Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Open Biol ; 14(5): 230460, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38806145

RESUMO

The precise spatial and temporal control of histone phosphorylations is important for the ordered progression through the different phases of mitosis. The phosphorylation of H2B at S6 (H2B S6ph), which is crucial for chromosome segregation, reaches its maximum level during metaphase and is limited to the inner centromere. We discovered that the temporal and spatial regulation of this modification, as well as its intensity, are governed by the scaffold protein RepoMan and its associated catalytically active phosphatases, PP1α and PP1γ. Phosphatase activity is inhibited at the area of maximal H2B S6 phosphorylation at the inner centromere by site-specific Aurora B-mediated inactivation of the PP1/RepoMan complex. The motor protein Mklp2 contributes to the relocalization of Aurora B from chromatin to the mitotic spindle during anaphase, thus alleviating Aurora B-dependent repression of the PP1/RepoMan complex and enabling dephosphorylation of H2B S6. Accordingly, dysregulation of Mklp2 levels, as commonly observed in tumour cells, leads to the lack of H2B S6 dephosphorylation during early anaphase, which might contribute to chromosomal instability.


Assuntos
Aurora Quinase B , Proteínas de Ciclo Celular , Histonas , Mitose , Proteína Fosfatase 1 , Aurora Quinase B/metabolismo , Fosforilação , Humanos , Histonas/metabolismo , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 1/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Células HeLa , Fuso Acromático/metabolismo , Centrômero/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
2.
Cell Death Differ ; 31(5): 683-696, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589496

RESUMO

Protein phosphatase 1 catalytic subunit gamma (PPP1CC) promotes DNA repair and tumor development and progression, however, its underlying mechanisms remain unclear. This study investigated the molecular mechanism of PPP1CC's involvement in DNA repair and the potential clinical implications. High expression of PPP1CC was significantly correlated with radioresistance and poor prognosis in human nasopharyngeal carcinoma (NPC) patients. The mechanistic study revealed that PPP1CC bound to Ku70/Ku80 heterodimers and activated DNA-PKcs by promoting DNA-PK holoenzyme formation, which enhanced nonhomologous end junction (NHEJ) -mediated DNA repair and led to radioresistance. Importantly, BRCA1-BRCA2-containing complex subunit 3 (BRCC3) interacted with PPP1CC to enhance its stability by removing the K48-linked polyubiquitin chain at Lys234 to prevent PPP1CC degradation. Therefore, BRCC3 helped the overexpressed PPP1CC to maintain its high protein level, thereby sustaining the elevation of DNA repair capacity and radioresistance. Our study identified the molecular mechanism by which PPP1CC promotes NHEJ-mediated DNA repair and radioresistance, suggesting that the BRCC3-PPP1CC-Ku70 axis is a potential therapeutic target to improve the efficacy of radiotherapy.


Assuntos
Reparo do DNA por Junção de Extremidades , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteína Fosfatase 1 , Tolerância a Radiação , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 1/genética , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Tolerância a Radiação/genética , Prognóstico , Linhagem Celular Tumoral , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Animais , Proteína Quinase Ativada por DNA/metabolismo , Proteína Quinase Ativada por DNA/genética , Camundongos Nus , Feminino , Masculino , Reparo do DNA , Camundongos
3.
Cell Death Dis ; 15(2): 115, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326336

RESUMO

Gasdermin D (GSDMD) functions as a pivotal executor of pyroptosis, eliciting cytokine secretion following cleavage by inflammatory caspases. However, the role of posttranslational modifications (PTMs) in GSDMD-mediated pyroptosis remains largely unexplored. In this study, we demonstrate that GSDMD can undergo acetylation at the Lysine 248 residue, and this acetylation enhances pyroptosis. We identify histone deacetylase 4 (HDAC4) as the specific deacetylase responsible for mediating GSDMD deacetylation, leading to the inhibition of pyroptosis both in vitro and in vivo. Deacetylation of GSDMD impairs its ubiquitination, resulting in the inhibition of pyroptosis. Intriguingly, phosphorylation of HDAC4 emerges as a critical regulatory mechanism promoting its ability to deacetylate GSDMD and suppress GSDMD-mediated pyroptosis. Additionally, we implicate Protein phosphatase 1 (PP1) catalytic subunits (PP1α and PP1γ) in the dephosphorylation of HDAC4, thereby nullifying its deacetylase activity on GSDMD. This study reveals a complex regulatory network involving HDAC4, PP1, and GSDMD. These findings provide valuable insights into the interplay among acetylation, ubiquitination, and phosphorylation in the regulation of pyroptosis, offering potential targets for further investigation in the field of inflammatory cell death.


Assuntos
Gasderminas , Histona Desacetilases , Proteína Fosfatase 1 , Piroptose , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Processamento de Proteína Pós-Traducional , Humanos , Animais , Camundongos , Gasderminas/metabolismo
4.
Mol Cancer ; 23(1): 34, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360682

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer with high aggressive phenotype and poor prognosis. Accumulating evidence suggests that circRNAs have been identified as pivotal mediators in cancers. However, the role of circRNAs in ccRCC progression remains elusive. METHODS: The differentially expressed circRNAs in 4 paired human ccRCC and adjacent noncancerous tissues ccRCC were screened using circRNA microarrays and the candidate target was selected based on circRNA expression level using weighted gene correlation network analysis (WGCNA) and the gene expression omnibus (GEO) database. CircPDHK1 expression in ccRCC and adjacent noncancerous tissues (n = 148) were evaluated along with clinically relevant information. RT-qPCR, RNase R digestion, and actinomycin D (ActD) stability test were conducted to identify the characteristics of circPDHK1. The subcellular distribution of circPDHK1 was analyzed by subcellular fractionation assay and fluorescence in situ hybridization (FISH). Immunoprecipitation-mass spectrometry (IP-MS) and immunofluorescence (IF) were employed to evaluate the protein-coding ability of circPDHK1. ccRCC cells were transfected with siRNAs, plasmids or lentivirus approach, and cell proliferation, migration and invasion, as well as tumorigenesis and metastasis in nude mice were assessed to clarify the functional roles of circPDHK1 and its encoded peptide PDHK1-241aa. RNA-sequencing, western blot analysis, immunoprecipitation (IP) and chromatin immunoprecipitation (ChIP) assays were further employed to identify the underlying mechanisms regulated by PDHK1-241aa. RESULTS: CircPDHK1 was upregulated in ccRCC tissues and closely related to WHO/ISUP stage, T stage, distant metastasis, VHL mutation and Ki-67 levels. CircPDHK1 had a functional internal ribosome entry site (IRES) and encoded a novel peptide PDHK1-241aa. Functionally, we confirmed that PDHK1-241aa and not the circPDHK1 promoted the proliferation, migration and invasion of ccRCC. Mechanistically, circPDHK1 was activated by HIF-2A at the transcriptional level. PDHK1-241aa was upregulated and interacted with PPP1CA, causing the relocation of PPP1CA to the nucleus. This thereby inhibited AKT dephosphorylation and activated the AKT-mTOR signaling pathway. CONCLUSIONS: Our data indicated that circPDHK1-encoded PDHK1-241aa promotes ccRCC progression by interacting with PPP1CA to inhibit AKT dephosphorylation. This study provides novel insights into the multiplicity of circRNAs and highlights the potential use of circPDHK1 or PDHK1-241aa as a therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Carcinoma de Células Renais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética , Camundongos Nus , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Transdução de Sinais/genética , Neoplasias Renais/genética , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células/genética , Peptídeos/genética , Regulação Neoplásica da Expressão Gênica , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
5.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139150

RESUMO

The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.


Assuntos
Doenças Neurodegenerativas , Proteína Fosfatase 1 , Animais , Humanos , Camundongos , Fator de Iniciação 2 em Eucariotos/metabolismo , Camundongos Knockout , Fosforilação , Biossíntese de Proteínas , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas/metabolismo
6.
Hum Mol Genet ; 32(20): 2981-2995, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37531237

RESUMO

Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities. PPP1R3F variants segregated with disease in affected hemizygous males that inherited the variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding, protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the role of PP1 in brain development and proper function.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Masculino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteína Fosfatase 1/genética , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Glucose , Glicogênio , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/complicações
7.
J Biol Chem ; 299(5): 104687, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37044214

RESUMO

Axon pathfinding is an essential step in neuronal network formation. Shootin1a is a clutch-linker molecule that is mechanically involved in axon outgrowth and guidance. It was previously shown that concentration gradients of axon guidance molecule netrin-1 in the extracellular environment elicit asymmetrically localized Pak1 kinase-mediated phosphorylation of shootin1a within axonal growth cones, which is higher on the netrin-1 source side. This asymmetric phosphorylation promotes shootin1a-mediated local actin-adhesion coupling within growth cones, thereby generating directional forces for turning the growth cone toward the netrin-1 source. However, how the spatial differences in netrin-1 concentration are transduced into the asymmetrically localized signaling within growth cones remains unclear. Moreover, the protein phosphatases that dephosphorylate shootin1a remain unidentified. Here, we report that protein phosphatase-1 (PP1) dephosphorylates shootin1a in growth cones. We found that PP1 overexpression abolished the netrin-1-induced asymmetric localization of phosphorylated shootin1a as well as axon turning. In addition, we show PP1 inhibition reversed the asymmetrically localized shootin1a phosphorylation within growth cones under netrin-1 gradient, thereby changing the netrin-1-induced growth cone turning from attraction to repulsion. These data indicate that PP1-mediated shootin1a dephosphorylation plays a key role in organizing asymmetrically localized phosphorylated shootin1a within growth cones, which regulates netrin-1-induced axon guidance.


Assuntos
Orientação de Axônios , Proteínas do Tecido Nervoso , Netrina-1 , Proteína Fosfatase 1 , Animais , Camundongos , Axônios/metabolismo , Células Cultivadas , Cones de Crescimento/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Netrina-1/metabolismo , Proteína Fosfatase 1/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Cancer Res ; 83(3): 471-484, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36484700

RESUMO

Triple-negative breast cancer (TNBC) represents the most lethal subtype of breast cancer due to its aggressive clinical features and the lack of effective therapeutic targets. To identify novel approaches for targeting TNBC, we examined the role of protein phosphatases in TNBC progression and chemoresistance. Protein phosphatase 1 regulatory subunit 14B (PPP1R14B), a poorly defined member of the protein phosphatase 1 regulatory subunits, was aberrantly upregulated in TNBC tissues and predicted poor prognosis. PPP1R14B was degraded mainly through the ubiquitin-proteasome pathway. RPS27A recruited deubiquitinase USP9X to deubiquitinate and stabilize PPP1R14B, resulting in overexpression of PPP1R14B in TNBC tissues. Gain- and loss-of-function assays demonstrated that PPP1R14B promoted TNBC cell proliferation, colony formation, migration, invasion, and resistance to paclitaxel in vitro. PPP1R14B also induced xenograft tumor growth, lung metastasis, and paclitaxel resistance in vivo. Mechanistic investigations revealed that PPP1R14B maintained phosphorylation and stability of oncoprotein stathmin 1 (STMN1), a microtubule-destabilizing phosphoprotein critically involved in cancer progression and paclitaxel resistance, which was dependent on PP1 catalytic subunits α and γ. Importantly, the tumor-suppressive effects of PPP1R14B deficiency could be partially rescued by ectopic expression of wild-type but not phosphorylation-deficient STMN1. Moreover, PPP1R14B decreased STMN1-mediated α-tubulin acetylation, microtubule stability, and promoted cell-cycle progression, leading to resistance of TNBC cells to paclitaxel. Collectively, these findings uncover a functional and mechanistic role of PPP1R14B in TNBC progression and paclitaxel resistance, indicating PPP1R14B is a potential therapeutic target for TNBC. SIGNIFICANCE: PPP1R14B upregulation induced by RPS27A/USP9X in TNBC increases STMN1 activity, leading to cancer progression and paclitaxel resistance.


Assuntos
Paclitaxel , Neoplasias de Mama Triplo Negativas , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteína Fosfatase 1/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Estatmina/genética , Estatmina/metabolismo , Ubiquitina Tiolesterase/metabolismo
9.
Biochem Pharmacol ; 206: 115344, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372331

RESUMO

Tobacco remains the most common environmental carcinogen leading to the occurrence and development of lung cancer. Nicotine, a tumor promoter in cigarette smoke, has been shown to induce epithelial-mesenchymal transition (EMT), a cellular program required for the invasion and metastasis in tumor cells. Specificity Protein 1 (SP1) is a well-characterized transcription factor that can regulate the EMT process via transcriptionally activating E-cadherin expression. Protein Phosphatase 1 Regulatory Subunit 13 Like (PPP1R13L) is a newly identified oncoprotein previously reported to inhibit the transcriptional activity of SP1 via a direct protein-protein interaction. To reveal the underlying implication of the interconnections between PPP1R13L and SP1 in the nicotine-induced EMT process, the present study established an EMT cell model of lung cancer using 1 µM of nicotine, a dose close to human exposure, in which an alternate fluctuation in the expression of PPP1R13L and SP1 was captured. Subsequently, the direct inhibition of SP1 by PPP1R13L was demonstrated to be a critical mechanism underlying the involvement of PPP1R13L in the nicotine-induced EMT process. More interestingly, SP1 was further shown to transcriptionally activate PPP1R13L expression in a feedback manner. In addition, PPP1R13L and SP1 expression was found to be closely associated with the clinicopathological characteristics of lung cancer patients. Here we proposed a novel feedback regulation mechanism, in which SP1 may transcriptionally activate the PPP1R13L gene expression in the early stage of lung cancer to promote tumor growth, while the accumulation of PPP1R13L drives tumor invasion and metastasis by direct repression of SP1. Thus, this unique feedback loop between PPP1R13L and SP1 may play a vital role in chemical carcinogenesis and serve as a potential intervention target for lung cancer progression attributable to cigarette smoking.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Transição Epitelial-Mesenquimal , Nicotina/toxicidade , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Retroalimentação , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Adenocarcinoma de Pulmão/genética , Fatores de Transcrição/metabolismo , Proteínas Oncogênicas/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição Sp1 , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Proteínas Repressoras/metabolismo
10.
Hum Cell ; 35(6): 1856-1868, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36018458

RESUMO

Novel and accurate biomarkers are needed for early detection and progression evaluation of hepatocellular carcinoma (HCC). Protein phosphatase 1 regulatory subunit 1A (PPP1R1A) has been studied in cancer biology; however, the expression pattern and biological function of PPP1R1A in HCC are unclear. The differentially expressed genes (DEGs) in HCC were screened by The Cancer Genome Atlas (TCGA) database. Real-time PCR and immunohistochemistry (IHC) assay were used to detect the expression of PPP1R1A in BALB/c mice, human normal tissues and corresponding tumor tissues, especially HCC. Then, Kaplan-Meier analysis of patients with HCC was performed to evaluate the relationship between PPP1R1A expression and prognosis. The transcriptional regulatory network of PPP1R1A was constructed based on the differentially expressed mRNAs, microRNAs and transcription factors (TFs). To explore the downstream regulation of PPP1R1A, the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis and immune infiltration score were performed. A total of 4 DEGs were screened out. PPP1R1A was differentially distributed and expressed in BALB/c mice and human tissues. PPP1R1A expression was higher in normal tissues than that in tumor tissues, and patients with higher PPP1R1A expression had better clinical outcome in HCC. In addition, we constructed miR-21-3p/TAL1/PPP1R1A transcriptional network. Furthermore, PPP1R1A may modulate the activation of PI3K-Akt pathway, cell cycle, glycogen metabolism and the recruitment of M2 macrophage in HCC. This study may help to clarify the function and mechanism of PPP1R1A in HCC and provide a potential biomarker for tumor prevention and treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Glicogênio/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética
11.
Microb Cell Fact ; 21(1): 174, 2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030199

RESUMO

BACKGROUND: Saccharomyces cerevisiae is often used as a cell factory for the production of S-adenosyl-L-methionine (SAM) for diverse pharmaceutical applications. However, SAM production by S. cerevisiae is negatively influenced by glucose repression, which is regulated by a serine/threonine kinase SNF1 complex. Here, a strategy of alleviating glucose repression by deleting REG1 (encodes the regulatory subunit of protein phosphatase 1) and overexpressing SNF1 (encodes the catalytic subunit of the SNF1 complex) was applied to improve SAM production in S. cerevisiae. SAM production, growth conditions, glucose consumption, ethanol accumulation, lifespan, glycolysis and amino acid metabolism were analyzed in the mutant strains. RESULTS: The results showed that the multiple effects of REG1 deletion and/or SNF1 overexpression exhibited a great potential for improving the SAM production in yeast. Enhanced the expression levels of genes involved in glucose transport and glycolysis, which improved the glucose utilization and then elevated the levels of glycolytic intermediates. The expression levels of ACS1 (encoding acetyl-CoA synthase I) and ALD6 (encoding aldehyde dehydrogenase), and the activity of alcohol dehydrogenase II (ADH2) were enhanced especially in the presence of excessive glucose levels, which probably promoted the conversion of ethanol in fermentation broth into acetyl-CoA. The gene expressions involved in sulfur-containing amino acids were also enhanced for the precursor amino acid biosynthesis. In addition, the lifespan of yeast was extended by REG1 deletion and/or SNF1 overexpression. As expected, the final SAM yield of the mutant YREG1ΔPSNF1 reached 8.28 g/L in a 10-L fermenter, which was 51.6% higher than the yield of the parent strain S. cerevisiae CGMCC 2842. CONCLUSION: This study showed that the multiple effects of REG1 deletion and SNF1 overexpression improved SAM production in S. cerevisiae, providing new insight into the application of the SNF1 complex to abolish glucose repression and redirect carbon flux to nonethanol products in S. cerevisiae.


Assuntos
Proteína Fosfatase 1 , Proteínas Serina-Treonina Quinases , S-Adenosilmetionina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Acetilcoenzima A , Etanol , Glucose , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Nature ; 609(7926): 416-423, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35830882

RESUMO

RAS-MAPK signalling is fundamental for cell proliferation and is altered in most human cancers1-3. However, our mechanistic understanding of how RAS signals through RAF is still incomplete. Although studies revealed snapshots for autoinhibited and active RAF-MEK1-14-3-3 complexes4, the intermediate steps that lead to RAF activation remain unclear. The MRAS-SHOC2-PP1C holophosphatase dephosphorylates RAF at serine 259, resulting in the partial displacement of 14-3-3 and RAF-RAS association3,5,6. MRAS, SHOC2 and PP1C are mutated in rasopathies-developmental syndromes caused by aberrant MAPK pathway activation6-14-and SHOC2 itself has emerged as potential target in receptor tyrosine kinase (RTK)-RAS-driven tumours15-18. Despite its importance, structural understanding of the SHOC2 holophosphatase is lacking. Here we determine, using X-ray crystallography, the structure of the MRAS-SHOC2-PP1C complex. SHOC2 bridges PP1C and MRAS through its concave surface and enables reciprocal interactions between all three subunits. Biophysical characterization indicates a cooperative assembly driven by the MRAS GTP-bound active state, an observation that is extendible to other RAS isoforms. Our findings support the concept of a RAS-driven and multi-molecular model for RAF activation in which individual RAS-GTP molecules recruit RAF-14-3-3 and SHOC2-PP1C to produce downstream pathway activation. Importantly, we find that rasopathy and cancer mutations reside at protein-protein interfaces within the holophosphatase, resulting in enhanced affinities and function. Collectively, our findings shed light on a fundamental mechanism of RAS biology and on mechanisms of clinically observed enhanced RAS-MAPK signalling, therefore providing the structural basis for therapeutic interventions.


Assuntos
Cristalografia por Raios X , Peptídeos e Proteínas de Sinalização Intracelular , Complexos Multiproteicos , Proteína Fosfatase 1 , Proteínas ras , Proteínas 14-3-3 , Guanosina Trifosfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Complexos Multiproteicos/química , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Quinases raf , Proteínas ras/química , Proteínas ras/metabolismo
13.
Exp Cell Res ; 418(2): 113282, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841980

RESUMO

The Ser/Thr-protein phosphatase PP1 (PP1) is a positive regulator of the androgen receptor (AR), which suggests major roles for PP1 in prostate carcinogenesis. However, studies dedicated to the characterization of PP1 in PCa are currently scarce. Here we analyzed the expression and localization of the PP1 catalytic (PP1c) isoforms in formalin-fixed, paraffin-embedded prostate tissue samples, as well as in PCa cell lines. We also analyzed well-characterized PCa cohorts to determine their transcript levels, identify genetic alterations, and assess promoter methylation of PP1c-coding genes. We found that PP-1A was upregulated and relocalized towards the nucleus in PCa and that PPP1CA was frequently amplified in PCa, particularly in advanced stages. PP-1B was downregulated in PCa but upregulated in a subset of tumors with AR amplification. PP-1G transcript levels were found to be associated with Gleason score. PP1c-coding genes were rarely mutated in PCa and were not prone to regulation by promoter methylation. Protein phosphorylation, on the other hand, might be an important regulatory mechanism of PP1c isoforms' activity. Altogether, our results suggest differential expression, localization, and regulation of PP1c isoforms in PCa and support the need for investigating isoform-specific roles in prostate carcinogenesis in future studies.


Assuntos
Núcleo Celular , Neoplasias da Próstata , Carcinogênese/metabolismo , Núcleo Celular/metabolismo , Humanos , Masculino , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
14.
Nature ; 609(7926): 400-407, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35768504

RESUMO

The RAS-RAF pathway is one of the most commonly dysregulated in human cancers1-3. Despite decades of study, understanding of the molecular mechanisms underlying dimerization and activation4 of the kinase RAF remains limited. Recent structures of inactive RAF monomer5 and active RAF dimer5-8 bound to 14-3-39,10 have revealed the mechanisms by which 14-3-3 stabilizes both RAF conformations via specific phosphoserine residues. Prior to RAF dimerization, the protein phosphatase 1 catalytic subunit (PP1C) must dephosphorylate the N-terminal phosphoserine (NTpS) of RAF11 to relieve inhibition by 14-3-3, although PP1C in isolation lacks intrinsic substrate selectivity. SHOC2 is as an essential scaffolding protein that engages both PP1C and RAS to dephosphorylate RAF NTpS11-13, but the structure of SHOC2 and the architecture of the presumptive SHOC2-PP1C-RAS complex remain unknown. Here we present a cryo-electron microscopy structure of the SHOC2-PP1C-MRAS complex to an overall resolution of 3 Å, revealing a tripartite molecular architecture in which a crescent-shaped SHOC2 acts as a cradle and brings together PP1C and MRAS. Our work demonstrates the GTP dependence of multiple RAS isoforms for complex formation, delineates the RAS-isoform preference for complex assembly, and uncovers how the SHOC2 scaffold and RAS collectively drive specificity of PP1C for RAF NTpS. Our data indicate that disease-relevant mutations affect complex assembly, reveal the simultaneous requirement of two RAS molecules for RAF activation, and establish rational avenues for discovery of new classes of inhibitors to target this pathway.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteína Fosfatase 1 , Transdução de Sinais , Proteínas ras , Microscopia Crioeletrônica , Guanosina Trifosfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação , Fosfosserina , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 1/ultraestrutura , Especificidade por Substrato , Quinases raf/metabolismo , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo , Proteínas ras/ultraestrutura
15.
Tissue Cell ; 77: 101845, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35679681

RESUMO

Cervical and endometrial cancers are common gynecologic cancers. Protein phosphatase 1 regulatory subunit 14B (PPP1R14B) is aberrantly expressed in several tumors, while its functions in cervical and endometrial cancers remain largely uncertain. The differentially expression of PPP1R14B in cervical and endometrial cancers was predicted by GEPIA2 and Human Protein Atlas databases. The diagnostic value was analyzed by AUC curve. The association between PPP1R14B expression and overall survival was predicted using Kaplan-Meier Plotter database. The function of PPP1R14B was investigated according to in vitro assessment. PPP1R14B and phosphorylation level of Akt were analyzed through western blotting. Cell proliferation was investigated by CCK-8 and EdU staining assays. Cell apoptosis was evaluated via TUNEL staining and caspase-3 activity assays. PPP1R14B level was upregulated in cervical and endometrial cancers, and it was associated with diagnosis and worse prognosis. PPP1R14B silencing constrained cell proliferation and promoted cell death in cervical and endometrial cancers cells. PPP1R14B knockdown suppressed activation of the Akt pathway. Re-activation of the Akt signaling reversed the anti-proliferative and cell death-promoting roles of PP1R14B knockdown in cervical and endometrial cancers cells. In conclusion, PPP1R14B knockdown represses cell proliferation and facilitates cell death by inhibiting the activation of the Akt signaling in cervical and endometrial cancers.


Assuntos
Neoplasias do Endométrio , Proteínas Proto-Oncogênicas c-akt , Feminino , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Proteína Fosfatase 1/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
16.
Arch Biochem Biophys ; 720: 109170, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35276214

RESUMO

CaMK phosphatase (CaMKP/PPM1F/POPX2) is a Mn2+-dependent, calyculin A/okadaic acid-insensitive Ser/Thr protein phosphatase that belongs to the PPM family. CaMKP is thought to be involved in regulation of not only various protein kinases, such as CaM kinases and p21-activated protein kinase, but also of cellular proteins regulated by phosphorylation. A large-scale screening of a chemical library identified gallic acid and some of its alkyl esters as novel CaMKP inhibitors highly specific to CaMKP. Surprisingly, they caused specific carbonylation of CaMKP, leading to its inactivation. Under the same conditions, no carbonylation nor inactivation was observed when PPM1A, which is affiliated with the same family as CaMKP, and λ-phosphatase were used. The carbonylation reaction was inhibited by SH compounds such as cysteamine in a dose-dependent manner with a concomitant decrease in CaMKP inhibition by ethyl gallate. The pyrogallol structure of gallate was necessary for the gallate-mediated carbonylation of CaMKP. Point mutations of CaMKP leading to impairment of phosphatase activity did not significantly affect the gallate-mediated carbonylation. Ethyl gallate resulted in almost complete inhibition of CaMKP under the conditions where the carbonylation level was nearly identical to that of CaMKP carbonylation via metal-catalyzed oxidation with ascorbic acid/FeSO4, which resulted in only a partial inhibition of CaMKP. The gallate-mediated carbonylation of CaMKP absolutely required divalent cations such as Mn2+, Cu2+, Co2+ and Fe2+, and was markedly enhanced by a phosphopeptide substrate. When MDA-MB-231 cells transiently expressing CaM kinase I, a CaMKP substrate, were treated by ethyl gallate, significant enhancement of phosphorylation of CaM kinase I was observed, suggesting that ethyl gallate can penetrate into cells to inactivate cellular CaMKP. All the presented data strongly support the hypothesis that CaMKP undergoes carbonylation of its specific amino acid residues by incubation with alkyl gallates and the divalent metal cations, leading to inactivation specific to CaMKP.


Assuntos
Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina , Fosfoproteínas Fosfatases , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/química , Oxirredução , Fosfoproteínas Fosfatases/química , Fosforilação , Carbonilação Proteica , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/metabolismo
17.
Clin Transl Oncol ; 24(6): 1115-1123, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35064454

RESUMO

PURPOSE: In the present work, we investigated the expression pattern of miR-4463 in the non-metastasis and metastasis colorectal cancer (CRC) patients and its regulation axis. METHODS: RT-qPCR assay was performed to assess miR-4463 expression in the serum and tissues of patients with non-metastasis and metastasis, and in the CRC cell lines. MTT assay, colony formation assay, transwell assay, and flow cytometry assay were used to examine the role of miR-4463 in CRC cell viability, proliferation, and migration. Bioinformatic analysis was used to identify the potential target gene of miR-4463, and the targeting relationship between miR-4463 and PPP1R12B was verified in vitro using dual luciferase assay. Western blotting assay was used to determine the protein level of the target gene PPP1R12B in CRC cells under the transfections of miR-4463 mimic, inhibitor and vectors overexpressing PPP1R12B. RESULTS: miR-4463 was markedly increased in the non-metastasis CRC tissues, and increased even higher in the metastasis CRC tissues, while miR-4463 expression had no significant difference in serum from non-metastasis and metastasis CRC samples. Besides, miR-4463 was upregulated in CRC cell lines. Functionally, miR-4463 promoted CRC cell proliferation, migration, and inhibiting cell apoptosis. Further analysis revealed that the miR-4463/PPP1R12B axis was responsible for the role of this miRNA. CONCLUSION: We reported the roles of miR-4463 in CRC proliferation and migration, supporting that miR-4463 could be a potential predictive diagnostic marker for colon cancer.


Assuntos
Neoplasias do Colo , MicroRNAs , Proteína Fosfatase 1 , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Fosfatase 1/biossíntese , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
18.
Sci Rep ; 12(1): 504, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017615

RESUMO

We provide a descriptive characterization of the unfolded protein response (UPR) in skeletal muscle of human patients with peritoneal sepsis and a sepsis model of C57BL/6J mice. Patients undergoing open surgery were included in a cross-sectional study and blood and skeletal muscle samples were taken. Key markers of the UPR and cluster of differentiation 68 (CD68) as surrogate of inflammatory injury were evaluated by real-time PCR and histochemical staining. CD68 mRNA increased with sepsis in skeletal muscle of patients and animals (p < 0.05). Mainly the inositol-requiring enzyme 1α branch of the UPR was upregulated as shown by elevated X-box binding-protein 1 (XBP1u) and its spliced isoform (XBP1s) mRNA (p < 0.05, respectively). Increased expression of Gadd34 indicated activation of PRKR-Like Endoplasmic Reticulum Kinase (PERK) branch of the UPR, and was only observed in mice (p < 0.001) but not human study subjects. Selected cell death signals were upregulated in human and murine muscle, demonstrated by increased bcl-2 associated X protein mRNA and TUNEL staining (p < 0.05). In conclusion we provide a first characterization of the UPR in skeletal muscle in human sepsis.


Assuntos
Estresse do Retículo Endoplasmático , Músculo Esquelético/metabolismo , Doenças Peritoneais/fisiopatologia , Sepse/fisiopatologia , Resposta a Proteínas não Dobradas , Idoso , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Doenças Peritoneais/genética , Doenças Peritoneais/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Sepse/genética , Sepse/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
19.
Microbiol Spectr ; 10(1): e0138821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34985336

RESUMO

Enterovirus 71 (EV71) is the major pathogen of hand, foot, and mouth disease. In severe cases, it can cause life-threatening neurological complications, such as aseptic meningitis and polio-like paralysis. There are no specific antiviral treatments for EV71 infections. In a previous study, the host protein growth arrest and DNA damage-inducible protein 34 (GADD34) expression was upregulated during EV71 infection determined by ribosome profiling and RNA-sequencing. Here, we investigated the interactions of host protein GADD34 and EV71 during infections. Rhabdomyosarcoma (RD) cells were infected with EV71 resulting in a significant increase in expression of GADD34 mRNA and protein. Through screening of EV71 protein we determined that the non-structural precursor protein 3CD is responsible for upregulating GADD34. EV71 3CD increased the RNA and protein levels of GADD34, while the 3CD mutant Y441S could not. 3CD upregulated GADD34 translation via the upstream open reading frame (uORF) of GADD34 5'untranslated regions (UTR). EV71 replication was attenuated by the knockdown of GADD34. The function of GADD34 to dephosphorylate eIF2α was unrelated to the upregulation of EV71 replication, but the PEST 1, 2, and 3 regions of GADD34 were required. GADD34 promoted the EV71 internal ribosome entry site (IRES) activity through the PEST repeats and affected several other viruses. Finally, GADD34 amino acids 563 to 565 interacted with 3CD, assisting GADD34 to target the EV71 IRES. Our research reveals a new mechanism by which GADD34 promotes viral IRES and how the EV71 non-structural precursor protein 3CD regulates host protein expression to support viral replication. IMPORTANCE Identification of host factors involved in viral replication is an important approach in discovering viral pathogenic mechanisms and identifying potential therapeutic targets. Previously, we screened host proteins that were upregulated by EV71 infection. Here, we report the interaction between the upregulated host protein GADD34 and EV71. EV71 non-structural precursor protein 3CD activates the RNA and protein expression of GADD34. Our study reveals that 3CD regulates the uORF of the 5'-UTR to increase GADD34 translation, providing a new explanation for how viral proteins regulate host protein expression. GADD34 is important for EV71 replication, and the key functional domains of GADD34 that promote EV71 are PEST 1, 2, and 3 regions. We report that GADD34 promotes viral IRES for the first time and this process is independent of its eIF2α phosphatase activity.


Assuntos
Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Doença de Mão, Pé e Boca/metabolismo , Biossíntese de Proteínas , Proteína Fosfatase 1/metabolismo , Proteínas não Estruturais Virais/metabolismo , Regiões 5' não Traduzidas , Motivos de Aminoácidos , Linhagem Celular , Enterovirus Humano A/química , Doença de Mão, Pé e Boca/genética , Doença de Mão, Pé e Boca/virologia , Interações Hospedeiro-Patógeno , Humanos , Sítios Internos de Entrada Ribossomal , Fases de Leitura Aberta , Ligação Proteica , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral
20.
Hepatology ; 76(3): 612-629, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34767673

RESUMO

BACKGROUND AND AIMS: HCC is one of the main types of primary liver cancer, with high morbidity and mortality and poor treatment effect. Tripartite motif-containing protein 11 (TRIM11) has been shown to promote tumor formation in lung cancer, breast cancer, gastric cancer, and so on. However, the specific function and mechanism of TRIM11 in HCC remain open for study. APPROACH AND RESULTS: Through clinical analysis, we found that the expression of TRIM11 was up-regulated in HCC tissues and was associated with high tumor node metastasis (TNM) stages, advanced histological grade, and poor patient survival. Then, by gain- and loss-of-function investigations, we demonstrated that TRIM11 promoted cell proliferation, migration, and invasion in vitro and tumor growth in vivo. Mechanistically, RNA sequencing and mass spectrometry analysis showed that TRIM11 interacted with pleckstrin homology domain leucine-rich repeats protein phosphatase 1 (PHLPP1) and promoted K48-linked ubiquitination degradation of PHLPP1 and thus promoted activation of the protein kinase B (AKT) signaling pathway. Moreover, overexpression of PHLPP1 blocked the promotional effect of TRIM11 on HCC function. CONCLUSIONS: Our study confirmed that TRIM11 plays an oncogenic role in HCC through the PHLPP1/AKT signaling pathway, suggesting that targeting TRIM11 may be a promising target for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Leucina , Neoplasias Hepáticas/patologia , Domínios de Homologia à Plecstrina , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Fosfatase 1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA