Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Eur J Med Chem ; 210: 113068, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33310292

RESUMO

Glioblastoma multiform (GBM) is the highly aggressive brain tumor with poor prognosis. Glioma stem cells (GSCs), small population of cancer cells that exist in GBM tissues, resistant to chemotherapy and radiotherapy and usually driving GBM recurrence, have been developed as effective therapeutic target. Steroidal saponins are one of important resources for anti-tumor agent and may be benefited to selectively clear GSCs. In this report, total of 97 natural steroidal saponins were investigated the relationship among structures/cytotoxicity/selectivity against GSCs, glioma cell lines and human untransformed cells, and revealed that tribulosaponin A was the most potent compound. Further investigation suggested that tribulosaponin A up-regulated the expression of NCF1 and NOX1 to accumulate ROS for triggering apoptosis in GSCs, but not in untransformed cells, and it was further supported by the assay that N-acetyl-l-cysteine (NAC) clearing ROS delayed GSCs apoptosis. Besides, tribulosaponin A damaged GSCs recapturing tumor spheres formation.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Proteína Goosecoid/antagonistas & inibidores , Saponinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Produtos Biológicos/síntese química , Produtos Biológicos/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteína Goosecoid/metabolismo , Humanos , Estrutura Molecular , Saponinas/síntese química , Saponinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
2.
Stem Cells ; 38(8): 921-935, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32346916

RESUMO

Spontaneous necrosis is a defining feature of glioblastomas (GBMs), the most malignant glioma. Despite its strong correlations with poor prognosis, it remains unclear whether necrosis could be a possible cause or mere consequence of glioma progression. Here we isolated a particular fraction of necrotic products spontaneously arising from glioma cells, morphologically and biochemically defined as autoschizis-like products (ALPs). When administered to granulocyte macrophage colony-stimulating factor (GM-CSF)-primed bone marrow-derived macrophage/dendritic cells (Mφ/DCs), ALPs were found to be specifically engulfed by Mφs expressing a tumor-associated macrophage (TAM) marker CD204. ALPs from glioma stem cells (GSCs) had higher activity for the TAM development than those from non-GSCs. Of note, expression of the Il12b gene encoding a common subunit of IL-12/23 was upregulated in ALPs-educated Mφs. Furthermore, IL-12 protein evidently enhanced the sphere-forming activity of GBM patient-derived cells, although interestingly IL-12 is generally recognized as an antitumoral M1-Mφ marker. Finally, in silico analysis of The Cancer Genome Atlas (TCGA) transcriptome data of primary and recurrent GBMs revealed that higher expression of these IL-12 family genes was well correlated with more infiltration of M1-type TAMs and closely associated with poorer prognosis in recurrent GBMs. Our results highlight a role of necrosis in GSC-driven self-beneficial niche construction and glioma progression, providing important clues for developing new therapeutic strategies against gliomas.


Assuntos
Glioma/genética , Proteína Goosecoid/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Macrófagos Associados a Tumor/metabolismo , Animais , Feminino , Humanos , Camundongos , Transdução de Sinais
4.
Endocr Pract ; 25(2): 161-164, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30383497

RESUMO

OBJECTIVE: The Veracyte Afirma Gene Expression Classifier (GEC) has been the most widely used negative predictive value molecular classifier for indeterminate cytology thyroid nodules since January 2011. To improve the specificity and further reduce unnecessary thyroid surgeries, a second-generation assay (Afirma Genetic Sequence Classifier [GSC]) was released for clinical use in August 2017. We report 11 months of clinical outcomes experience with the GSC and compare them to our 6.5-year experience with the GEC. METHODS: We searched our practice registry for FNAB nodules with Afirma results from January 2011through June 2018. GEC versus GSC results were compared overall, in oncocytic and nononcocytic aspirates and by pathologic outcomes. RESULTS: GSC identified less indeterminate cytology nodules as suspicious (38.8%; 54/139) when compared to GEC (58.4%; 281/481). There was a decrease of in the percentage of oncocytic fine-needle aspiration thyroid biopsy (FNAB) subjects classified as suspicious in the GSC group, with 86 of 104 oncocytic indeterminates (82.7%) classified as suspicious by GEC and 12 of 34 (35.3%) classified as suspicious by GSC. The surgery rate in patients with oncocytic aspirates fell from 56% in the GEC group to 31% in the GSC-evaluated group (45%). Pathology analysis demonstrated a false-negative percentage for an incomplete surgical group of 9.5% for GEC and 1.2% for GSC. CONCLUSION: Our GSC data suggest that the GSC further reduces surgery in indeterminate thyroid nodules by improving the specificity of Afirma technology without compromising sensitivity. A primary determinant for this change is a significant improvement in the specificity of the Afirma GSC test in oncocytic FNAB aspirates. ABBREVIATIONS: FNAB = fine-needle aspiration biopsy; GEC = Gene Expression Classifier; GSC = Genetic Sequence Classifier.


Assuntos
Nódulo da Glândula Tireoide , Biópsia por Agulha Fina , Perfilação da Expressão Gênica , Proteína Goosecoid , Humanos , Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide/cirurgia
5.
Breast Cancer Res ; 20(1): 2, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29291741

RESUMO

BACKGROUND: Disseminated tumor cells (DTCs) found in the bone marrow (BM) of patients with breast cancer portend a poor prognosis and are thought to be intermediaries in the metastatic process. To assess the clinical relevance of a mouse model for identifying possible prognostic and predictive biomarkers of these cells, we have employed patient-derived xenografts (PDX) for propagating and molecularly profiling human DTCs. METHODS: Previously developed mouse xenografts from five breast cancer patients were further passaged by implantation into NOD/SCID mouse mammary fat pads. BM was collected from long bones at early, serial passages and analyzed for human-specific gene expression by qRT-PCR as a surrogate biomarker for the detection of DTCs. Microarray-based gene expression analyses were performed to compare expression profiles between primary xenografts, solid metastasis, and populations of BM DTCs. Differential patterns of gene expression were then compared to previously generated microarray data from primary human BM aspirates from patients with breast cancer and healthy volunteers. RESULTS: Human-specific gene expression of SNAI1, GSC, FOXC2, KRT19, and STAM2, presumably originating from DTCs, was detected in the BM of all xenograft mice that also developed metastatic tumors. Human-specific gene expression was undetectable in the BM of those xenograft lines with no evidence of distant metastases and in non-transplanted control mice. Comparative gene expression analysis of BM DTCs versus the primary tumor of one mouse line identified multiple gene transcripts associated with epithelial-mesenchymal transition, aggressive clinical phenotype, and metastatic disease development. Sixteen of the PDX BM associated genes also demonstrated a statistically significant difference in expression in the BM of healthy volunteers versus the BM of breast cancer patients with distant metastatic disease. CONCLUSION: Unique and reproducible patterns of differential gene expression can be identified that presumably originate from BM DTCs in mouse PDX lines. Several of these identified genes are also detected in the BM of patients with breast cancer who develop early metastases, which suggests that they may be clinically relevant biomarkers. The PDX model may also provide a clinically relevant system for analyzing and targeting these intermediaries of metastases.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/genética , Metástase Neoplásica/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células da Medula Óssea/patologia , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Feminino , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteína Goosecoid/genética , Humanos , Queratina-19/genética , Camundongos , Metástase Neoplásica/patologia , Células Neoplásicas Circulantes/patologia , Fatores de Transcrição da Família Snail/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Biol Chem ; 292(27): 11178-11188, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28500134

RESUMO

Poly-ubiquitination-mediated RUNX2 degradation is an important cause of age- and inflammation-related bone loss. NEDD4 family E3 ubiquitin protein ligases are thought to be the major regulators of RUNX2 poly-ubiquitination. However, we observed a mono-ubiquitination of RUNX2 that was catalyzed by WWP2, a member of the NEDD4 family of E3 ubiquitin ligases. WWP2 has been reported to catalyze the mono-ubiquitination of Goosecoid in chondrocytes, facilitating craniofacial skeleton development. In this study, we found that osteogenic differentiation of mesenchymal stem cells promoted WWP2 expression and nuclear accumulation. Knockdown of Wwp2 in mesenchymal stem cells and osteoblasts led to significant deficiencies of osteogenesis, including decreased mineral deposition and down-regulation of osteogenic marker genes. Co-immunoprecipitation experiments showed the interaction of WWP2 with RUNX2 in vitro and in vivo Mono-ubiquitination by WWP2 leads to RUNX2 transactivation, as evidenced by the wild type of WWP2, but not its ubiquitin ligase-dead mutant, augmenting RUNX2-reponsive reporter activity. Moreover, deletion of WWP2-dependent mono-ubiquitination resulted in striking defects of RUNX2 osteoblastic activity. In addition, ectopic expression of the constitutively active type 1A bone morphogenetic protein receptor enhanced WWP2-dependent RUNX2 ubiquitination and transactivation, demonstrating a regulatory role of bone morphogenetic protein signaling in the WWP2-RUNX2 axis. Taken together, our results provide evidence that WWP2 serves as a positive regulator of osteogenesis by augmenting RUNX2 transactivation in a non-proteolytic mono-ubiquitination manner.


Assuntos
Diferenciação Celular/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Ativação Transcricional/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Animais , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteína Goosecoid/genética , Proteína Goosecoid/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Osteoblastos/citologia , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/genética
7.
J Craniofac Surg ; 27(6): e583-6, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27526242

RESUMO

Treacher Collins syndrome is an autosomal dominant craniofacial malformation mainly caused by mutations in the TCOF1 gene. Few cases have been observed in the Chinese population. Herein, the authors report the mutational analysis of TCOF1, GSC, and HOXA2 to determine the mutational features of the 3 genes in Chinese patients with Treacher Collins syndrome. Genomic DNA of the patients and their parents was extracted from peripheral blood following a standard protocol. DNA sequencing analysis was performed on all exons and the exon-intron borders of TCOF1, GSC, and HOXA2 in addition to the 1200-bp upstream of TCOF1. Four novel single nucleotide polymorphisms were detected in TCOF1, one of which was in the promoter region. Mutations in GSC and HOXA2 were not found in the 3 patients. Our results suggest the possibility of genetic heterogeneity or different mechanisms leading to the disease. Further functional study of the alteration is necessary to obtain more definitive information.


Assuntos
Análise Mutacional de DNA/métodos , Proteína Goosecoid/genética , Proteínas de Homeodomínio/genética , Disostose Mandibulofacial/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética
8.
J Biol Chem ; 291(7): 3333-45, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26694615

RESUMO

Inscuteable (Insc) regulates cell fate decisions in several types of stem cells. Although it is recognized that the expression levels of mouse INSC govern the balance between symmetric and asymmetric stem cell division, regulation of mouse Insc gene expression remains poorly understood. Here, we showed that mouse Insc expression transiently increases at an early stage of differentiation, when mouse embryonic stem (mES) cells differentiate into bipotent mesendoderm capable of producing both endoderm and mesoderm in defined culture conditions. We identified the minimum transcriptional regulatory element (354 bases) that drives mouse Insc transcription in mES cells within a region >5 kb upstream of the mouse Insc transcription start site. We found that the transcription factor reticuloendotheliosis oncogene (c-Rel) bound to the minimum element and promoted mouse Insc expression in mES cells. In addition, short interfering RNA-mediated knockdown of either mouse INSC or c-Rel protein decreased mesodermal cell populations without affecting differentiation into the mesendoderm or endoderm. Furthermore, overexpression of mouse INSC rescued the mesoderm-reduced phenotype induced by knockdown of c-Rel. We propose that regulation of mouse Insc expression by c-Rel modulates cell fate decisions during mES cell differentiation.


Assuntos
Proteínas de Ciclo Celular/agonistas , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Proto-Oncogênicas c-rel/metabolismo , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Imunoprecipitação da Cromatina , Endoderma/citologia , Endoderma/metabolismo , Genes Reporter , Proteína Goosecoid/genética , Proteína Goosecoid/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-rel/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-rel/genética , Interferência de RNA , RNA Interferente Pequeno , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Elementos Reguladores de Transcrição , Sítio de Iniciação de Transcrição
9.
PLoS One ; 9(10): e109695, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25343336

RESUMO

The homeobox gene, goosecoid (GSC), is a transcription factor that participates in cell migration during embryonic development. Because cell migration during development has characteristics similar to cell invasion during metastasis, we evaluated the potential role of GSC in the metastasis of hepatocellular carcinoma (HCC). GSC expression in HCC cell lines and tissues was evaluated, and its effects on the migration potential of HCC cells were determined by GSC knock-down and overexpression methods. In addition, the prognostic role of GSC expression in the metastasis of cancer cells in HCC patients was determined. Our data showed that GSC was highly expressed in several HCC cell lines, particularly in a highly metastatic HCC cell line. Overexpression of GSC promoted cell migration and invasion of HCC cells in vitro. Gain-of-function induced the epithelial-mesenchymal transition but not collective cell migration, whereas loss-of-function induced the reverse change. High-level expression of GSC correlated closely with poor survival and lung metastasis in HCC patients; lung metastases showed more upregulated GSC expression than the primary tumor. We conclude that GSC promotes metastasis of HCC potentially through initiating the epithelial-mesenchymal transition. GSC is also a prognostic factor for poor survival and metastasis of HCC, which suggests its potential as a therapeutic target for metastatic HCC.


Assuntos
Carcinoma Hepatocelular/genética , Proteína Goosecoid/biossíntese , Neoplasias Hepáticas/genética , Invasividade Neoplásica/genética , Carcinoma Hepatocelular/patologia , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Proteína Goosecoid/genética , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Prognóstico
10.
Oncol Rep ; 32(1): 189-98, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24858567

RESUMO

Ovarian carcinoma is the most lethal cancer among all gynecological malignancies due to recurrence through chemoresistance. The aim of the present study was to identify new biomarkers to predict chemoresistance and prognosis in ovarian carcinomas. The mRNA expression by qRT-PCR was examined in 60 ovarian serous carcinomas for selected genes from the screening by PCR array focusing on apoptosis, epithelial-to-mesenchymal transition and cancer pathways. The clinical impact was assessed by analyzing the correlation between gene expression and clinicopathological variables. Further validation with immunohistochemistry was performed with 75 cases of serous carcinomas. The chemoresistance was significantly associated with high expression of FOS, GSC, SNAI1, TERT and TNFRSF10D, and low expression of CDKN1A, TNFRSF10A, TNFRSF10C and TRAF1 (p<0.05, t-test). Low expression of TRAF1 and high expression of E2F1, FOS, TERT and GSC were significantly associated with advanced clinical stage (p<0.05, χ2-test). Lymph node metastasis was significantly associated with high expression of GSC. The upregulation group of TERT, GSC, NOTCH1 and SNAI1, and downregulation group of TRAF1 were significantly associated with poor overall survival (p<0.05, log-rank test). On further validation with immunohistochemistry, overexpression of goosecoid homeobox (GSC) was associated with poor overall survival. The results suggest that GSC is the most potential biomarker of drug response and poor prognosis in ovarian serous carcinomas.


Assuntos
Carcinoma de Células Acinares/genética , Resistencia a Medicamentos Antineoplásicos , Proteína Goosecoid/genética , Metástase Linfática/genética , Neoplasias Ovarianas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma de Células Acinares/tratamento farmacológico , Carcinoma de Células Acinares/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína Goosecoid/metabolismo , Humanos , Metástase Linfática/diagnóstico , Metástase Linfática/patologia , Pessoa de Meia-Idade , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Análise de Sobrevida
11.
Histochem Cell Biol ; 142(2): 217-26, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24477550

RESUMO

Human embryonic stem cells (hESCs) provide a new source for hepatocyte production in translational medicine and cell replacement therapy. The reported hESC-derived hepatocyte-like cells (HLCs) were commonly generated on Matrigel, a mouse cell line-derived extracellular matrix (ECM). Here, we performed the hepatic lineage differentiation of hESCs following a stepwise application of growth factors on a newly developed serum- and xeno-free, simple and cost-benefit ECM, designated "RoGel," which generated from a modified conditioned medium of human fibroblasts. In comparison with Matrigel, the differentiated HLCs on both ECMs expressed similar levels of hepatocyte-specific genes, secreted α-fetoprotein, and metabolized ammonia, showed glycogen storage activity as well as low-density lipoprotein and indocyanine green uptake. The transplantation of hESC-HLCs into the carbon tetrachloride-injured liver demonstrated incorporation of the cells into the host mouse liver and the expression of albumin. The results suggest that the xeno-free and cost-benefit matrix may be applicable in bioartificial livers and also may facilitating a clinical application of human pluripotent stem cell-derived hepatocytes in the future.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Matriz Extracelular , Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Amônia/metabolismo , Animais , Transporte Biológico , Tetracloreto de Carbono , Técnicas de Cultura de Células , Colágeno , Combinação de Medicamentos , Células-Tronco Embrionárias/transplante , Fator de Transcrição GATA4/biossíntese , Géis/farmacologia , Proteína Goosecoid/biossíntese , Fator 3-beta Nuclear de Hepatócito/biossíntese , Humanos , Verde de Indocianina/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Laminina , Lipoproteínas LDL/metabolismo , Fígado/citologia , Fígado/lesões , Fígado/metabolismo , Camundongos , Proteoglicanas , Fatores de Transcrição SOXB1/biossíntese , Fatores de Transcrição SOXF/biossíntese , alfa-Fetoproteínas/biossíntese , alfa-Fetoproteínas/metabolismo
12.
J Appl Toxicol ; 34(1): 66-75, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23378141

RESUMO

Fetal alcohol spectrum disorder (FASD) is a set of developmental malformations caused by excess alcohol consumption during pregnancy. Using an in vitro system, we examined the role that chronic ethanol (EtOH) exposure plays in gene expression changes during the early stage of embryonic differentiation. We demonstrated that EtOH affected the cell morphology, cell cycle progression and also delayed the down-regulation of OCT4 and NANOG during differentiation. Gene expression profiling and pathway analysis demonstrated that EtOH deregulates many genes and pathways that are involved in early embryogenesis. Follow-up analyzes revealed that EtOH exposure to embryoid bodies (EBs) induced the expression of an organizer-specific gene, goosecoid (GSC), in comparison to controls. Moreover, EtOH treatment altered several important genes that are involved in embryonic structure formation, nervous system development, and placental and embryonic vascularization, which are all common processes that FASD can disrupt. Specifically, EtOH treatment let to a reduction in ALDOC, ENO2 and CDH1 expression, whereas EtOH treatment induced the expression of PTCH1, EGLN1, VEGFA and DEC2 in treated EBs. We also found that folic acid (FA) treatment was able to correct the expression of the majority of genes deregulated by EtOH exposure during early embryo development. Finally, the present study identified a gene set including GSC, which was deregulated by EtOH exposure that may contribute to the etiology of fetal alcohol syndrome (FAS). We also reported that EtOH-induced GSC expression is mediated by Nodal signaling, which may provide a new avenue for analyzing the molecular mechanisms behind EtOH teratogenicity in FASD individuals.


Assuntos
Etanol/efeitos adversos , Transtornos do Espectro Alcoólico Fetal/genética , Proteína Goosecoid/metabolismo , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Análise por Conglomerados , Regulação para Baixo , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Proteína Goosecoid/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Análise em Microsséries , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Placenta/efeitos dos fármacos , Gravidez , Reprodutibilidade dos Testes , Transdução de Sinais
13.
PLoS Genet ; 8(10): e1002999, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071453

RESUMO

Holoprosencephaly (HPE) is a remarkably common congenital anomaly characterized by failure to define the midline of the forebrain and midface. HPE is associated with heterozygous mutations in Sonic hedgehog (SHH) pathway components, but clinical presentation is extremely variable and many mutation carriers are unaffected. It has been proposed that these observations are best explained by a multiple-hit model, in which the penetrance and expressivity of an HPE mutation is enhanced by a second mutation or the presence of cooperating, but otherwise silent, modifier genes. Non-genetic risk factors are also implicated in HPE, and gene-environment interactions may provide an alternative multiple-hit model to purely genetic multiple-hit models; however, there is little evidence for this contention. We report here a mouse model in which there is dramatic synergy between mutation of a bona fide HPE gene (Cdon, which encodes a SHH co-receptor) and a suspected HPE teratogen, ethanol. Loss of Cdon and in utero ethanol exposure in 129S6 mice give little or no phenotype individually, but together produce defects in early midline patterning, inhibition of SHH signaling in the developing forebrain, and a broad spectrum of HPE phenotypes. Our findings argue that ethanol is indeed a risk factor for HPE, but genetically predisposed individuals, such as those with SHH pathway mutations, may be particularly susceptible. Furthermore, gene-environment interactions are likely to be important in the multifactorial etiology of HPE.


Assuntos
Moléculas de Adesão Celular/genética , Etanol/efeitos adversos , Holoprosencefalia/induzido quimicamente , Holoprosencefalia/genética , Exposição Materna/efeitos adversos , Mutação , Transdução de Sinais , Animais , Encéfalo/anormalidades , Anormalidades Craniofaciais/induzido quimicamente , Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/induzido quimicamente , Deficiências do Desenvolvimento/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteína Goosecoid/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Holoprosencefalia/embriologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/genética , Fenótipo , Transdução de Sinais/efeitos dos fármacos
14.
PLoS One ; 6(7): e21796, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829441

RESUMO

BACKGROUND: Activator protein-1 (AP-1) is a mediator of BMP or FGF signaling during Xenopus embryogenesis. However, specific role of AP-1 in activin signaling has not been elucidated during vertebrate development. METHODOLOGY/PRINCIPAL FINDINGS: We provide new evidence showing that overexpression of heterodimeric AP-1 comprised of c-jun and c-fos (AP-1(c-Jun/c-Fos)) induces the expression of BMP-antagonizing organizer genes (noggin, chordin and goosecoid) that were normally expressed by high dose of activin. AP-1(c-Jun/c-Fos) enhanced the promoter activities of organizer genes but reduced that of PV.1, a BMP4-response gene. A loss of function study clearly demonstrated that AP-1(c-Jun/c-Fos) is required for the activin-induced organizer and neural gene expression. Moreover, physical interaction of AP-1(c-Jun/c-Fos) and Smad3 cooperatively enhanced the transcriptional activity of goosecoid via direct binding on this promoter. Interestingly, Smad3 mutants at c-Jun binding site failed in regulation of organizer genes, indicating that these physical interactions are specifically necessary for the expression of organizer genes. CONCLUSIONS/SIGNIFICANCE: AP-1(c-Jun/c-Fos) plays a specific role in organizer gene expression in downstream of activin signal during early Xenopus embryogenesis.


Assuntos
Ativinas/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica , Organizadores Embrionários/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/metabolismo , Ativinas/genética , Animais , Western Blotting , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Imunoprecipitação da Cromatina , Embrião não Mamífero/citologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteína Goosecoid/genética , Proteína Goosecoid/metabolismo , Imunoprecipitação , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Luciferases/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Multimerização Proteica , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fator de Transcrição AP-1/genética , Ativação Transcricional , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
15.
Stem Cells ; 29(4): 600-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21328508

RESUMO

The Spemann-Mangold organizer is the structure that provides the signals, which initiate pattern formation in the developing vertebrate embryo, affecting the main body axes. Very little is known about axial induction in the gastrulating human embryo, as research is hindered by obvious ethical restrictions. Human embryonic stem cells (hESCs) are pluripotent cells derived from the pregastrula embryo that can differentiate in culture following a program similar to normal embryonic development but without pattern formation. Here, we show that in hESC-derived embryoid bodies, we can induce differentiation of cells that harbor markers and characteristics of the gastrula-organizer. Moreover, genetic labeling of these cells enabled their purification, and the discovery of a comprehensive set of their secreted proteins, cell surface receptors, and nuclear factors characteristic of the organizer. Remarkably, transplantation of cell populations enriched for the putative human organizer into frog embryos induced a secondary axis. Our research demonstrates that the human organizer can be induced in vitro and paves the way for the study of pattern formation and the initial regulation of body axis establishment in humans.


Assuntos
Células-Tronco Embrionárias/metabolismo , Gastrulação , Organizadores Embrionários/metabolismo , Padronização Corporal , Diferenciação Celular/fisiologia , Corpos Embrioides/metabolismo , Indução Embrionária , Regulação da Expressão Gênica no Desenvolvimento , Proteína Goosecoid/biossíntese , Humanos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo
16.
Proc Natl Acad Sci U S A ; 107(35): 15449-54, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20713713

RESUMO

The epithelial-to-mesenchymal transition (EMT) produces cancer cells that are invasive, migratory, and exhibit stem cell characteristics, hallmarks of cells that have the potential to generate metastases. Inducers of the EMT include several transcription factors (TFs), such as Goosecoid, Snail, and Twist, as well as the secreted TGF-beta1. Each of these factors is capable, on its own, of inducing an EMT in the human mammary epithelial (HMLE) cell line. However, the interactions between these regulators are poorly understood. Overexpression of each of the above EMT inducers up-regulates a subset of other EMT-inducing TFs, with Twist, Zeb1, Zeb2, TGF-beta1, and FOXC2 being commonly induced. Up-regulation of Slug and FOXC2 by either Snail or Twist does not depend on TGF-beta1 signaling. Gene expression signatures (GESs) derived by overexpressing EMT-inducing TFs reveal that the Twist GES and Snail GES are the most similar, although the Goosecoid GES is the least similar to the others. An EMT core signature was derived from the changes in gene expression shared by up-regulation of Gsc, Snail, Twist, and TGF-beta1 and by down-regulation of E-cadherin, loss of which can also trigger an EMT in certain cell types. The EMT core signature associates closely with the claudin-low and metaplastic breast cancer subtypes and correlates negatively with pathological complete response. Additionally, the expression level of FOXC1, another EMT inducer, correlates strongly with poor survival of breast cancer patients.


Assuntos
Neoplasias da Mama/genética , Claudinas/genética , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Mesoderma/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Análise por Conglomerados , Regulação para Baixo , Feminino , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Proteína Goosecoid/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta1/genética , Proteína 1 Relacionada a Twist/genética
17.
Plast Reconstr Surg ; 125(3): 979-87, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20195123

RESUMO

BACKGROUND: Microtia can be defined as a malformation of the auricle; the varying severity that results can range from mild distortion of the anatomic landmarks to the complete absence of the ear. No specific study has been reported analyzing a family of several generations with bilateral congenital concha-type microtia so far. METHODS: The authors obtained medical records and blood samples from a Chinese family with bilateral congenital concha-type microtia that involved 56 members of five generations. There were 20 patients with bilateral congenital concha-type microtia in this pedigree, and 14 patients were still alive. Pedigree analysis and genetic study were carried out to obtain the information in this family. RESULTS: With regard to pedigree, 35.7 percent of the members of this family were affected by bilateral congenital concha-type microtia and showed the possibility of autosomal dominant inheritance model. Missense mutation A deletion on site 76234730 in goosecoid gene exon 3 occurred in eight cases in the family, which resulted in a frame shift mutation. CONCLUSIONS: The goosecoid gene mutation in exon 3 may be involved in the malformation events in this family. The mutation can be accompanied by potential environmental risk factors, such as exposure to poison and hazardous materials, alcohol abuse, and disease during the mother's pregnancy. Further study is needed to clarify the relationship between the genetic and environmental factors associated with the congenital malformation.


Assuntos
Transtornos Cromossômicos/genética , Pavilhão Auricular/anormalidades , Proteína Goosecoid/genética , Criança , Análise Mutacional de DNA , Primers do DNA , Pavilhão Auricular/cirurgia , Feminino , Fator 3 de Crescimento de Fibroblastos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem
18.
Clin Dysmorphol ; 19(2): 51-55, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20177378

RESUMO

Cerebro-costo-mandibular syndrome (CCMS) is an uncommon multiple congenital anomaly syndrome characterized by severe micrognathia, posterior rib-gap defects, and developmental delay. The cause of CCMS is unknown. Genes hypothesized to have a causal role in CCMS, include myogenic factor 5 (MYF5), goosecoid homeobox (GSC) and runt-related transcription factor 2 (RUNX2) [formerly known as core-binding factor (CBFA1)]. We report an infant with typical features of CCMS who, on prenatal ultrasound, was found to have severe micrognathia. We present the first image by three-dimensional computed tomography of posterior rib-defect, and we exclude mutations of the MYF5, GSC, RUNX2, and TCOF1 genes in our patient. Further molecular studies are needed to evaluate the cause of CCMS.


Assuntos
Anormalidades Múltiplas/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Anormalidades Craniofaciais/genética , Proteína Goosecoid/genética , Mutação/genética , Fator Regulador Miogênico 5/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Anormalidades Múltiplas/diagnóstico por imagem , Adulto , Anormalidades Craniofaciais/diagnóstico por imagem , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez , Radiografia Torácica , Crânio/diagnóstico por imagem , Síndrome
19.
J Cell Biochem ; 105(3): 801-13, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18729134

RESUMO

Mouse P19 embryonal carcinoma cells can differentiate into various cell types depending on culture conditions. Here we show that the expression of the mesodermal genes Brachyury (Bra) and Goosecoid (Gsc) are under regulatory control in P19 cells. When P19 cells were cultured in a tissue culture dish in the presence of serum, Bra and Gsc were unexpectedly expressed. Expression of Bra and Gsc was greatly reduced with culture time, and expression levels at 144 h of culture were below 25% those at 48 h of culture. Members of the Tgf-beta family such as Activin and Nodal have been known to up-regulate expression of mesodermal genes. Treatment with SB431542, an Alk4/5/7 inhibitor, decreased Bra and Gsc in a dose-dependent manner, whereas it induced the expression of the neuroectodermal genes Mash-1 and Pax-6. Quantitative RT-PCR and dsRNAi transfection indicated Nodal as a possible ligand responsible for the regulation of Bra and Gsc. In addition, exogenous Nodal increased expression of Bra and Gsc in a dose-dependent manner. Serum concentration in culture medium positively related to expression of Nodal, Bra, Gsc, and Cripto, which encodes a membrane-tethered protein required for Nodal signaling. Addition of the culture supernatant of P19 cells at 144 h of culture to medium decreased expression of these genes. The present study reveals that stimulation and inhibition of the Nodal pathway increases mesodermal genes and neuroectodermal genes, respectively, indicating the importance of control of Nodal and Cripto expression for mesodermal formation and neurogenesis.


Assuntos
Proteínas Fetais/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteína Goosecoid/genética , Proteínas com Domínio T/genética , Animais , Diferenciação Celular , Células-Tronco de Carcinoma Embrionário , Proteínas Fetais/metabolismo , Proteína Goosecoid/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Proteína Nodal/genética , Proteína Nodal/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas com Domínio T/metabolismo
20.
Exp Cell Res ; 314(7): 1585-94, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18336814

RESUMO

Goosecoid (Gsc), a paired-like homeobox gene expressed in the vertebrate organizer, functions as a transcriptional repressor either by direct DNA binding to paired TAAT homeodomain sites or through recruitment by the forkhead/winged helix transcription factor Foxh1. Here, we report that Gsc is post-translationally modified by small ubiquitin-like modifier proteins (SUMO). Members of the PIAS family of proteins enhance Gsc sumoylation and this modification occurs on at least six lysine residues. Stable expression of a SUMO-defective Gsc mutant (Gsc 6Km) in MDA-MB-231 breast cancer cells results in morphological changes giving rise to cells with increased cell area. We demonstrate that Gsc 6Km can effectively repress Foxh1-mediated induction of the Mixl1 promoter, indicating that sumoylation is not required for Gsc-mediated repression of promoters where recruitment occurs through Foxh1. In contrast, Gsc 6Km exhibits a decreased ability to repress the induction of promoters to which it is directly recruited through paired-homeodomain binding sites, including its own promoter and that of the Xenopus Brachyury gene. Taken together, our data suggests that regulation of Gsc repressive activity by SUMO modification is promoter specific and may serve to differentially regulate genes that function to control cell morphology during early development and cancer.


Assuntos
Proteína Goosecoid/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular Tumoral , Tamanho Celular , Chlorocebus aethiops , Proteína Goosecoid/química , Proteína Goosecoid/genética , Humanos , Lisina/genética , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Mutação/genética , Regiões Promotoras Genéticas/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Processamento de Proteína Pós-Traducional , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA