Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 162: 107812, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622602

RESUMO

One of the pathological hallmarks of Huntington disease (HD) is accumulation of the disease-causing mutant huntingtin (mHTT), which leads to the disruption of a variety of cellular functions, ultimately resulting in cell death. Induction of autophagy, for example by the inhibition of mechanistic target of rapamycin (mTOR) signaling, has been shown to reduce HTT levels and aggregates. While rapalogs like rapamycin allosterically inhibit the mTOR complex 1 (TORC1), ATP-competitive mTOR inhibitors suppress activities of TORC1 and TORC2 and have been shown to be more efficient in inducing autophagy and reducing protein levels and aggregates than rapalogs. The ability to cross the blood-brain barrier of first generation catalytic mTOR inhibitors has so far been limited, and therefore sufficient target coverage in the brain could not be reached. Two novel, brain penetrant compounds - the mTORC1/2 inhibitor PQR620, and the dual pan-phosphoinositide 3-kinase (PI3K) and mTORC1/2 kinase inhibitor PQR530 - were evaluated by assessing their potential to induce autophagy and reducing mHTT levels. For this purpose, expression levels of autophagic markers and well-defined mTOR targets were analyzed in STHdh cells and HEK293T cells and in mouse brains. Both compounds potently inhibited mTOR signaling in cell models as well as in mouse brain. As proof of principle, reduction of aggregates and levels of soluble mHTT were demonstrated upon treatment with both compounds. Originally developed for cancer treatment, these second generation mTORC1/2 and PI3K/mTOR inhibitors show brain penetrance and efficacy in cell models of HD, making them candidate molecules for further investigations in HD.


Assuntos
Compostos Azabicíclicos/farmacologia , Inibidores Enzimáticos/farmacologia , Proteína Huntingtina/efeitos dos fármacos , Doença de Huntington/metabolismo , Morfolinas/farmacologia , Neurônios/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Piridinas/farmacologia , Triazinas/farmacologia , Animais , Autofagia/efeitos dos fármacos , Barreira Hematoencefálica , Linhagem Celular , Corpo Estriado/citologia , Células HEK293 , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Camundongos , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia
2.
Brain ; 143(2): 407-429, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738395

RESUMO

Polyglutamine (polyQ) disorders are a group of nine neurodegenerative diseases that share a common genetic cause, which is an expansion of CAG repeats in the coding region of the causative genes that are otherwise unrelated. The trinucleotide expansion encodes for an expanded polyQ tract in the respective proteins, resulting in toxic gain-of-function and eventually in neurodegeneration. Currently, no disease-modifying therapies are available for this group of disorders. Nevertheless, given their monogenic nature, polyQ disorders are ideal candidates for therapies that target specifically the gene transcripts. Antisense oligonucleotides (ASOs) have been under intense investigation over recent years as gene silencing tools. ASOs are small synthetic single-stranded chains of nucleic acids that target specific RNA transcripts through several mechanisms. ASOs can reduce the levels of mutant proteins by breaking down the targeted transcript, inhibit mRNA translation or alter the maturation of the pre-mRNA via splicing correction. Over the years, chemical optimization of ASO molecules has allowed significant improvement of their pharmacological properties, which has in turn made this class of therapeutics a very promising strategy to treat a variety of neurodegenerative diseases. Indeed, preclinical and clinical strategies have been developed in recent years for some polyQ disorders using ASO therapeutics. The success of ASOs in several animal models, as well as encouraging results in the clinic for Huntington's disease, points towards a promising future regarding the application of ASO-based therapies for polyQ disorders in humans, offering new opportunities to address unmet medical needs for this class of disorders. This review aims to present a brief overview of key chemical modifications, mechanisms of action and routes of administration that have been described for ASO-based therapies. Moreover, it presents a review of the most recent and relevant preclinical and clinical trials that have tested ASO therapeutics in polyQ disorders.


Assuntos
Proteína Huntingtina/efeitos dos fármacos , Doença de Huntington/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Oligonucleotídeos Antissenso/farmacologia , Peptídeos/genética , Animais , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doenças Neurodegenerativas/genética , Expansão das Repetições de Trinucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA