Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062899

RESUMO

HMGB3 protein belongs to the group of HMGB proteins from the superfamily of nuclear proteins with high electrophoretic mobility. HMGB proteins play an active part in almost all cellular processes associated with DNA-repair, replication, recombination, and transcription-and, additionally, can act as cytokines during infectious processes, inflammatory responses, and injuries. Although the structure and functions of HMGB1 and HMGB2 proteins have been intensively studied for decades, very little attention has been paid to HMGB3 until recently. In this review, we summarize the currently available data on the molecular structure, post-translational modifications, and biological functions of HMGB3, as well as the possible role of the ubiquitin-proteasome system-dependent HMGB3 degradation in tumor development.


Assuntos
Proteína HMGB3 , Processamento de Proteína Pós-Traducional , Humanos , Proteína HMGB3/metabolismo , Proteína HMGB3/química , Proteína HMGB3/genética , Animais , Neoplasias/metabolismo , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo
2.
Tissue Cell ; 88: 102406, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761792

RESUMO

BACKGROUND: Previous evidences has highlighted the pivotal role of NOD-like receptor family pyrin domain-containing 3 (NLRP3)-mediated inflammasomes and pyroptosis activation in driving tumor malignancy and shaping the tumor microenvironment. Herein, we aimed to elucidate the impact of high-mobility group box 3 (HMGB3) released in glioma-derived exosomes on macrophage infiltration in gliomas, NLRP3 inflammasome activation and polarization. METHODS: Transcripts and protein levels of HMGB3, and cytokines associated with macrophage phenotypes and pyroptosis were assessed in glioma tissues and cell lines (U251, LN229, T98G, A172) using qRT-PCR and/or Western blot analysis. Exosomes secreted from LN229 and NHA cells were isolated via differential ultracentrifugation and characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and analysis of exosome-related markers. PKH67 staining was employed to examine exosomes uptake by THP-1 differentiated macrophages. Flow cytometry was utilized to assess macrophage pyroptotic rates and polarization-related markers. RESULTS: HMGB3 expression was elevated in glioma tissues, serum samples and tumor cell lines. Kaplan-Meier curves revealed a positive correlation between higher HMGB3 expression and poor overall survival and recurrence-free survival. Moreover, glioma tissues with increased HMGB3 expression exhibited significant upregulation of M2 macrophages markers (CD68, CD206, Arg1) and NLRP3 inflammasome components (NLRP3, IL-1ß, ASC), suggesting that HMGB3 was closely associated with macrophage infiltration and NLRP3 inflammasome activation. Notably, HMGB3 was found to be enriched in glioma cell- secreted exosomes and could be internalized by macrophages. Knockdown of HMGB3 in glioma cell exosomes could restrain M2 macrophage polarization, NLRP3 inflammasome activation and pyroptosis. CONCLUSION: These findings suggested that glioma cells secreted exosomal HMGB3 could facilitate macrophage M2 polarization, pyroptosis and inflammatory infiltration, indicating HMGB3 might be a poor prognosis factor for glioma.


Assuntos
Exossomos , Glioma , Proteína HMGB3 , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Macrófagos Associados a Tumor , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Exossomos/metabolismo , Glioma/patologia , Glioma/metabolismo , Glioma/genética , Humanos , Inflamassomos/metabolismo , Linhagem Celular Tumoral , Proteína HMGB3/metabolismo , Proteína HMGB3/genética , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Masculino , Feminino , Microambiente Tumoral , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética
3.
Cell Cycle ; 22(23-24): 2584-2601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38197217

RESUMO

The family of high mobility group box (HMGB) proteins participates in various biological processes including immunity, inflammation, as well as cancer formation and progression. However, its role in thyroid cancer remains to be clarified. We performed quantitative RT-PCR (qRT-PCR), western blot, enzyme-linked immunosorbent, immunohistochemistry, and immunofluorescence assays to evaluate the expression level and subcellular location of HMGB3. The effects of HMGB3 knockdown on malignant biological behaviors of thyroid cancer were determined by cell proliferation assays, cell cycle and apoptosis assays, and transwell chamber migration and invasion assays. Differential expression genes (DEGs) altered by HMGB3 were analyzed using the Ingenuity Pathway Analysis (IPA) and TRRUST v2 database. HMGB3 correlated pathways predicted by bioinformatic analysis were then confirmed using western blot, co-immunoprecipitation, dual-luciferase reporter assay, and flow cytometry. We found that HMGB3 is overexpressed and its downregulation inhibits cell viability, promotes cell apoptosis and cell cycle arrest, and suppresses cell migration and invasion in thyroid cancer. In PTC, both tissue and serum levels of HMGB3 are elevated and are correlated with lymph node metastasis and advanced tumor stage. Mechanistically, we observed the translocation of HMGB3 in PTC, induced at least partially by hypoxia. Cytoplasmic HMGB3 activates nucleic-acid-mediated TLR3/NF-κB signaling and extracellular HMGB3 interacts with the transmembrane TREM1 receptor in PTC. This study demonstrates the oncogenic role of HMGB3 cytoplasmic and extracellular translocation in papillary thyroid cancers; we recommend its future use as a potential circulating biomarker and therapeutic target for PTC.


Assuntos
Proteína HMGB3 , MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Linhagem Celular Tumoral , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Neoplasias da Glândula Tireoide/genética , Proteína HMGB3/genética , Proteína HMGB3/metabolismo , Proliferação de Células/genética , MicroRNAs/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA