells, FOXO directly regulated autophagy and adaptation to hypoxia and promoted resistance to oxidative and inflammatory stress. Our findings demonstrate that FOXO are critical regulators of IVD homeostasis during aging and suggest that maintaining or restoring FOXO expression can be a therapeutic strategy to promote healthy IVD aging and delay the onset of IVD degeneration.


Assuntos
Envelhecimento/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Disco Intervertebral/metabolismo , Animais , Células Cultivadas , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/deficiência , Proteína Forkhead Box O3/genética , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
18.
J Pathol ; 245(3): 258-264, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29574902

RESUMO

Angiogenesis is a critical aspect of wound healing. We investigated the role of keratinocytes in promoting angiogenesis in mice with lineage-specific deletion of the transcription factor FOXO1. The results indicate that keratinocyte-specific deletion of Foxo1 reduces VEGFA expression in mucosal and skin wounds and leads to reduced endothelial cell proliferation, reduced angiogenesis, and impaired re-epithelialization and granulation tissue formation. In vitro FOXO1 was needed for VEGFA transcription and expression. In a porcine dermal wound-healing model that closely resembles healing in humans, local application of a FOXO1 inhibitor reduced angiogenesis. This is the first report that FOXO1 directly regulates VEGFA expression and that FOXO1 is needed for normal angiogenesis during wound healing. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteína Forkhead Box O1/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Gengiva/metabolismo , Mucosa Bucal/metabolismo , Neovascularização Fisiológica , Pele/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização , Ferimentos e Lesões/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Fatores de Transcrição Forkhead/genética , Gengiva/lesões , Gengiva/patologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Camundongos Knockout , Mucosa Bucal/lesões , Mucosa Bucal/patologia , Transdução de Sinais , Pele/lesões , Pele/patologia , Suínos , Porco Miniatura , Fator A de Crescimento do Endotélio Vascular/genética , Ferimentos e Lesões/genética , Ferimentos e Lesões/patologia
19.
Endocrinology ; 159(3): 1253-1263, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29300910

RESUMO

Insulin coordinates the complex response to feeding, affecting numerous metabolic and hormonal pathways. Forkhead box protein O1 (FoxO1) is one of several signaling molecules downstream of insulin; FoxO1 drives gluconeogenesis and is suppressed by insulin. To determine the role of FoxO1 in mediating other actions of insulin, we studied mice with hepatic deletion of the insulin receptor, FoxO1, or both. We found that mice with deletion of the insulin receptor alone showed not only hyperglycemia but also a 70% decrease in plasma insulin-like growth factor 1 and delayed growth during the first 2 months of life, a 24-fold increase in the soluble leptin receptor and a 19-fold increase in plasma leptin levels. Deletion of the insulin receptor also produced derangements in fatty acid metabolism, with a decrease in the expression of the lipogenic enzymes, hepatic diglycerides, and plasma triglycerides; in parallel, it increased expression of the fatty acid oxidation enzymes. Mice with deletion of both insulin receptor and FoxO1 showed a much more modest phenotype, with normal or near-normal glucose levels, growth, leptin levels, hepatic diglycerides, and fatty acid oxidation gene expression; however, lipogenic gene expression remained low. Taken together, these data reveal the pervasive role of FoxO1 in mediating the effects of insulin on not only glucose metabolism but also other hormonal signaling pathways and even some aspects of lipid metabolism.


Assuntos
Proteína Forkhead Box O1/fisiologia , Fígado/química , Receptor de Insulina/deficiência , Receptor de Insulina/fisiologia , Animais , Glicemia/análise , Ácidos Graxos/metabolismo , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Expressão Gênica , Gluconeogênese/genética , Insulina/sangue , Insulina/farmacologia , Insulina/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/sangue , Leptina/metabolismo , Lipídeos/análise , Lipogênese/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Receptores para Leptina/sangue , Triglicerídeos/sangue
20.
J Exp Med ; 215(2): 575-594, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29282254

RESUMO

Upon infection with an intracellular pathogen, cytotoxic CD8+ T cells develop diverse differentiation states characterized by function, localization, longevity, and the capacity for self-renewal. The program of differentiation is determined, in part, by FOXO1, a transcription factor known to integrate extrinsic input in order to specify survival, DNA repair, self-renewal, and proliferation. At issue is whether the state of T cell differentiation is specified by initial conditions of activation or is actively maintained. To study the spectrum of T cell differentiation, we have analyzed an infection with mouse cytomegalovirus, a persistent-latent virus that elicits different cytotoxic T cell responses characterized as acute resolving or inflationary. Our results show that FOXO1 is continuously required for all the phenotypic characteristics of memory-effector T cells such that with acute inactivation of the gene encoding FOXO1, T cells revert to a short-lived effector phenotype, exhibit reduced viability, and manifest characteristics of anergy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Anergia Clonal , Proteína Forkhead Box O1/imunologia , Memória Imunológica , Transferência Adotiva , Animais , Antígenos Virais , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/imunologia , Sobrevivência Celular/imunologia , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Fator 1-alfa Nuclear de Hepatócito/imunologia , Lectinas Tipo C , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/imunologia , Receptores Imunológicos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA