Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Nat Commun ; 15(1): 6891, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134516

RESUMO

HMGA1 is an abundant non-histone chromatin protein that has been implicated in embryonic development, cancer, and cellular senescence, but its specific role remains elusive. Here, we combine functional genomics approaches with graph theory to investigate how HMGA1 genomic deposition controls high-order chromatin networks in an oncogene-induced senescence model. While the direct role of HMGA1 in gene activation has been described previously, we find little evidence to support this. Instead, we show that the heterogeneous linear distribution of HMGA1 drives a specific 3D chromatin organization. HMGA1-dense loci form highly interactive networks, similar to, but independent of, constitutive heterochromatic loci. This, coupled with the exclusion of HMGA1-poor chromatin regions, leads to coordinated gene regulation through the repositioning of genes. In the absence of HMGA1, the whole process is largely reversed, but many regulatory interactions also emerge, amplifying the inflammatory senescence-associated secretory phenotype. Such HMGA1-mediated fine-tuning of gene expression contributes to the heterogeneous nature of senescence at the single-cell level. A similar 'buffer' effect of HMGA1 on inflammatory signalling is also detected in lung cancer cells. Our study reveals a mechanism through which HMGA1 modulates chromatin compartmentalization and gene regulation in senescence and beyond.


Assuntos
Senescência Celular , Cromatina , Proteína HMGA1a , Humanos , Linhagem Celular Tumoral , Cromatina/metabolismo , Cromatina/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia
2.
Cell Death Dis ; 15(7): 541, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080260

RESUMO

Esophageal squamous cell carcinoma (ESCC) possesses a poor prognosis and treatment outcome. Dysregulated metabolism contributes to unrestricted growth of multiple cancers. However, abnormal metabolism, such as highly activated pentose phosphate pathway (PPP) in the progression of ESCC remains largely unknown. Herein, we report that high-mobility group AT-hook 1 (HMGA1), a structural transcriptional factor involved in chromatin remodeling, promoted the development of ESCC by upregulating the PPP. We found that HMGA1 was highly expressed in ESCC. Elevated HMGA1 promoted the malignant phenotype of ESCC cells. Conditional knockout of HMGA1 markedly reduced 4-nitroquinoline-1-oxide (4NQO)-induced esophageal tumorigenesis in mice. Through the metabolomic analysis and the validation assay, we found that HMGA1 upregulated the non-oxidative PPP. With the transcriptome sequencing, we identified that HMGA1 upregulated the expression of transketolase (TKT), which catalyzes the reversible reaction in non-oxidative PPP to exchange metabolites with glycolytic pathway. HMGA1 knockdown suppressed the PPP by downregulating TKT, resulting in the reduction of nucleotides in ESCC cells. Overexpression of HMGA1 upregulated PPP and promoted the survival of ESCC cells by activating TKT. We further characterized that HMGA1 promoted the transcription of TKT by interacting with and enhancing the binding of transcription factor SP1 to the promoter of TKT. Therapeutics targeting TKT with an inhibitor, oxythiamine, reduced HMGA1-induced ESCC cell proliferation and tumor growth. Together, in this study, we identified a new role of HMGA1 in ESCCs by upregulating TKT-mediated activation of PPP. Our results provided a new insight into the role of HMGA1/TKT/PPP in ESCC tumorigenesis and targeted therapy.


Assuntos
Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína HMGA1a , Via de Pentose Fosfato , Transcetolase , Regulação para Cima , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Camundongos Nus , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Transcetolase/metabolismo , Transcetolase/genética , Regulação para Cima/genética
3.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062749

RESUMO

Survival of Medulloblastoma (MB) depends on various factors, including the gene expression profiles of MB tumor tissues. In this study, we identified 967 MB survival-related genes (SRGs) using a gene expression dataset and the Cox proportional hazards regression model. Notably, the SRGs were over-represented on chromosomes 6 and 17, known for the abnormalities monosomy 6 and isochromosome 17 in MB. The most significant SRG was HMGA1 (high mobility group AT-hook 1) on chromosome 6, which is a known oncogene and a histone H1 competitor. High expression of HMGA1 was associated with worse survival, primarily in the Group 3γ subtype. The high expression of HMGA1 was unrelated to any known somatic copy number alteration. Most SRGs on chromosome 17p were associated with low expression in Group 4ß, the MB subtype, with 93% deletion of 17p and 98% copy gain of 17q. GO enrichment analysis showed that both chromosomes 6 and 17 included SRGs related to telomere maintenance and provided a rationale for testing telomerase inhibitors in Group 3 MBs. We conclude that HMGA1, along with other SRGs on chromosomes 6 and 17, warrant further investigation as potential therapeutic targets in selected subgroups or subtypes of MB.


Assuntos
Cromossomos Humanos Par 17 , Cromossomos Humanos Par 6 , Meduloblastoma , Humanos , Meduloblastoma/genética , Meduloblastoma/mortalidade , Meduloblastoma/patologia , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 6/genética , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/mortalidade , Neoplasias Cerebelares/patologia , Regulação Neoplásica da Expressão Gênica , Variações do Número de Cópias de DNA , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Feminino , Perfilação da Expressão Gênica
4.
Adv Sci (Weinh) ; 11(32): e2310131, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922788

RESUMO

N4-acetylcytidine (ac4C) is essential for the development and migration of tumor cells. According to earlier research, N-acetyltransferase 10 (NAT10) can increase messenger RNAs (mRNAs) stability by catalyzing the synthesis of ac4C. However, little is known about NAT10 expression and its role in the acetylation modifications in prostate cancer (PCa). Thus, the biological function of NAT10 in PCa is investigated in this study. Compared to paraneoplastic tissues, the expression of NAT10 is significantly higher in PCa. The NAT10 expression is strongly correlated with the pathological grade, clinical stage, Gleason score, T-stage, and N-stage of PCa. NAT10 has the ability to advance the cell cycle and the epithelial-mesenchymal transition (EMT), both of which raise the malignancy of tumor cells. Mechanistically, NAT10 enhance the stability of high mobility group AT-hook 1 (HMGA1) by acetylating its mRNA, thereby promoting cell cycle progression to improve cell proliferation. In addition, NAT10 improve the stability of Keratin 8 (KRT8) by acetylating its mRNA, which promotes the progression of EMT to improve cell migration. This findings provide a potential prognostic or therapeutic target for PCa.


Assuntos
Proliferação de Células , Proteína HMGA1a , Acetiltransferase N-Terminal E , Neoplasias da Próstata , RNA Mensageiro , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Camundongos , Animais , Acetilação , Transição Epitelial-Mesenquimal/genética , Metástase Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/genética , Modelos Animais de Doenças , Movimento Celular/genética , Acetiltransferases N-Terminal
5.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725843

RESUMO

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína HMGA1a , Inibidores de MTOR , Proteína Proto-Oncogênica c-ets-1 , Proteína 1A de Ligação a Tacrolimo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Camundongos Nus , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Serina-Treonina Quinases TOR/metabolismo
6.
Cell Mol Life Sci ; 81(1): 219, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758230

RESUMO

HMGA1 is a structural epigenetic chromatin factor that has been associated with tumor progression and drug resistance. Here, we reported the prognostic/predictive value of HMGA1 for trabectedin in advanced soft-tissue sarcoma (STS) and the effect of inhibiting HMGA1 or the mTOR downstream pathway in trabectedin activity. The prognostic/predictive value of HMGA1 expression was assessed in a cohort of 301 STS patients at mRNA (n = 133) and protein level (n = 272), by HTG EdgeSeq transcriptomics and immunohistochemistry, respectively. The effect of HMGA1 silencing on trabectedin activity and gene expression profiling was measured in leiomyosarcoma cells. The effect of combining mTOR inhibitors with trabectedin was assessed on cell viability in vitro studies, whereas in vivo studies tested the activity of this combination. HMGA1 mRNA and protein expression were significantly associated with worse progression-free survival of trabectedin and worse overall survival in STS. HMGA1 silencing sensitized leiomyosarcoma cells for trabectedin treatment, reducing the spheroid area and increasing cell death. The downregulation of HGMA1 significantly decreased the enrichment of some specific gene sets, including the PI3K/AKT/mTOR pathway. The inhibition of mTOR, sensitized leiomyosarcoma cultures for trabectedin treatment, increasing cell death. In in vivo studies, the combination of rapamycin with trabectedin downregulated HMGA1 expression and stabilized tumor growth of 3-methylcholantrene-induced sarcoma-like models. HMGA1 is an adverse prognostic factor for trabectedin treatment in advanced STS. HMGA1 silencing increases trabectedin efficacy, in part by modulating the mTOR signaling pathway. Trabectedin plus mTOR inhibitors are active in preclinical models of sarcoma, downregulating HMGA1 expression levels and stabilizing tumor growth.


Assuntos
Proteína HMGA1a , Sarcoma , Trabectedina , Trabectedina/farmacologia , Humanos , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Sarcoma/genética , Sarcoma/metabolismo , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Animais , Linhagem Celular Tumoral , Camundongos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Prognóstico , Feminino , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/patologia , Leiomiossarcoma/genética , Leiomiossarcoma/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Ren Fail ; 46(1): 2338931, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38622929

RESUMO

BACKGROUND: IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Proliferation-inducing ligand (APRIL) was identified as an important cause of glycosylation deficiency of IgA1 (Gd-IgA1), which can 'trigger' IgAN. Our previous study indicated that high migration group protein B2 (HMGB2) in peripheral blood mononuclear cells from patients with IgAN was associated with disease severity, but the underlying mechanism remains unclear. MATERIALS AND METHODS: The location of HMGB2 was identified by immunofluorescence. qRT-PCR and Western blotting were used to measure HMGB2, HMGA1, and APRIL expression. Gd-IgA1 levels were detected by enzyme-linked immunosorbent assay (ELISA). In addition, we used DNA pull-down, protein profiling, and transcription factor prediction software to identify proteins bound to the promoter region of the APRIL gene. RNA interference and coimmunoprecipitation (Co-IP) were used to verify the relationships among HMGB2, high mobility group AT-hook protein 1 (HMGA1), and APRIL. RESULTS: HMGB2 expression was greater in IgAN patients than in HCs and was positively associated with APRIL expression in B cells. DNA pull-down and protein profiling revealed that HMGB2 and HMGA1 bound to the promoter region of the APRIL gene. The expression levels of HMGA1, APRIL, and Gd-IgA1 were downregulated after HMGB2 knockdown. Co-IP indicated that HMGB2 binds to HMGA1. The Gd-IgA1 concentration in the supernatant was reduced after HMGA1 knockdown. HMGA1 binding sites were predicted in the promoter region of the APRIL gene. CONCLUSION: HMGB2 expression is greater in IgAN patients than in healthy controls; it promotes APRIL expression by interacting with HMGA1, thereby inducing Gd-IgA1 overexpression and leading to IgAN.


Assuntos
Glomerulonefrite por IGA , Humanos , DNA/metabolismo , Glicosilação , Proteína HMGA1a/metabolismo , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Imunoglobulina A , Leucócitos Mononucleares/metabolismo , Fatores de Transcrição/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral
8.
Cell Biochem Biophys ; 82(2): 849-858, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430408

RESUMO

High mobility group protein AT-hook 1 (HMGA1), an architectural transcription factor, has previously been reportedto play an essential role in architectural remodeling processes. However, its effects on cardiovascular diseases, particularly sepsis-induced cardiomyopathy, have remained unclear. The study aimed to investigate the role of HMGA1 in lipopolysaccharide-induced cardiomyopathy. Mice subjected to lipopolysaccharide for 12 h resulted in cardiac dysfunction. We used an adeno-associated virus 9 delivery system to achieve cardiac-specific expression of the HMGA1 gene in the mice. H9c2 cardiomyocytes were infected with Ad-HMGA1 to overexpress HMGA1 or transfected with si-HMGA1 to knock down HMGA1. Echocardiography was applied to measure cardiac function. RT-PCR was used to detect the transcriptional level of inflammatory cytokines. CD45 and CD68 immunohistochemical staining were used to detect inflammatory cell infiltration and TUNEL staining to evaluate the cardiomyocyte apoptosis, MitoSox was used to detect mitochondrial reactive oxygen species, JC-1 was used todetect Mitochondrial membrane potential. Our findings revealed that the overexpression of HMGA1 exacerbated myocardial inflammation and apoptosis in response to lipopolysaccharide treatment. Additionally, we also observed that H9c2 cardiomyocytes with HMGA1 overexpression exhibited enhanced inflammation and apoptosis upon stimulation with lipopolysaccharide for 12 h. Conversely, HMGA1 knockdown in H9c2 cardiomyocytes attenuated lipopolysaccharide-induced cardiomyocyte inflammation and apoptosis. Further investigations into the molecular mechanisms underlying these effects showed that HMGA1 promoted lipopolysaccharide-induced mitochondrial-dependent cardiomyocyte apoptosis. The study reveals that HMGA1 worsens myocardial inflammation and apoptosis in response to lipopolysaccharide treatment. Mechanically, HMGA1 exerts its effects by regulating the mitochondria-dependent apoptotic pathway.


Assuntos
Apoptose , Cardiomiopatias , Proteína HMGA1a , Lipopolissacarídeos , Miócitos Cardíacos , Sepse , Animais , Sepse/metabolismo , Sepse/complicações , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/etiologia , Camundongos , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Linhagem Celular , Masculino , Camundongos Endogâmicos C57BL , Ratos , Mitocôndrias/metabolismo , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , RNA Interferente Pequeno/metabolismo
9.
Mutat Res ; 828: 111852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38368811

RESUMO

OBJECTIVES: Our group previously found that LINC00665 was upregulated in hepatocellular carcinoma (HCC) tissues through database analysis; however, the potential molecular mechanism of LINC00665 in HCC progression still needs further study. METHODS: qRTPCR was performed to determine the differential expression of LINC00665 and let-7i in HCC cells. Dual-luciferase reporter assays were performed to analyze the interaction of LINC00665 and let-7i. CCK-8 assays, scratch assays, Transwell invasion assays, qRTPCR and western blotting were performed to determine the regulatory mechanism of LINC00665/let-7i/HMGA1 in HCC cells. RESULTS: LINC00665 was upregulated in HCC cells compared with normal hepatocytes. A potential binding site between LINC00665 and let-7i was confirmed by dual-luciferase reporter assay. In HCC cells, inhibition of LINC00665 significantly reduced cell proliferation, migration and invasion ability via the let-7i/HMGA1 signaling axis. CONCLUSION: LINC00665 promotes the proliferation and invasion of HCC cells via the let-7i/HMGA1 signaling axis.


Assuntos
Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteína HMGA1a , Neoplasias Hepáticas , MicroRNAs , Invasividade Neoplásica , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais
10.
Int J Biochem Cell Biol ; 169: 106532, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278412

RESUMO

The crucial role of high mobility group AT-hook 1 (HMGA1) proteins in nuclear processes such as gene transcription, DNA replication, and chromatin remodeling is undeniable. Elevated levels of HMGA1 have been associated with unfavorable clinical outcomes and adverse differentiation status across various cancer types. HMGA1 regulates a diverse array of biological pathways, including tumor necrosis factor-alpha/nuclear factor-kappa B (TNF-α/NF-κB), epidermal growth factor receptor (EGFR), Hippo, Rat sarcoma/extracellular signal-regulated kinase (Ras/ERK), protein kinase B (Akt), wingless-related integration site/beta-catenin (Wnt/beta-catenin), and phosphoinositide 3-kinase/protein kinase B (PI3-K/Akt). While researchers have extensively investigated tumors in the reproductive, digestive, urinary, and hematopoietic systems, mounting evidence suggests that HMGA1 plays a critical role as a tumorigenic factor in tumors across all functional systems. Given its broad interaction network, HMGA1 is an attractive target for viral manipulation. Some viruses, including herpes simplex virus type 1, human herpesvirus 8, human papillomavirus, JC virus, hepatitis B virus, human immunodeficiency virus type 1, severe acute respiratory syndrome Coronavirus 2, and influenza viruses, utilize HMGA1 influence for infection. This interaction, particularly in oncogenesis, is crucial. Apart from the direct oncogenic effect of some of the mentioned viruses, the hit-and-run theory postulates that viruses can instigate cancer even before being completely eradicated from the host cell, implying a potentially greater impact of viruses on cancer development than previously assumed. This review explores the interplay between HMGA1, viruses, and host cellular machinery, aiming to contribute to a deeper understanding of viral-induced oncogenesis, paving the way for innovative strategies in cancer research and treatment.


Assuntos
Neoplasias , Viroses , Humanos , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Proteínas Proto-Oncogênicas c-akt , beta Catenina/metabolismo , Fosfatidilinositol 3-Quinases , Neoplasias/genética , Fatores de Transcrição , Carcinogênese
11.
Biochem Pharmacol ; 212: 115582, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37146833

RESUMO

Metastasis is an obstacle to the clinical treatment of aggressive breast cancer (BC). Studies have shown that high mobility group A1 (HMGA1) is abnormally expressed in various cancers and mediates tumor proliferation and metastasis. Here, we provided more evidence that HMGA1 mediated epithelial to mesenchymal transition (EMT) through the Wnt/ß-catenin pathway in aggressive BC. More importantly, HMGA1 knockdown enhanced antitumor immunity and improved the response to immune checkpoint blockade (ICB) therapy by upregulating programmed cell death ligand 1 (PD-L1) expression. Simultaneously, we revealed a novel mechanism by which HMGA1 and PD-L1 were regulated by the PD-L1/HMGA1/Wnt/ß-catenin negative feedback loop in aggressive BC. Taken together, we believe that HMGA1 can serve as a target for the dual role of anti-metastasis and enhancing immunotherapeutic responses.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Antígeno B7-H1 , beta Catenina/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Imunoterapia , Via de Sinalização Wnt
12.
Life Sci ; 322: 121646, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011870

RESUMO

AIMS: RN7SK (7SK), a highly conserved non-coding RNA, serves as a transcription regulator via interaction with a few proteins. Despite increasing evidences which support the cancer-promoting roles of 7SK-interacting proteins, limited reports address the direct link between 7SK and cancer. To test the hypothetic suppression of cancer by overexpression of 7SK, the effects of exosomal 7SK delivery on cancer phenotypes were studied. MATERIALS AND METHODS: Exosomes derived from human mesenchymal stem cells were loaded with 7SK (Exo-7SK). MDA-MB-231, triple negative breast cancer (TNBC), cell line was treated with Exo-7sk. Expression levels of 7SK were evaluated by qPCR. Cell viability was assessed via MTT and Annexin V/PI assays as well as qPCR assessment of apoptosis-regulating genes. Cell proliferation was evaluated by growth curve analysis, colony formation and cell cycle assays. Aggressiveness of TNBCs was evaluated via transwell migration and invasion assays and qPCR assessment of genes regulating epithelial to mesenchymal transition (EMT). Moreover, tumor formation ability was assessed using a nude mice xenograft model. KEY FINDINGS: Treatment of MDA-MB-231 cells with Exo-7SK resulted in efficient overexpression of 7SK; reduced viability; altered transcription levels of apoptosis-regulating genes; reduced proliferation; reduced migration and invasion; altered transcription of EMT-regulating genes; and reduced in vivo tumor formation ability. Finally, Exo-7SK reduced mRNA levels of HMGA1, a 7SK interacting protein with master gene regulatory and cancer promoting roles, and its bioinformatically-selected cancer promoting target genes. SIGNIFICANCE: Altogether, as a proof of the concept, our findings suggest that exosomal delivery of 7SK may suppress cancer phenotypes via downregulation of HMGA1.


Assuntos
RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Proteína HMGA1a/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/farmacologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Camundongos Nus , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
13.
J Clin Invest ; 133(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36919699

RESUMO

High mobility group A1 (HMGA1) chromatin regulators are upregulated in diverse tumors where they portend adverse outcomes, although how they function in cancer remains unclear. Pancreatic ductal adenocarcinomas (PDACs) are highly lethal tumors characterized by dense desmoplastic stroma composed predominantly of cancer-associated fibroblasts and fibrotic tissue. Here, we uncover an epigenetic program whereby HMGA1 upregulates FGF19 during tumor progression and stroma formation. HMGA1 deficiency disrupts oncogenic properties in vitro while impairing tumor inception and progression in KPC mice and subcutaneous or orthotopic models of PDAC. RNA sequencing revealed HMGA1 transcriptional networks governing proliferation and tumor-stroma interactions, including the FGF19 gene. HMGA1 directly induces FGF19 expression and increases its protein secretion by recruiting active histone marks (H3K4me3, H3K27Ac). Surprisingly, disrupting FGF19 via gene silencing or the FGFR4 inhibitor BLU9931 recapitulates most phenotypes observed with HMGA1 deficiency, decreasing tumor growth and formation of a desmoplastic stroma in mouse models of PDAC. In human PDAC, overexpression of HMGA1 and FGF19 defines a subset of tumors with extremely poor outcomes. Our results reveal what we believe is a new paradigm whereby HMGA1 and FGF19 drive tumor progression and stroma formation, thus illuminating FGF19 as a rational therapeutic target for a molecularly defined PDAC subtype.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Inativação Gênica , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Neoplasias Pancreáticas/patologia
14.
Pathol Oncol Res ; 29: 1610870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776216

RESUMO

Background: Long non-coding RNAs (lncRNAs) have been confirmed to play vital roles in tumorigenesis. LncRNA MYU has recently been reported as an oncogene in several kinds of tumors. However, MYU's expression status and potential involvement in ovarian cancer (OC) remain unclear. In this study, we explored the underlying role of MYU in OC. Methods and results: The expression of MYU was upregulated in OC tissues, and MYU's overexpression was significantly correlated with the FIGO stage and lymphatic metastasis. Knockdown of MYU inhibited cell proliferation in SKOV3 and A2780 cells. Mechanistically, MYU directly interacted with miR-6827-5p in OC cells; HMGA1 is a downstream target gene of miR-6827-5p. Furthermore, MYU knockdown increased the expression of miR-6827-5p and decreased the expression of HMGA1. Restoration of HMGA1 expression reversed the influence on cell proliferation caused by MYU knockdown. Conclusion: MYU functions as a ceRNA that positively regulates HMGA1 expression by sponging miR-6827-5p in OC cells, which may provide a potential target and biomarker for the diagnosis or prognosis of OC.


Assuntos
Proteína HMGA1a , MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Feminino , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética
15.
Sci Rep ; 13(1): 650, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635290

RESUMO

Hepatocellular carcinoma (LIHC) accounts for 90% of all liver cancers and is a serious health concern worldwide. Long noncoding RNAs (lncRNAs) have been observed to sponge microRNAs (miRNAs) and participate in the biological processes of LIHC. This study aimed to evaluate the role of the ST8SIA6-AS1-miR-142-3p-HMGA1 axis in regulating LIHC progression. RT-qPCR and western blotting were performed to determine the levels of ST8SIA6-AS1, miR-142-3p, and HMGA1 in LIHC. The relationship between ST8SIA6-AS1, miR-142-3p, and HMGA1 was assessed using luciferase assay. The role of the ST8SIA6-AS1-miR-142-3p-HMGA1 axis was evaluated in vitro using LIHC cells. Expression of ST8SIA6-AS1 and HMGA1 was significantly upregulated, whereas that of miR-142-3p was markedly lowered in LIHC specimens and cells. ST8SIA6-AS1 accelerated cell growth, invasion, and migration and suppressed apoptosis in LIHC. Notably, ST8SIA6-AS1 inhibited HMGA1 expression by sponging miR-142-3p in LIHC cells. In conclusion, sponging of miR-142-3p by ST8SIA6-AS1 accelerated the growth of cells while preventing cell apoptosis in LIHC cells, and the inhibitory effect of miR-142-3p was abrogated by elevating HMGA1 expression. The ST8SIA6-AS1-miR-142-3p-HMGA1 axis represents a potential target for the treatment of patients with LIHC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Sialiltransferases/metabolismo
16.
Int J Biol Macromol ; 232: 123400, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36702230

RESUMO

Long non-coding RNA XIST promotes the development of various types of head and neck cancers, but its role in the progression of precancerous oral submucous fibrosis (OSF) has not been determined yet. As such, we aimed to examine whether XIST implicates in the regulation of myofibroblast activation. Our results showed that the expression of XIST was upregulated in OSF tissues and fibrotic buccal mucosal fibroblasts (fBMFs), and the silencing of XIST downregulated several myofibroblasts features. We demonstrated that elevation of let-7i after inhibition of XIST may lead to reduced myofibroblast activation. On the contrary, overexpression of high mobility group AT-Hook 1 (HMGA1) following the suppression of let-7i may result in enhanced myofibroblast activities. Moreover, we showed that the suppressive effect of silencing of XIST on myofibroblasts hallmarks was reversed by let-7i inhibition or HMGA1 overexpression, suggesting the pro-fibrotic property of XIST was mediated by downregulation of let-7i and upregulation of HMGA1. These findings revealed that myofibroblast activation of fBMFs may attribute to the alteration of the XIST/let-7i/HMGA1 axis. Therapeutic approaches to target this axis may serve as a promising direction to ameliorate the malignant progression of OSF.


Assuntos
MicroRNAs , Fibrose Oral Submucosa , Humanos , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/metabolismo , Fibrose Oral Submucosa/patologia , Miofibroblastos/metabolismo , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Proteína HMGA1a/uso terapêutico , Movimento Celular , Mucosa Bucal/metabolismo , Fatores de Transcrição/metabolismo , MicroRNAs/genética
17.
Medicine (Baltimore) ; 102(4): e32707, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705364

RESUMO

The high mobility group A1 (HMGA1) gene is overexpressed in malignant tumors, and its expression level correlates with the progression and metastasis of tumors. However, the specific role of HMGA1 in hepatocellular carcinoma (HCC) and relevant influencing approaches in tumor immunity remain unclear. In this study, the expression and clinical significance of HMGA1 in HCC immunity were analyzed. The expression levels of HMGA1 mRNA and protein in HCC tissue and normal liver tissue were analyzed based on the cancer genome atlas, the gene expression omnibus and the Human Protein Atlas databases. The correlation between HMGA1 and clinicopathological factors was analyzed, and survival was estimated based on the expression of HMGA1. Gene set cancer analysis and the TISIDB database were used to identify tumor-infiltrating immune cells and immune inhibitors. Gene set enrichment analysis was performed to determine the involved signaling pathway. The HMGA1 genetic alterations were identified with the cBioPortal for Cancer Genomics. The expression of HMGA1 mRNA and protein was significantly higher in HCC tissue and negatively correlated with survival. Neutrophils, Th17 cells, several immune inhibitors, and signaling pathways were positively correlated with the expression of HMGA1. Amplification was the main type of genetic alteration in HMGA1. These findings demonstrate that HMGA1 can be a therapeutic target and a potential biomarker to predict the prognosis of patients with HCC. HMGA1 may affect the progression of HCC by suppressing the immune function of these patients.


Assuntos
Carcinoma Hepatocelular , Proteína HMGA1a , Neoplasias Hepáticas , Humanos , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Biologia Computacional , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Terapia de Imunossupressão , Neoplasias Hepáticas/patologia , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Immunology ; 168(2): 362-373, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36352838

RESUMO

Metastatic disease is the major cause of death from cancer. From the primary tumour, cells remotely prepare the environment of the future metastatic sites by secreted factors and extracellular vesicles. During this process, known as pre-metastatic niche formation, immune cells play a crucial role. Mast cells are haematopoietic bone marrow-derived innate immune cells whose function in lung immune response to invading tumours remains to be defined. We found reduced melanoma lung metastasis in mast cell-deficient mouse models (Wsh and MCTP5-Cre-RDTR), supporting a pro-metastatic role for mast cells in vivo. However, due to evidence pointing to their antitumorigenic role, we studied the impact of mast cells in melanoma cell function in vitro. Surprisingly, in vitro co-culture of bone-marrow-derived mast cells with melanoma cells showed that they have an intrinsic anti-metastatic activity. Mass spectrometry analysis of melanoma-mast cell co-cultures secretome showed that HMGA1 secretion by melanoma cells was significantly impaired. Consistently, HMGA1 knockdown in B16-F10 cells reduced their metastatic capacity in vivo. Importantly, analysis of HMGA1 expression in human melanoma tumours showed that metastatic tumours with high HMGA1 expression are associated with reduced overall and disease-free survival. Moreover, we show that HMGA1 is reduced in the nuclei and enriched in the cytoplasm of melanoma metastatic lesions when compared to primary tumours. These data suggest that high HMGA1 expression and secretion from melanoma cells promote metastatic behaviour. Targeting HMGA1 expression intrinsically or extrinsically by mast cells actions reduce melanoma metastasis. Our results pave the way to the use of HMGA1 as anti-metastatic target in melanoma as previously suggested in other cancer types.


Assuntos
Neoplasias Pulmonares , Melanoma , Camundongos , Animais , Humanos , Proteína HMGA1a/metabolismo , Mastócitos/metabolismo , Melanoma/patologia , Pulmão/patologia , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Metástase Neoplásica
19.
Int Arch Allergy Immunol ; 184(3): 279-290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36470235

RESUMO

INTRODUCTION: Osteoarthritis (OA) is associated with oxidative stress injury (OSI) and inflammatory responses in chondrocytes. This study sought to explore the mechanism of high mobility group A1 (HMGA1) in interleukin-1beta (IL-1ß)-induced OSI and inflammatory responses in primary chondrocytes. METHODS: Primary chondrocytes were cultured and treated with IL-1ß to establish an OA-cell model. Levels of HMGA1, Jumonji domain-containing 3 (JMJD3), and ZEB1 in cells were determined by real-time quantitative polymerase chain reaction and Western blot analysis. Cell viability, contents of tumor necrosis factor-α, IL-6, and IL-10, reactive oxygen species level, and glutathione peroxidase activity were assessed by the cell counting kit-8 assay, enzyme-linked immunosorbent assay, and assay kits. Enrichment levels of HMGA1 on the JMJD3 promoter and enrichment levels of JMJD3 and trimethylated histone H3 at lysine 27 (H3K27me3) on the ZEB1 promoter region were determined by chromatin immunoprecipitation. Functional rescue experiments were performed to analyze the impact of ZEB1 and JMJD3 on IL-1ß-induced chondrocytes. RESULTS: IL-1ß treatment induced HMGA1 upregulation, OSI, and inflammatory responses in chondrocytes. HMGA1 downregulation reduced IL-1ß-induced OSI and inflammatory responses in chondrocytes. Mechanically, HMGA1 was bound to the JMJD3 promoter to promote JMJD3 transcription, and JMJD3 induced demethylation of H3K27me3 on the ZEB1 promoter to promote ZEB1 transcription. Overexpression of JMJD3 or ZEB1 neutralized the protective role of silencing HMGA1 in IL-1ß-induced chondrocytes. CONCLUSION: HMGA1 aggravated IL-1ß-induced OSI and inflammatory responses in chondrocytes through the promotion of JMJD3 and ZEB1.


Assuntos
MicroRNAs , Osteoartrite , Humanos , Células Cultivadas , Condrócitos/metabolismo , Histonas/metabolismo , Proteína HMGA1a/metabolismo , Interleucina-1beta/metabolismo , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Estresse Oxidativo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
20.
Anal Cell Pathol (Amst) ; 2023: 6833987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-39282156

RESUMO

Colorectal cancer (CRC) substantially contributes to cancer-related deaths worldwide. Recently, a long non-coding RNA (lncRNA), LINC01614, has emerged as a vital gene regulator in cancer progression. Yet, how LINC01614 affects CRC progression remains enigmatic. Here, we defined LINC01614 expression in CRC, investigated the performance of CRC cells lacking LINC01614, and elucidated the underpinning mechanism. We observed that LINC01614 was upregulated in both CRC tissues and cell lines. LINC01614 knockdown repressed the proliferation and metastasis capacity of CRC cell lines. Consistently, an in vivo LINC01614 deficiency model exhibited slow tumor growth rate. Moreover, luciferase reporter assay, RNA pull-down, and immunoprecipitation confirmed that LINC01614 targeted miR-217-5p. LINC01614 knockdown reduced the expression of HMGA1 and N-cadherin, while increasing that of E-cadherin, resulting in decreased viability, proliferation, migration, and invasion capacity of CRC cells. Our results demonstrate that LINC01614 regulates CRC progression by modulating the miR-217-5p/HMGA1 axis, thus holding great potential as a prognostic biomarker for CRC diagnosis and treatment.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Proteína HMGA1a , MicroRNAs , RNA Longo não Codificante , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Linhagem Celular Tumoral , Animais , Camundongos Nus , Invasividade Neoplásica , Masculino , Camundongos Endogâmicos BALB C , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA