Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Orthop Surg Res ; 19(1): 146, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369459

RESUMO

BACKGROUND AND OBJECTIVE: The pathogenesis of coronal suture craniosynostosis is often attributed to the dysregulated cellular dynamics, particularly the excessive proliferation and abnormal osteogenic differentiation of suture cells. Despite its clinical significance, the molecular mechanims of this condition remain inadequately understood. This study is dedicated to exploring the influence of the Periostin/Bone Morphogenetic Protein 1 (BMP1) axis on the growth and osteogenic maturation of Suture Mesenchymal Stem Cells (SMSCs), which are pivotal in suture homeostasis. METHODS: Neonatal TWIST Basic Helix-Loop-Helix Transcription Factor 1 heterozygous (TWIST1+/-) mice, aged one day, were subjected to adenoviral vector-mediated Periostin upregulation. To modulate Periostin/BMP1 levels in SMSCs, we employed siRNA and pcDNA 3.1 vectors. Histological and molecular characterizations, including hematoxylin and eosin staining, Western blot, and immunohistochemistry were employed to study suture closure phenotypes and protein expression patterns. Cellular assays, encompassing colony formation, 5-ethynyl-2'deoxyuridine, and wound healing tests were conducted to analyze SMSC proliferation and migration. Osteogenic differentiation was quantified using Alkaline Phosphatase (ALP) and Alizarin Red S (ARS) staining, while protein markers of proliferation and differentiation were evaluated by Western blotting. The direct interaction between Periostin and BMP1 was validated through co-immunoprecipitation assays. RESULTS: In the TWIST1+/- model, an upregulation of Periostin coupled with a downregulation of BMP1 was observed. Augmenting Periostin expression mitigated craniosynostosis. In vitro, overexpression of Periostin or BMP1 knockdown suppressed SMSC proliferation, migration, and osteogenic differentiation. Periostin knockdown manifested an inverse biological impact. Notably, the suppressive influence of Periostin overexpression on SMSCs was effectively counteracted by upregulating BMP1. There was a direct interaction between Periostin and BMP1. CONCLUSION: These findings underscore the significance of the Periostin/BMP1 axis in regulating craniosynostosis and SMSC functions, providing new insights into the molecular mechanisms of craniosynostosis and potential targets for therapeutic intervention.


Assuntos
Craniossinostoses , Células-Tronco Mesenquimais , Camundongos , Animais , Osteogênese/genética , Periostina , Proteína Morfogenética Óssea 1/metabolismo , Craniossinostoses/genética , Craniossinostoses/metabolismo , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Modelos Animais de Doenças , Proliferação de Células/genética , Células Cultivadas
2.
Cell Death Dis ; 15(1): 41, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216590

RESUMO

Liver fibrosis is a reparative response to injury that arises from various etiologies, characterized by activation of hepatic stellate cells (HSCs). Periostin, a secreted matricellular protein, has been reported to participate in tissue development and regeneration. However, its involvement in liver fibrosis remains unknown. This study investigated the roles and mechanisms of Periostin in phenotypic transition of HSCs and relevant abnormal cellular crosstalk during liver fibrosis. The fate of hepatic stellate cells (HSCs) during liver fibrogenesis was investigated using single-cell and bulk RNA sequencing profiles, which revealed a significant proliferation of activated HSCs (aHSCs) in fibrotic livers of both humans and mice. αSMA-TK mice were used to demonstrate that depletion of proliferative aHSCs attenuates liver fibrosis induced by carbon tetrachloride and 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Through integrating data from single-cell and bulk sequencing, Periostin was identified as a distinctive hallmark of proliferative aHSC subpopulation. Elevated levels of Periostin were detected in fibrotic livers of both humans and mice, primarily within aHSCs. However, hepatic Periostin levels were decreased along with depletion of proliferative aHSCs. Deficiency of Periostin led to reduced liver fibrosis and suppressed hepatocyte epithelial-mesenchymal transition (EMT). Periostin-overexpressing HSCs, exhibiting a proliferative aHSC phenotype, release bone morphogenetic protein-1 (Bmp-1), which activates EGFR signaling, inducing hepatocyte EMT and contributing to liver fibrosis. In conclusion, Periostin in aHSCs drives their acquisition of a proliferative phenotype and the release of Bmp-1. Proliferative aHSC subpopulation-derived Bmp-1 induces hepatocyte EMT via EGFR signaling, promoting liver fibrogenesis. Bmp-1 and Periostin should be potential therapeutic targets for liver fibrosis.


Assuntos
Proteína Morfogenética Óssea 1 , Transição Epitelial-Mesenquimal , Células Estreladas do Fígado , Cirrose Hepática , Animais , Humanos , Camundongos , Receptores ErbB/metabolismo , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Proteína Morfogenética Óssea 1/metabolismo
3.
Biol Reprod ; 109(2): 172-183, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37338142

RESUMO

Endometrial decidualization is critical to successful uterine receptivity and embryo implantation. Dysfunction of decidualization is associated with some pregnancy-related disorders, including miscarriage. Protein glycosylation is involved in many physiological and pathological processes. Protein O-fucosyltransferase 1 (poFUT1) is a key enzyme responsible for O-fucosylation biosynthesis on glycoproteins. Bone morphogenetic protein 1 (BMP1) is an essential glycoprotein in reproduction. However, the role and molecular mechanism of fucosylated BMP1 in endometrial stromal cell decidualization are still unknown. In the current study, we found that BMP1 contains a potential O-fucosylation site. Moreover, poFUT1 and BMP1 levels in the secretory phase are higher than those in the proliferative phase, and the highest level was observed in the human uterine tissues of early pregnancy, while a decrease of poFUT1 and BMP1 in the decidua was observed in miscarriage patients. Using human endometrial stromal cells (hESCs), we demonstrated that O-fucosylation of BMP1 was elevated after induced decidualization. Moreover, the increase of BMP1 O-fucosylation by poFUT1 promoted BMP1 secretion to the extracellular matrix, and more actively binds to CHRD. The binding of BMP1 and CHRD further released BMP4 originally bound to CHRD, and activated BMP/Smad signaling pathway, thereby accelerating the decidualization of human endometrial stromal cells. In summary, these results suggest that BMP1 O-fucosylation by poFUT1 could be a potential diagnostic and therapeutic target to predict miscarriage in early pregnancy examinations.


Assuntos
Aborto Espontâneo , Gravidez , Feminino , Humanos , Glicosilação , Proteína Morfogenética Óssea 1/metabolismo , Endométrio/metabolismo , Transdução de Sinais/fisiologia , Células Estromais/metabolismo , Decídua/metabolismo
4.
Matrix Biol ; 118: 69-91, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36918086

RESUMO

Fibrotic scars appear after spinal cord injury (SCI) and are mainly composed of fibroblasts and excess extracellular matrix (ECM), including different types of collagen. The temporal and spatial distribution and role of excess collagens and ECM after SCI are not yet fully understood. Here, we identified that the procollagen type I C-terminal propeptide (PICP), a marker of collagen type I deposition, and bone morphogenetic protein 1 (BMP1), a secreted procollagen c-proteinase (PCP) for type I collagen maturation, were significantly elevatedin cerebrospinal fluid of patients with SCI compared with healthy controls, and were associated with spinal cord compression and neurological symptoms. We revealed the deposition of type I collagen in the area damaged by SCI in mice and confirmed that BMP1 was the only expressed PCP and induced collagen deposition. Furthermore, transforming growth factor-ß (TGF-ß), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) can activate the expression of BMP1. However, inhibition of BMP1 at the acute phase eliminated fibrotic scars in the damaged area and inhibited activation and enrichment of astrocytes, which made the damage difficult to repair and increased hematoma. Unexpectedly, knockdown of Bmp1 by adeno-associated virus or the inhibition of BMP1 biological function by specific inhibitors and monoclonal antibodies at different time points after injury led to distinct therapeutic effects. Only delayed inhibition of BMP1 improved axonal regeneration and myelin repair at the subacute stage post-injury, and led to the recovery of motor function, suggesting that scarring had a dual effect. Early inhibition of the scarring was not conducive to limiting inflammation, while excessive scar formation inhibited the growth of axons. After SCI, the collagen deposition indicators increased in both human cerebrospinal fluid and mouse spinal cord. Therefore, suppression of BMP1 during the subacute phase improves nerve function after SCI and is a potential target for scar reduction.


Assuntos
Colágeno Tipo I , Traumatismos da Medula Espinal , Humanos , Camundongos , Animais , Proteína Morfogenética Óssea 1/genética , Proteína Morfogenética Óssea 1/metabolismo , Colágeno Tipo I/metabolismo , Cicatriz/patologia , Colágeno/genética , Colágeno/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Fibrose
5.
Dis Markers ; 2022: 7899961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267461

RESUMO

Background: This research explores the underlying link between diagnosis and therapy between bone morphogenetic protein 1 (BMP1) and various cancers. Methods: Three immunotherapeutic cohorts, by the composition of IMvigor210, GSE35640, and GSE78220 were obtained from previously published articles and the Gene Expression Omnibus database. The different expressions of BMP1 in various clinical parameters were conducted, and prognostic analysis was executed utilizing Cox proportional hazard regression and Gene Expression Profiling Interactive Analysis. Moreover, the correlation between BMP1 and tumor microenvironment was analyzed using ESTIMATE and CIBERSORT algorithms. Tumor mutational burden and microsatellite instability were also included. The correlation between m6A modification and the gene expression level was analyzed using Tumor IMmune Estimation Resource, the University of Alabama at Birmingham Cancer data analysis portal. Gene Set Cancer Analysis analyzed the correlation of BMP1 expression level with copy number variations and methylation. Furthermore, the correlation between BMP1 and therapeutic response after antineoplastic drug use was illustrated for further discussion. Results: BMP1 expression had significant differences in 14 cancers. It presented an intimate relationship with immune-relevant biomarkers. A variation analysis indicated that BMP1 had a significant association with immunotherapeutic response. The expression level of BMP1 was closely associated with insulin-like growth factor binding protein 3, an m6A modification relative gene. Except for a few cancer types, methylation negatively correlated with BMP1, and copy number variations positively correlated with BMP1. Notably, low BMP1 expression was connected with immunotherapeutic response in the cohorts, and its expression was related to increased sectional sensitivity of drugs. Conclusion: BMP1 may serve as a potential biomarker for prognostic prediction and immunologic infiltration in diversified cancers, providing a new thought approach for oncotherapy.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Biomarcadores Tumorais/genética , Proteína Morfogenética Óssea 1/genética , Proteína Morfogenética Óssea 1/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Prognóstico , Neoplasias/genética
6.
Sci Rep ; 12(1): 14850, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050373

RESUMO

Sizzled (Szl) is both a secreted frizzled related protein (sFRP) and a naturally occurring inhibitor of the zinc metalloproteinase bone morphogenetic protein-1 (BMP-1), a key regulator of extracellular matrix assembly and growth factor activation. Here we present a new crystal structure for Szl which differs from that previously reported by a large scale (90°) hinge rotation between its cysteine-rich and netrin-like domains. We also present results of a molecular docking analysis showing interactions likely to be involved in the inhibition of BMP-1 activity by Szl. When compared with known structures of BMP-1 in complex with small molecule inhibitors, this reveals features that may be helpful in the design of new inhibitors to prevent the excessive accumulation of extracellular matrix that is the hallmark of fibrotic diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Xenopus , Proteína Morfogenética Óssea 1/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas de Xenopus/metabolismo
7.
Sci Rep ; 12(1): 5466, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361882

RESUMO

Bone morphogenetic protein 1 (BMP1) belongs to the astacin/BMP1/tolloid-like family of zinc metalloproteinases, which play a fundamental role in the development and formation of extracellular matrix (ECM). BMP1 mediates the cleavage of carboxyl terminal (C-term) propeptides from procollagens, a crucial step in fibrillar collagen fiber formation. Blocking BMP1 by small molecule or antibody inhibitors has been linked to anti-fibrotic activity in the preclinical models of skin, kidney and liver fibrosis. Therefore, we reason that BMP1 may be important for the pathogenesis of lung fibrosis and BMP1 could be a potential therapeutic target for progressive fibrotic disease such as idiopathic pulmonary fibrosis (IPF). Here, we observed the increased expression of BMP1 in both human IPF lungs and mouse fibrotic lungs induced by bleomycin. Furthermore, we developed an inducible Bmp1 conditional knockout (cKO) mouse strain. We found that Bmp1 deletion does not protect mice from lung fibrosis triggered by bleomycin. Moreover, we found no significant impact of BMP1 deficiency upon C-term propeptide of type I procollagen (CICP) production in the fibrotic mouse lungs. Based on these results, we propose that BMP1 is not required for lung fibrosis in mice and BMP1 may not be considered a candidate therapeutic target for IPF.


Assuntos
Proteína Morfogenética Óssea 1 , Fibrose Pulmonar Idiopática , Animais , Bleomicina/metabolismo , Proteína Morfogenética Óssea 1/genética , Proteína Morfogenética Óssea 1/metabolismo , Matriz Extracelular/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Camundongos , Pró-Colágeno/genética
8.
Biochim Biophys Acta Gen Subj ; 1866(1): 130046, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34743989

RESUMO

BACKGROUND: Mucin-type O-glycosylation is one of the most abundant types of O-glycosylation and plays important roles in various human carcinomas, including breast cancer. A large family of polypeptide N-acetyl-α-galactosaminyltransferases (GALNTs) initiate and define sites of mucin-type O-glycosylation. However, the specific mechanisms underlying GALNT8 expression and its roles in tumorigenesis remain poorly characterized. METHODS: GALNT8 expression was assessed in 140 breast cancer patients. Immunofluorescence, immunoprecipitation, lectin blot and quantitative real-time PCR were used to investigate the expression of GALNT8 and its role in regulating estrogen receptor α (ERα) via bone morphogenetic protein (BMP) signaling. RESULTS: The expression of GALNT8 was associated with breast cancer patient survival. GALNT8 downregulation was associated with a reduction in ERα levels, while GALNT8 overexpression elevated the transcription and protein levels of ERα and suppressed colony formation, suggesting an important role of GALNT8 in cancer cell proliferation. Conversely, GALNT8 knockdown led to the inhibition of BMP/SMAD/RUNX2 axis, which decreased ERα transcription. Further analysis suggested that BMP receptor 1A (BMPR1A) was O-GalNAcylated. Sites mutation of BMPR1A indicated that Thr137 and Ser37/Ser39/Ser44/Thr49 of BMPR1A were the main O-glycosylation sites. Although we cannot exclude the indirect effect of GALNT8, our results demonstrated that the expression of GALNT8 and O-glycosylation of BMPR1A play key roles in regulating the activity of BMP/SMAD/RUNX2 signaling and ERα expression. CONCLUSION: These findings suggest that GALNT8 expression and abnormal O-GalNAcylation of BMPR1A increase ERα expression and suppress breast cancer cell proliferation by modulating the BMP signaling pathway. GENERAL SIGNIFICANCE: Our results identify the involvement of GALNT8 in regulating ERα expression.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptor alfa de Estrogênio/metabolismo , N-Acetilgalactosaminiltransferases/genética , Proteína Morfogenética Óssea 1/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas/genética , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Neoplasias da Mama/metabolismo , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Subunidade alfa 1 de Fator de Ligação ao Core , Bases de Dados Genéticas , Receptor alfa de Estrogênio/genética , Estrogênios/metabolismo , Feminino , Expressão Gênica/genética , Glicosilação , Humanos , Mucina-1 , N-Acetilgalactosaminiltransferases/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Transcriptoma/genética , Polipeptídeo N-Acetilgalactosaminiltransferase
9.
Nat Commun ; 12(1): 2328, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879793

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a collagen-rich dense extracellular matrix (ECM) that promotes malignancy of cancer cells and presents a barrier for drug delivery. Data analysis of our published mass spectrometry (MS)-based studies on enriched ECM from samples of progressive PDAC stages reveal that the C-terminal prodomains of fibrillar collagens are partially uncleaved in PDAC ECM, suggesting reduced procollagen C-proteinase activity. We further show that the enzyme responsible for procollagen C-proteinase activity, bone morphogenetic protein1 (BMP1), selectively suppresses tumor growth and metastasis in cells expressing high levels of COL1A1. Although BMP1, as a secreted proteinase, promotes fibrillar collagen deposition from both cancer cells and stromal cells, only cancer-cell-derived procollagen cleavage and deposition suppresses tumor malignancy. These studies reveal a role for cancer-cell-derived fibrillar collagen in selectively restraining tumor growth and suggest stratification of patients based on their tumor epithelial collagen I expression when considering treatments related to perturbation of fibrillar collagens.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Colágenos Fibrilares/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Proteína Morfogenética Óssea 1/metabolismo , Carcinoma Ductal Pancreático/secundário , Linhagem Celular Tumoral , Colágeno Tipo I/química , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Progressão da Doença , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Colágenos Fibrilares/química , Colágenos Fibrilares/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mutagênese , Neoplasias Pancreáticas/genética , Pró-Colágeno/química , Pró-Colágeno/genética , Pró-Colágeno/metabolismo , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Nat Rev Cancer ; 21(4): 217-238, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33589810

RESUMO

The extracellular matrix is a fundamental, core component of all tissues and organs, and is essential for the existence of multicellular organisms. From the earliest stages of organism development until death, it regulates and fine-tunes every cellular process in the body. In cancer, the extracellular matrix is altered at the biochemical, biomechanical, architectural and topographical levels, and recent years have seen an exponential increase in the study and recognition of the importance of the matrix in solid tumours. Coupled with the advancement of new technologies to study various elements of the matrix and cell-matrix interactions, we are also beginning to see the deployment of matrix-centric, stromal targeting cancer therapies. This Review touches on many of the facets of matrix biology in solid cancers, including breast, pancreatic and lung cancer, with the aim of highlighting some of the emerging interactions of the matrix and influences that the matrix has on tumour onset, progression and metastatic dissemination, before summarizing the ongoing work in the field aimed at developing therapies to co-target the matrix in cancer and cancer metastasis.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinases da Matriz/metabolismo , Neoplasias/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Proteínas ADAM/metabolismo , Proteínas ADAMTS/metabolismo , Proteína Morfogenética Óssea 1/metabolismo , Catepsinas/metabolismo , Movimento Celular , Colágeno/metabolismo , Cistatinas/metabolismo , Elastina/metabolismo , Matriz Extracelular/enzimologia , Matriz Extracelular/patologia , Fibrilinas/metabolismo , Glucuronidase/metabolismo , Glicoproteínas/metabolismo , Humanos , Hialuronoglucosaminidase/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/enzimologia , Neoplasias/patologia , Processamento de Proteína Pós-Traducional , Proteoglicanas/metabolismo , Serpinas/metabolismo , Metaloproteases Semelhantes a Toloide/metabolismo , Microambiente Tumoral
11.
Genomics ; 113(1 Pt 2): 1141-1154, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189777

RESUMO

Bone morphogenetic protein 1 (BMP1) is a secreted metalloprotease of the astacin M12A family of bone morphogenetic proteins (BMPs). BMP1 activates transforming growth factor-ß (TGF-ß) and BMP signaling pathways by proteolytic cleavage, which has dual roles in gastrointestinal tumor development and progression.TGF-ß promotes invasion and metastasis of gastric cancer (GC) by the help of BMP1, so upregulation of the BMP1 may increase cancer invasiveness in GC. In this study,the transcriptional expression, mutations, survival rate, TFs, miRNAs, gene ontology, and signaling pathways of BMP1 were analyzed by using different web servers. We found higher transcriptional and clinicopathological characteristics expression compared to normal tissues, worsening survival rate in GC. We detected 25 missenses, 15 truncating mutations, 23 TFs, and 8 miRNAs. Finally, we identified and analyzed the co-expressed genes and found that the leukemia inhibitory factor is the most positively correlated gene. The gene ontological features and signaling pathways involved in GC development were evaluated as well. We believe that this study will provide a basis for BMP1 to be a significant biomarker for human GC prognosis.


Assuntos
Biomarcadores Tumorais/genética , Proteína Morfogenética Óssea 1/genética , Neoplasias Gástricas/genética , Biomarcadores Tumorais/metabolismo , Proteína Morfogenética Óssea 1/metabolismo , Biologia Computacional , Conjuntos de Dados como Assunto , Regulação Neoplásica da Expressão Gênica , Humanos , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Mutação , Prognóstico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Regulação para Cima
12.
Sci Signal ; 13(639)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636307

RESUMO

Bone morphogenetic protein 1 (BMP-1) is an important metalloproteinase that synchronizes growth factor activation with extracellular matrix assembly during morphogenesis and tissue repair. The mechanisms by which BMP-1 exerts these effects are highly context dependent. Because BMP-1 overexpression induces marked phenotypic changes in two human cell lines (HT1080 and 293-EBNA cells), we investigated how BMP-1 simultaneously affects cell-matrix interactions and growth factor activity in these cells. Increasing BMP-1 led to a loss of cell adhesion that depended on the matricellular glycoprotein thrombospondin-1 (TSP-1). BMP-1 cleaved TSP-1 between the VWFC/procollagen-like domain and the type 1 repeats that mediate several key TSP-1 functions. This cleavage induced the release of TSP-1 C-terminal domains from the extracellular matrix and abolished its previously described multisite cooperative interactions with heparan sulfate proteoglycans and CD36 on HT1080 cells. In addition, BMP-1-dependent proteolysis potentiated the TSP-1-mediated activation of latent transforming growth factor-ß (TGF-ß), leading to increased signaling through the canonical SMAD pathway. In primary human corneal stromal cells (keratocytes), endogenous BMP-1 cleaved TSP-1, and the addition of exogenous BMP-1 enhanced cleavage, but this had no substantial effect on cell adhesion. Instead, processed TSP-1 promoted the differentiation of keratocytes into myofibroblasts and stimulated production of the myofibroblast marker α-SMA, consistent with the presence of processed TSP-1 in human corneal scars. Our results indicate that BMP-1 can both trigger the disruption of cell adhesion and stimulate TGF-ß signaling in TSP-1-rich microenvironments, which has important potential consequences for wound healing and tumor progression.


Assuntos
Proteína Morfogenética Óssea 1/metabolismo , Proteólise , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteína Morfogenética Óssea 1/genética , Adesão Celular , Linhagem Celular Tumoral , Humanos , Trombospondina 1/genética , Fator de Crescimento Transformador beta/genética , Xenopus laevis
13.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326648

RESUMO

Mesenchymal stromal cells (MSCs) can self-renew, differentiate into specialised cells and have different embryonic origins-ectodermal for dental pulp-derived MSCs (DPSCs) and mesodermal for adipose tissue-derived MSCs (ADSCs). Data on DPSCs adipogenic differentiation potential and timing vary, and the lack of molecular and genetic information prompted us to gain a better understanding of DPSCs adipogenic differentiation potential and gene expression profile. While DPSCs differentiated readily along osteogenic and chondrogenic pathways, after 21 days in two different types of adipogenic induction media, DPSCs cultures did not contain lipid vacuoles and had low expression levels of the adipogenic genes proliferator-activated receptor gamma (PPARG), lipoprotein lipase (LPL) and CCAAT/enhancer-binding protein alpha (CEBPA). To better understand this limitation in adipogenesis, transcriptome analysis in undifferentiated DPSCs was carried out, with the ADSC transcriptome used as a positive control. In total, 14,871 transcripts were common to DPSCs and ADSCs, some were unique (DPSCs: 471, ADSCs: 1032), and 510 were differentially expressed genes. Detailed analyses of overrepresented transcripts showed that DPSCs express genes that inhibit adipogenic differentiation, revealing the possible mechanism for their limited adipogenesis.


Assuntos
Adipogenia/genética , Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Proteína Morfogenética Óssea 1/genética , Proteína Morfogenética Óssea 1/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Imunofenotipagem , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Família Multigênica , PPAR gama/genética , PPAR gama/metabolismo , RNA-Seq , Vacúolos/metabolismo , Via de Sinalização Wnt/genética
14.
Methods Cell Biol ; 156: 259-270, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32222222

RESUMO

This book chapter describes the use of exogenous application of lysyl oxidase (LOX) and bone morphogenetic protein-1 (BMP1) to enhance collagen synthesis and deposition from fibroblasts in culture. The protocol includes the generation of human embryonic kidney (HEK) 293 cell lines overexpressing human LOX and BMP1 constructs in order to obtain supernatants enriched in these factors. Incubation of fibroblast monolayers with these conditioned media strongly increases the capacity of these cells to deposit collagen onto the insoluble extracellular matrix. We also describe the use of these decellularized fibroblast-derived matrices as a substrate for the growth and differentiation of mesenchymal stem cells.


Assuntos
Proteína Morfogenética Óssea 1/metabolismo , Colágeno/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Diferenciação Celular , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese
15.
Med Sci Monit ; 26: e920122, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32084123

RESUMO

BACKGROUND Osteogenesis of bone marrow mesenchymal stem cells (BMSCs) is an important research topic in the application of bone tissue engineering. Bone morphogenetic protein-1 (BMP-1) is important in bone formation and stability, but its effects on the osteogenesis of BMSCs are unclear. This study aimed to investigate the association of BMP-1 with the osteogenic capacity of BMSCs. MATERIAL AND METHODS Primary rabbit BMSCs were cultured and divided into a BMP-1-overexpressing group, a Green Fluorescent Protein-expressing (GFP) group, and a Control group. The transfection efficiency of BMP-1 was tested by Western blotting. Cell viabilities, alkaline phosphatase (ALP) activities, Ca2+ concentrations, and gross examinations of BMSC sheets were examined at different times. The osteogenic marker collagen I was assessed by immunohistochemical analysis. RESULTS The cell viability, ALP activity, and Ca2+ content of the BMP1-overexpressed group were significantly enhanced compared with the GFP group and Control group. Immunohistochemistry staining results showed that BMP-1 promoted the expression of type I collagen in BMSCs sheets. CONCLUSIONS Our results suggest that the overexpression of BMP-1 can promote the osteogenesis of BMSCs and provides an improved method of cell-based tissue engineering.


Assuntos
Proteína Morfogenética Óssea 1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Fosfatase Alcalina/metabolismo , Animais , Cálcio/metabolismo , Sobrevivência Celular , Colágeno Tipo I/metabolismo , Células-Tronco Mesenquimais/citologia , Coelhos , Transfecção
16.
Cells ; 9(2)2020 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046347

RESUMO

Secreted phospholipase A2-IIA (sPLA2-IIA) is a pro-inflammatory protein associated with cardiovascular disorders, whose functions and underlying mechanisms in cardiac remodelling are still under investigation. We herein study the role of sPLA2-IIA in cardiac fibroblast (CFs)-to-myofibroblast differentiation and fibrosis, two major features involved in cardiac remodelling, and also explore potential mechanisms involved. In a mice model of dilated cardiomyopathy (DCM) after autoimmune myocarditis, serum and cardiac sPLA2-IIA protein expression were found to be increased, together with elevated cardiac levels of the cross-linking enzyme lysyl oxidase (LOX) and reactive oxygen species (ROS) accumulation. Exogenous sPLA2-IIA treatment induced proliferation and differentiation of adult rat CFs. Molecular studies demonstrated that sPLA2-IIA promoted Src phosphorylation, shedding of the membrane-anchored heparin-binding EGF-like growth factor (HB-EGF) ectodomain and EGFR phosphorylation, which triggered phosphorylation of ERK, P70S6K and rS6. This was also accompanied by an up-regulated expression of the bone morphogenic protein (BMP)-1, LOX and collagen I. ROS accumulation were also found to be increased in sPLA2-IIA-treated CFs. The presence of inhibitors of the Src/ADAMs-dependent HB-EGF shedding/EGFR pathway abolished the CF phenotype induced by sPLA2-IIA. In conclusion, sPLA2-IIA may promote myofibroblast differentiation through its ability to modulate EGFR transactivation and signalling as key mechanisms that underlie its biological and pro-fibrotic effects.


Assuntos
Transdiferenciação Celular , Receptores ErbB/metabolismo , Fibroblastos/metabolismo , Inflamação/genética , Miocárdio/patologia , Fosfolipases A2 Secretórias/metabolismo , Ativação Transcricional/genética , Animais , Proteína Morfogenética Óssea 1/metabolismo , Colágeno/metabolismo , Inflamação/patologia , Lipoxigenase/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Peptídeos/metabolismo , Fenótipo , Ratos Wistar , Transdução de Sinais
17.
Cancer Gene Ther ; 27(5): 330-340, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31155610

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the highest mortality, invasion, and metastasis subtype of renal cell carcinoma. Bone morphogenetic protein (BMP) family has recently emerged as a group of cancer-related proteins in multiple pathogenesis of cancers. Currently, little is known about the prediction role of BMPs in ccRCC. Therefore, we screened The Cancer Genome Atlas Kidney Clear Cell Carcinoma (TCGA-KIRC) database for ccRCC patients with complete clinical information and BMP family expression data. Multivariate analysis showed that high expression of BMP1 was associated with shorter overall survival (OS) (P = 0.001), and shorter disease-free survival (DFS) (P = 0.018). Gene set enrichment analysis (GSEA) showed BMP1 was associated with epithelial-mesenchymal transition (EMT), G2M checkpoint, angiogenesis, hypoxia pathway, and Kirsten rat sarcoma viral oncogene (KRAS) signaling. Knockdown BMP1 suppressed malignancy of ccRCC in vitro and in vivo. Our results indicated that high expressions of BMP1 were poor prognostic factors and gene therapy could be an effective treatment for ccRCC.


Assuntos
Biomarcadores Tumorais/genética , Proteína Morfogenética Óssea 1/metabolismo , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Recidiva Local de Neoplasia/epidemiologia , Animais , Proteína Morfogenética Óssea 1/genética , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/cirurgia , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Seguimentos , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Rim/patologia , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Neoplasias Renais/cirurgia , Masculino , Camundongos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Nefrectomia , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Sci Rep ; 9(1): 11416, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388055

RESUMO

The development of cardiovascular disease is intimately linked to elevated levels of low-density lipoprotein (LDL) cholesterol in the blood. Hepatic LDL receptor (LDLR) levels regulate the amount of plasma LDL. We identified the secreted zinc metalloproteinase, bone morphogenetic protein 1 (BMP1), as responsible for the cleavage of human LDLR within its extracellular ligand-binding repeats at Gly171↓Asp172. The resulting 120 kDa membrane-bound C-terminal fragment (CTF) of LDLR had reduced capacity to bind LDL and when expressed in LDLR null cells had compromised LDL uptake as compared to the full length receptor. Pharmacological inhibition of BMP1 or siRNA-mediated knockdown prevented the generation of the 120 kDa CTF and resulted in an increase in LDL uptake into cells. The 120 kDa CTF was detected in the livers from humans and mice expressing human LDLR. Collectively, these results identify that BMP1 regulates cellular LDL uptake and may provide a target to modulate plasma LDL cholesterol.


Assuntos
Proteína Morfogenética Óssea 1/metabolismo , Lipoproteínas LDL/metabolismo , Receptores de LDL/metabolismo , Animais , Aterosclerose/sangue , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Biópsia , Proteína Morfogenética Óssea 1/antagonistas & inibidores , Proteína Morfogenética Óssea 1/genética , Células CHO , Cricetulus , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Lipoproteínas LDL/sangue , Fígado/química , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Transgênicos , Oxidiazóis/farmacologia , Proteólise/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Receptores de LDL/análise , Receptores de LDL/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
J Biol Chem ; 294(37): 13769-13780, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346034

RESUMO

The assembly of collagen VI microfibrils is a multistep process in which proteolytic processing within the C-terminal globular region of the collagen VI α3 chain plays a major role. However, the mechanisms involved remain elusive. Moreover, C5, the short and most C-terminal domain of the α3 chain, recently has been proposed to be released as an adipokine that enhances tumor progression, fibrosis, inflammation, and insulin resistance and has been named "endotrophin." Serum endotrophin could be a useful biomarker to monitor the progression of such disorders as chronic obstructive pulmonary disease, systemic sclerosis, and kidney diseases. Here, using biochemical and isotopic MS-based analyses, we found that the extracellular metalloproteinase bone morphogenetic protein 1 (BMP-1) is involved in endotrophin release and determined the exact BMP-1 cleavage site. Moreover, we provide evidence that several endotrophin-containing fragments are present in various tissues and body fluids. Among these, a large C2-C5 fragment, which contained endotrophin, was released by furin-like proprotein convertase cleavage. By using immunofluorescence microscopy and EM, we also demonstrate that these proteolytic maturations occur after secretion of collagen VI tetramers and during microfibril assembly. Differential localization of N- and C-terminal regions of the collagen VI α3 chain revealed that cleavage products are deposited in tissue and cell cultures. The detailed information on the processing of the collagen VI α3 chain reported here provides a basis for unraveling the function of endotrophin (C5) and larger endotrophin-containing fragments and for refining their use as biomarkers of disease progression.


Assuntos
Proteína Morfogenética Óssea 1/metabolismo , Colágeno Tipo VI/metabolismo , Pró-Proteína Convertases/metabolismo , Fibrose , Furina/metabolismo , Células HEK293 , Humanos , Resistência à Insulina , Microfibrilas/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteólise
20.
Connect Tissue Res ; 60(5): 495-506, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30939949

RESUMO

Thrombospondin-1 and 2 have each been implicated in collagen fibrillogenesis. We addressed the possibility that deficits in lysyl oxidase (LOX) contribute to the extracellular matrix (ECM) phenotype of TSP-deficient bone. We examined detergent insoluble (mature cross-linked) and soluble (newly secreted) ECM fractions prepared from diaphyseal cortical bone. Detergent-insoluble hydroxyproline content, an indicator of cross-linked collagen content and LOX function, was reduced in female TSP-deficient bones. In male diaphyses, only TSP2 deficiency affected insoluble hydroxyproline content. Western blot suggested that removal of the LOX-pro-peptide (LOPP), an indication of LOX activation, was not affected by TSP status. Instead, the distribution of pro-LOX and mature LOX between immature and mature ECM was altered by TSP-status. LOX was also examined in primary marrow-derived mesenchymal stem cells (MSC) treated with ascorbate. Relative LOPP levels were elevated compared to WT in MSC conditioned medium from female TSP-deficient mice. When cells were serum starved to limit LOX pro-peptide removal, pro-LOX levels were elevated in TSP2-/- cells compared to wild-type. This phenotype was associated with a transient increase in BMP1 levels in TSP2-/- conditioned medium. TSP2 was detected in bone tissue and osteoblast cell culture. TSP1 was only detected in insoluble ECM prepared from WT diaphyseal bone samples. Our data suggest that the trimeric thrombospondins contribute to bone matrix quality by regulating the distribution of pro and mature LOX between newly secreted, immature ECM and mature, cross-linked ECM.


Assuntos
Diáfises/metabolismo , Fêmur/metabolismo , Peptídeos/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Trombospondina 1/deficiência , Trombospondinas/deficiência , Animais , Proteína Morfogenética Óssea 1/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trombospondina 1/metabolismo , Trombospondinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA