Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 621
Filtrar
1.
PLoS One ; 19(4): e0302932, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38669265

RESUMO

INTRODUCTION: Recent studies have shown that epithelial-stromal interactions could play a role in the development of colorectal cancer. Here, we investigated the role of fibroblasts in the transformation of normal colonocytes induced by 4-HNE. METHODS: Normal Co colonocytes and nF fibroblasts from the same mouse colon were exposed, in monoculture (m) or coculture (c), to 4-HNE (5 µM) twice weekly for 3 weeks. Gene expression was then analysed and the ability of Co colonocytes to grow in anchorage-independent conditions was tested in soft agar. Fibroblasts previously treated or not with 4-HNE were also seeded in culture inserts positioned above the agar layers to allow paracrine exchanges with colonocytes. RESULTS: First, 60% of the genes studied were modulated by coculture in Co colonocytes, with notably increased expression of BMP receptors. Furthermore, while 4-HNE increased the ability of monoculture-treated Co colonocytes to form colonies, this effect was not observed in coculture-treated Co colonocytes. Adding a selective BMPR1 inhibitor during the treatment phase abolished the protective effect of coculture. Conversely, addition of a BMP4 agonist to the medium of monoculture-treated Co colonocytes prevented phenotypic transformation by 4-HNE. Second, the presence of nF(m)-HNE fibroblasts during the soft agar assay increased the number and size of Co(m) colonocyte colonies, regardless of whether these cells had been previously treated with 4-HNE in monoculture. For soft agar assays performed with nF(c) and Co(c) cells initially treated in coculture, only the reassociation between Co(c)-HNE and nF(c)-HNE resulted in a small increase in the number of colonies. CONCLUSIONS: During the exposure phase, the epithelial-mesenchymal interaction protected colonocytes from 4-HNE-induced phenotypic transformation via activation of the BMP pathway. This intercellular dialogue also limited the ability of fibroblasts to subsequently promote colonocyte-anchorage-independent growth. In contrast, fibroblasts pre-exposed to 4-HNE in monoculture strongly increased the ability of Co(m) colonocytes to form colonies.


Assuntos
Aldeídos , Proteína Morfogenética Óssea 4 , Técnicas de Cocultura , Colo , Transição Epitelial-Mesenquimal , Fibroblastos , Animais , Colo/citologia , Colo/efeitos dos fármacos , Colo/metabolismo , Camundongos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Proteína Morfogenética Óssea 4/metabolismo , Aldeídos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fenótipo , Transformação Celular Neoplásica/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/citologia
2.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673725

RESUMO

Human-induced pluripotent stem cells (hiPSCs) offer a promising source for generating dental epithelial (DE) cells. Whereas the existing differentiation protocols were time-consuming and relied heavily on growth factors, herein, we developed a three-step protocol to convert hiPSCs into DE cells in 8 days. In the first phase, hiPSCs were differentiated into non-neural ectoderm using SU5402 (an FGF signaling inhibitor). The second phase involved differentiating non-neural ectoderm into pan-placodal ectoderm and simultaneously inducing the formation of oral ectoderm (OE) using LDN193189 (a BMP signaling inhibitor) and purmorphamine (a SHH signaling activator). In the final phase, OE cells were differentiated into DE through the application of Purmorphamine, XAV939 (a WNT signaling inhibitor), and BMP4. qRT-PCR and immunostaining were performed to examine the expression of lineage-specific markers. ARS staining was performed to evaluate the formation of the mineralization nodule. The expression of PITX2, SP6, and AMBN, the emergence of mineralization nodules, and the enhanced expression of AMBN and AMELX in spheroid culture implied the generation of DE cells. This study delineates the developmental signaling pathways and uses small molecules to streamline the induction of hiPSCs into DE cells. Our findings present a simplified and quicker method for generating DE cells, contributing valuable insights for dental regeneration and dental disease research.


Assuntos
Diferenciação Celular , Células Epiteliais , Células-Tronco Pluripotentes Induzidas , Morfolinas , Purinas , Pirimidinas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Dente/citologia , Ectoderma/citologia , Ectoderma/metabolismo , Células Cultivadas , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Pirazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
3.
Nutrients ; 16(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674937

RESUMO

Osteoporosis, a disease defined by the primary bone strength due to a low bone mineral density, is a bone disorder associated with increased mortality in the older adult population. Osteoporosis is mainly treated via hormone replacement therapy, bisphosphates, and anti-bone resorption agents. However, these agents exert severe side effects, necessitating the development of novel therapeutic agents. Many studies are focusing on osteogenic agents as they increase the bone density, which is essential for osteoporosis treatment. Here, we aimed to investigate the effects of Diospyros lotus L. leaf extract (DLE) and its components on osteoporosis in MC3T3-E1 pre-osteoblasts and ovariectomized mice and to elucidate the underlying related pathways. DLE enhanced the differentiation of MC3T3-E1 pre-osteoblasts, with a 1.5-fold elevation in ALP activity, and increased the levels of osteogenic molecules, RUNX family transcription factor 2, and osterix. This alteration resulted from the activation of bone morphogenic protein 2/4 (BMP2/4) and transformation of growth factor ß (TGF ß) pathways. In ovariectomized mice, DLE suppressed the decrease in bone mineral density by 50% and improved the expression of other bone markers, which was confirmed by the 3~40-fold increase in osteogenic proteins and mRNA expression levels in bone marrow cells. The three major compounds identified in DLE exhibited osteogenic and estrogenic activities with their aglycones, as previously reported. Among the major compounds, myricitrin alone was not as strong as whole DLE with all its constituents. The osteogenic activity of DLE was partially suppressed by the inhibitor of estrogen signaling, indicating that the estrogenic activity of DLE participated in its osteogenic activity. Overall, DLE suppresses osteoporosis by inducing osteoblast differentiation.


Assuntos
Densidade Óssea , Proteína Morfogenética Óssea 2 , Diferenciação Celular , Diospyros , Osteoblastos , Osteogênese , Ovariectomia , Extratos Vegetais , Folhas de Planta , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Extratos Vegetais/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Feminino , Camundongos , Folhas de Planta/química , Densidade Óssea/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Diospyros/química , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Proteína Morfogenética Óssea 4/metabolismo
4.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679470

RESUMO

CONTEXT: Recurrent spontaneous abortion (RSA) is defined as the loss of 2 or more consecutive intrauterine pregnancies with the same sexual partner in the first trimester. Despite its significance, the etiology and underlying mechanisms of RSA remain elusive. Defective decidualization is proposed as one of the potential causes of RSA, with abnormal decidualization leading to disturbances in trophoblast invasion function. OBJECTIVE: To assess the role of bone morphogenetic protein 4 (BMP4) in decidualization and RSA. METHODS: Decidual samples were collected from both RSA patients and healthy controls to assess BMP4 expression. In vitro cell experiments utilized the hESC cell line to investigate the impact of BMP4 on decidualization and associated aging, as well as its role in the maternal-fetal interface communication. Subsequently, a spontaneous abortion mouse model was established to evaluate embryo resorption rates and BMP4 expression levels. RESULTS: Our study identified a significant downregulation of BMP4 expression in the decidua of RSA patients compared to the normal control group. In vitro, BMP4 knockdown resulted in inadequate decidualization and inhibited associated aging processes. Mechanistically, BMP4 was implicated in the regulation of FOXO1 expression, thereby influencing decidualization and aging. Furthermore, loss of BMP4 hindered trophoblast migration and invasion via FOXO1 modulation. Additionally, BMP4 downregulation was observed in RSA mice. CONCLUSION: Our findings highlighted the downregulation of BMP4 in both RSA patients and mice. BMP4 in human endometrial stromal cells was shown to modulate decidualization by regulating FOXO1 expression. Loss of BMP4 may contribute to the pathogenesis of RSA, suggesting potential avenues for abortion prevention strategies.


Assuntos
Aborto Habitual , Proteína Morfogenética Óssea 4 , Decídua , Endométrio , Proteína Forkhead Box O1 , Células Estromais , Feminino , Humanos , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Células Estromais/metabolismo , Animais , Camundongos , Decídua/metabolismo , Gravidez , Endométrio/metabolismo , Endométrio/citologia , Aborto Habitual/metabolismo , Aborto Habitual/genética , Adulto , Trofoblastos/metabolismo , Estudos de Casos e Controles
5.
Cell Commun Signal ; 22(1): 248, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689334

RESUMO

BACKGROUND: Bone morphogenetic protein 4 (BMP4) is a potent inhibitor of breast cancer metastasis. However, a tumor-promoting effect of BMP4 is reported in other tumor types, especially when SMAD4 is inactive. METHODS: To assess the requirement for SMAD4 in BMP4-mediated suppression of metastasis, we knocked down SMAD4 in two different breast tumors and enforced SMAD4 expression in a third line with endogenous SMAD4 deletion. In addition, we assessed the requirement for SMAD4 in tumor cell-specific BMP signalling by expression of a constitutively active BMP receptor. Delineation of genes regulated by BMP4 in the presence or absence of SMAD4 was assessed by RNA sequencing and a BMP4-induced gene, MYO1F was assessed for its role in metastasis. Genes regulated by BMP4 and/or SMAD4 were assessed in a publicly available database of gene expression profiles of breast cancer patients. RESULTS: In the absence of SMAD4, BMP4 promotes primary tumor growth that is accompanied by increased expression of genes associated with DNA replication, cell cycle, and MYC signalling pathways. Despite increased primary tumor growth, BMP4 suppresses metastasis in the absence of tumor cell expression of SMAD4. Consistent with the anti-metastatic activity of BMP4, enforced signalling through the constitutively active receptor in SMAD4 positive tumors that lacked BMP4 expression still suppressed metastasis, but in the absence of SMAD4, the suppression of metastasis was largely prevented. Thus BMP4 is required for suppression of metastasis regardless of tumor SMAD4 status. The BMP4 upregulated gene, MYO1F, was shown to be a potent suppressor of breast cancer metastasis. Gene signature upregulated by BMP4 in the absence of SMAD4 was associated with poor prognosis in breast cancer patients, whereas gene signature upregulated by BMP4 in the presence of SMAD4 was associated with improved prognosis. CONCLUSIONS: BMP4 expression is required for suppression of metastasis regardless of the SMAD4 status of the tumor cells. Since BMP4 is a secreted protein, we conclude that it can act both in an autocrine manner in SMAD4-expressing tumor cells and in a paracrine manner on stromal cells to suppress metastasis. Deletion of SMAD4 from tumor cells does not prevent BMP4 from suppressing metastasis via a paracrine mechanism.


Assuntos
Proteína Morfogenética Óssea 4 , Neoplasias da Mama , Metástase Neoplásica , Transdução de Sinais , Proteína Smad4 , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Humanos , Animais , Feminino , Linhagem Celular Tumoral , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos , Proliferação de Células/genética
6.
Cell Death Dis ; 15(4): 301, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684650

RESUMO

Understanding the mechanisms involved in colonic epithelial differentiation is key to unraveling the alterations causing inflammatory conditions and cancer. Organoid cultures provide an unique tool to address these questions but studies are scarce. We report a differentiation system toward enterocytes and goblet cells, the two major colonic epithelial cell lineages, using colon organoids generated from healthy tissue of colorectal cancer patients. Culture of these organoids in medium lacking stemness agents resulted in a modest ultrastructural differentiation phenotype with low-level expression of enterocyte (KLF4, KRT20, CA1, FABP2) and goblet cell (TFF2, TFF3, AGR2) lineage markers. BMP pathway activation through depletion of Noggin and addition of BMP4 resulted in enterocyte-biased differentiation. Contrarily, blockade of the Notch pathway using the γ-secretase inhibitor dibenzazepine (DBZ) favored goblet cell differentiation. Combination treatment with BMP4 and DBZ caused a balanced strong induction of both lineages. In contrast, colon tumor organoids responded poorly to BMP4 showing only weak signals of cell differentiation, and were unresponsive to DBZ. We also investigated the effects of 1α,25-dihydroxyvitamin D3 (calcitriol) on differentiation. Calcitriol attenuated the effects of BMP4 and DBZ on colon normal organoids, with reduced expression of differentiation genes and phenotype. Consistently, in normal organoids, calcitriol inhibited early signaling by BMP4 as assessed by reduction of the level of phospho-SMAD1/5/8. Our results show that BMP and Notch signaling play key roles in human colon stem cell differentiation to the enterocytic and goblet cell lineages and that calcitriol modulates these processes favoring stemness features.


Assuntos
Proteína Morfogenética Óssea 4 , Calcitriol , Proteínas de Transporte , Diferenciação Celular , Colo , Dibenzazepinas , Células Caliciformes , Fator 4 Semelhante a Kruppel , Organoides , Receptores Notch , Transdução de Sinais , Humanos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proteína Morfogenética Óssea 4/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/citologia , Colo/patologia , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Calcitriol/farmacologia , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/metabolismo , Dibenzazepinas/farmacologia , Linhagem da Célula/efeitos dos fármacos , Enterócitos/metabolismo , Enterócitos/efeitos dos fármacos , Enterócitos/citologia , Vitamina D/farmacologia
7.
Biomed Pharmacother ; 174: 116503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565060

RESUMO

Androgenetic alopecia (AGA) is a prevalent disease in worldwide, local application or oral are often used to treat AGA, however, effective treatments for AGA are currently limited. In this work, we observed the promoting the initial anagen phase effect of pilose antler extract (PAE) on hair regeneration in AGA mice. We found that PAE accelerated hair growth and increased the degree of skin blackness by non-invasive in vivo methods including camera, optical coherence tomography and dermoscopy. Meanwhile, HE staining of sagittal and coronal skin sections revealed that PAE augmented the quantity and length of hair follicles, while also enhancing skin thickness and hair papilla diameter. Furthermore, PAE facilitated the shift of the growth cycle from the telogen to the anagen phase and expedited the proliferation of hair follicle stem cells and matrix cells in mice with AGA. This acceleration enabled the hair follicles to enter the growth phase at an earlier stage. PAE upregulated the expression of the sonic hedgehog (SHH), smoothened receptor, glioma-associated hemolog1 (GLI1), and downregulated the expression of bone morphogenetic protein 4 (BMP4), recombinant mothers against decapentaplegic homolog (Smad) 1 and 5 phosphorylation. This evidence suggests that PAE fosters hair growth and facilitates the transition of the growth cycle from the telogen to the anagen phase in AGA mice. This effect is achieved by enhancing the proliferation of follicle stem cells and matrix cells through the activation of the SHH/GLI pathway and suppression of the BMP/Smad pathway.


Assuntos
Alopecia , Chifres de Veado , Proteína Morfogenética Óssea 4 , Folículo Piloso , Cabelo , Animais , Chifres de Veado/química , Alopecia/tratamento farmacológico , Alopecia/patologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Camundongos , Masculino , Proteína Morfogenética Óssea 4/metabolismo , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Proteínas Hedgehog/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Extratos de Tecidos/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Regeneração/efeitos dos fármacos , Cervos , Proteína Smad5/metabolismo
8.
J Sex Med ; 21(5): 379-390, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38451321

RESUMO

BACKGROUND: The cavernous nerve (CN) is frequently damaged in prostatectomy and diabetic patients with erectile dysfunction (ED), initiating changes in penile morphology including an acute and intense phase of apoptosis in penile smooth muscle and increased collagen, which alter penile architecture and make corpora cavernosa smooth muscle less able to relax in response to neurotransmitters, resulting in ED. AIM: Sonic hedgehog (SHH) is a critical regulator of penile smooth muscle, and SHH treatment suppresses penile remodeling after CN injury through an unknown mechanism; we examine if part of the mechanism of how SHH preserves smooth muscle after CN injury involves bone morphogenetic protein 4 (BMP4) and gremlin1 (GREM1). METHODS: Primary cultures of smooth muscle cells were established from prostatectomy, diabetic, hypertension and Peyronie's (control) (N = 18) patients. Cultures were characterized by ACTA2, CD31, P4HB, and nNOS immunohistochemical analysis. Patient smooth muscle cell growth was quantified in response to BMP4 and GREM1 treatment. Adult Sprague Dawley rats underwent 1 of 3 surgeries: (1) uninjured or CN-injured rats were treated with BMP4, GREM1, or mouse serum albumin (control) proteins via Affi-Gel beads (N = 16) or peptide amphiphile (PA) (N = 26) for 3 and 14 days, and trichrome stain was performed; (2) rats underwent sham (N = 3), CN injury (N = 9), or CN injury and SHH PA treatment for 1, 2, and 4 days (N = 9). OUTCOMES: Western analysis for BMP4 and GREM1 was performed; (3) rats were treated with 5E1 SHH inhibitor (N = 6) or IgG (control; N = 6) for 2 and 4 days, and BMP4 and GREM1 localization was examined. Statistics were performed by analysis of variance with Scheffé's post hoc test. RESULTS: BMP4 increased patient smooth muscle cell growth, and GREM1 decreased growth. In rats, BMP4 treatment via Affi-Gel beads and PA increased smooth muscle at 3 and 14 days of treatment. GREM1 treatment caused increased collagen and smooth muscle at 3 days, which switched to primarily collagen at 14 days. CN injury increased BMP4 and GREM1, while SHH PA altered Western band size, suggesting alternative cleavage and range of BMP4 and GREM1 signaling. SHH inhibition in rats increased BMP4 and GREM1 in fibroblasts. CLINICAL IMPLICATIONS: Understanding how SHH PA preserves and regenerates penile morphology after CN injury will aid development of ED therapies. STRENGTHS AND LIMITATIONS: SHH treatment alters BMP4 and GREM1 localization and range of signaling, which can affect penile morphology. CONCLUSION: Part of the mechanism of how SHH regulates corpora cavernosa smooth muscle involves BMP4 and GREM1.


Assuntos
Proteína Morfogenética Óssea 4 , Proteínas Hedgehog , Peptídeos e Proteínas de Sinalização Intercelular , Pênis , Animais , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Proteína Morfogenética Óssea 4/metabolismo , Células Cultivadas , Citocinas , Disfunção Erétil/etiologia , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Induração Peniana/patologia , Prostatectomia , Ratos Sprague-Dawley
9.
J Sex Med ; 21(5): 367-378, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38451311

RESUMO

BACKGROUND: Cavernous nerve (CN) injury, caused by prostatectomy and diabetes, initiates a remodeling process (smooth muscle apoptosis and increased collagen) in the corpora cavernosa of the penis of patients and animal models that is an underlying cause of erectile dysfunction (ED), and the Sonic hedgehog (SHH) pathway plays an essential role in the response of the penis to denervation, as collagen increases with SHH inhibition and decreases with SHH treatment. AIM: We examined if part of the mechanism of how SHH prevents penile remodeling and increased collagen with CN injury involves bone morphogenetic protein 4 (BMP4) and gremlin1 (GREM1) and examined the relationship between SHH, BMP4, GREM1, and collagen in penis of ED patients and rat models of CN injury, SHH inhibition, and SHH, BMP4, and GREM1 treatment. METHODS: Corpora cavernosa of Peyronie's disease (control), prostatectomy, and diabetic ED patients were obtained (N = 30). Adult Sprague Dawley rats (n = 90) underwent (1) CN crush (1-7 days) or sham surgery; (2) CN injury and BMP4, GREM1, or mouse serum albumin (control) treatment via Affi-Gel beads or peptide amphiphile (PA) for 14 days; (3) 5E1 SHH inhibitor, IgG, or phosphate-buffered saline (control) treatment for 2 to 4 days; or (4) CN crush with mouse serum albumin or SHH for 9 days. OUTCOMES: Immunohistochemical and Western analysis for BMP4 and GREM1, and collagen analysis by hydroxyproline and trichrome stain were performed. RESULTS: BMP4 and GREM1 proteins were identified in corpora cavernosa smooth muscle of prostatectomy, diabetic, and Peyronie's patients, and in rat smooth muscle, sympathetic nerve fibers, perineurium, blood vessels, and urethra. Collagen decreased 25.4% in rats with CN injury and BMP4 treatment (P = .02) and increased 61.3% with CN injury and GREM1 treatment (P = .005). Trichrome stain showed increased collagen in rats treated with GREM1. Western analysis identified increased BMP4 and GREM1 in corpora cavernosa of prostatectomy and diabetic patients, and after CN injury (1-2 days) in our rat model. Localization of BMP4 and GREM1 changed with SHH inhibition. SHH treatment increased the monomer form of BMP4 and GREM1, altering their range of signaling. CLINICAL IMPLICATIONS: A better understanding of penile remodeling and how fibrosis occurs with loss of innervation is essential for development of novel ED therapies. STRENGTHS AND LIMITATIONS: The relationship between SHH, BMP4, GREM1, and collagen is complex in the penis. CONCLUSION: BMP4 and GREM1 are downstream targets of SHH that impact collagen and may be useful in collaboration with SHH to prevent penile remodeling and ED.


Assuntos
Proteína Morfogenética Óssea 4 , Colágeno , Disfunção Erétil , Proteínas Hedgehog , Peptídeos e Proteínas de Sinalização Intercelular , Pênis , Transdução de Sinais , Animais , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Proteína Morfogenética Óssea 4/metabolismo , Colágeno/metabolismo , Citocinas , Modelos Animais de Doenças , Disfunção Erétil/metabolismo , Disfunção Erétil/etiologia , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Induração Peniana/metabolismo , Pênis/inervação , Pênis/metabolismo , Prostatectomia , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
10.
Neoplasia ; 49: 100972, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38237535

RESUMO

Papillary thyroid cancer (PTC) is the most prevalent endocrine cancer worldwide. Approximately 30 % of PTC patients will progress into the advanced or metastatic stage and have a relatively poor prognosis. It is well known that epithelial-mesenchymal transition (EMT) plays a pivotal role in thyroid cancer metastasis, resistance to therapy, and recurrence. Clarifying the molecular mechanisms of EMT in PTC progression will help develop the targeted therapy of PTC. The aberrant expression of some transcription factors (TFs) participated in many pathological processes of cancers including EMT. In this study, by performing bioinformatics analysis, adipocyte enhancer-binding protein 1 (AEBP1) was screened as a pivotal TF that promoted EMT and tumor progression in PTC. In vitro experiments indicated that knockout of AEBP1 can inhibit the growth and invasion of PTC cells and reduce the expression of EMT markers including N-cadherin, TWIST1, and ZEB2. In the xenograft model, knockout of AEBP1 inhibited the growth and lung metastasis of PTC cells. By performing RNA-sequencing, dual-luciferase reporter assay, and chromatin immunoprecipitation assay, Bone morphogenetic protein 4 (BMP4) was identified as a downstream target of AEBP1. Over-expression of BMP4 can rescue the inhibitory effects of AEBP1 knockout on the growth, invasion, and EMT phenotype of PTC cells. In conclusion, these findings demonstrated that AEBP1 plays a critical role in PTC progression by regulating BMP4 expression and the AEBP1-BMP4 axis may present novel therapeutic targets for PTC treatment.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/metabolismo , MicroRNAs/genética , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Proteínas Repressoras/genética
11.
J Photochem Photobiol B ; 250: 112828, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101122

RESUMO

Rheumatoid arthritis (RA) is caused by inflammatory response of joints with cartilage and damage of synovium and bone erosion. In our previous studies, it has showed that irradiation of 630 nm LED reduce inflammation of synovial fibroblasts and cartilage and bone destruction in RA. However, the key genes and mechanism in ameliorating RA by irradiation of 630 nm LED remains unknown. In this study, human fibroblast-like synoviocytes (FLS) cell line MH7A and primary human RA-FLSs were treated with TNF-α and 630 nm LED irradiation with the different energy density. The mRNA sequencing was performed to screen the differentially expressed genes (DEGs). In all datasets, 10 DEGs were identified through screening. The protein interaction network analysis showed that 8 out of the 10 DEGs interacted with each other including IL-6, CXCL2, CXCL3, MAF, PGF, IL-1RL1, RRAD and BMP4. This study focused on BMP4, which is identified as important morphogens in regulating the development and homeostasis. CCK-8 assay results showed that 630 nm LED irradiation did not affect the cell viability. The qPCR and ELISA results showed that TNF-α stimulation inhibited BMP4 mRNA and protein level and irradiation of 630 nm LED increased the BMP4 mRNA and protein level in MH7A cells. In CIA and transgenic hTNF-α mice models, H&E staining showed that irradiation of 630 nm LED decreased the histological scores assessed from inflammation and bone erosion, while BMP4 expression level was up-regulated after 630 nm LED irradiation. Pearson correlation analysis shown that BMP4 protein expression was negatively correlated with the histological score of CIA mice and transgenic hTNF-α mice. These results indicated that BMP4 increased by irradiation of 630 nm LED was associated with the amelioration of RA, which suggested that BMP4 may be a potential targeting gene for photobiomodulation.


Assuntos
Artrite Experimental , Artrite Reumatoide , Proteína Morfogenética Óssea 4 , Luz , Animais , Humanos , Camundongos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/terapia , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/fisiologia , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , Inflamação/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958648

RESUMO

The enteric nervous system (ENS) is principally derived from vagal neural crest cells that migrate caudally along the entire length of the gastrointestinal tract, giving rise to neurons and glial cells in two ganglionated plexuses. Incomplete migration of enteric neural crest-derived cells (ENCDC) leads to Hirschsprung disease, a congenital disorder characterized by the absence of enteric ganglia along variable lengths of the colorectum. Our previous work strongly supported the essential role of the avian ceca, present at the junction of the midgut and hindgut, in hindgut ENS development, since ablation of the cecal buds led to incomplete ENCDC colonization of the hindgut. In situ hybridization shows bone morphogenetic protein-4 (BMP4) is highly expressed in the cecal mesenchyme, leading us to hypothesize that cecal BMP4 is required for hindgut ENS development. To test this, we modulated BMP4 activity using embryonic intestinal organ culture techniques and retroviral infection. We show that overexpression or inhibition of BMP4 in the ceca disrupts hindgut ENS development, with GDNF playing an important regulatory role. Our results suggest that these two important signaling pathways are required for normal ENCDC migration and enteric ganglion formation in the developing hindgut ENS.


Assuntos
Neoplasias Colorretais , Sistema Nervoso Entérico , Humanos , Transdução de Sinais/fisiologia , Diferenciação Celular/fisiologia , Sistema Nervoso Entérico/metabolismo , Movimento Celular/fisiologia , Neoplasias Colorretais/metabolismo , Crista Neural/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo
13.
Exp Eye Res ; 237: 109680, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37858608

RESUMO

Corneal neovascularization (CNV) can lead to impaired corneal transparency, resulting in vision loss or blindness. The primary pathological mechanism underlying CNV is an imbalance between pro-angiogenic and anti-angiogenic factors, with inflammation playing a crucial role. Notably, a vascular endothelial growth factor(VEGF)-A gradient triggers the selection of single endothelial cells(ECs) into primary tip cells that guide sprouting, while a dynamic balance between tip and stalk cells maintains a specific ratio to promote CNV. Despite the central importance of tip-stalk cell selection and shuffling, the underlying mechanisms remain poorly understood. In this study, we examined the effects of bone morphogenetic protein 4 (BMP4) on VEGF-A-induced lumen formation in human umbilical vein endothelial cells (HUVECs) and CD34-stained tip cell formation. In vivo, BMP4 inhibited CNV caused by corneal sutures. This process was achieved by BMP4 decreasing the protein expression of VEGF-A and VEGFR2 in corneal tissue after corneal suture injury. By observing the ultrastructure of the cornea, BMP4 inhibited the sprouting of tip cells and brought forward the appearance of intussusception. Meanwhile, BMP4 attenuated the inflammatory response by inhibiting neutrophil extracellular traps (NETs)formation through the NADPH oxidase-2(NOX-2)pathway. Our results indicate that BMP4 inhibits the formation of tip cells by reducing the generation of NETs, disrupting the dynamic balance of tip and stalk cells and thereby inhibiting CNV, suggesting that BMP4 may be a potential therapeutic target for CNV.


Assuntos
Lesões da Córnea , Neovascularização da Córnea , Humanos , Neovascularização da Córnea/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Córnea/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Lesões da Córnea/metabolismo , Neovascularização Fisiológica
14.
J Steroid Biochem Mol Biol ; 235: 106410, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37858799

RESUMO

Polycystic ovary syndrome (PCOS) is a complex reproductive endocrine disease characterized by ovulation dysfunction with multiple etiologies and manifestations, and it is widely believed that the disorders of hyper-androgen and glucose metabolism play a key role in its progression. There has been evidence that bone morphogenetic protein 4 (BMP4) is essential for the regulation of granulosa cells, but whether it regulates metabolism level of granulosa cells under hyperandrogenic environment remains unclear. In this study, Gene Expression Omnibus, clinical data and serum of PCOS patient were collected to detect androgen and BMP4 levels. KGN cells exposed to androgens as a model for simulating PCOS granulosa cells. Lactate/pyruvate kits, and Extracellular Acidification Rate and Oxygen Consumption Rate assay were performed to detect glycolysis and autophagy levels of granulosa cells. Lentivirus infection was used to investigate the effects of BMP4 on granulosa cells. RNA-seq were performed to explore the special mechanism. We found that BMP4 was increased in PCOS patients with hyper-androgen and granulosa cells with dihydrotestosterone treatment. Mechanically, on the one hand, hyperandrogenemia can up-regulate BMP4 secretion and induce glycolysis and autophagy levels. On the other hand, we found that hyperandrogenic-induced YAP1 upregulation may mediate BMP4 to increase glycolysis level and decrease autophagy, which plays a protective role in granulosa cells to ensure subsequent energy utilization and mitochondrial function. Overall, we innovated on the protective effect of BMP4 on glycolysis and autophagy disorders induced by excessive androgen in granulosa cells. Our study will provide guidance for future understanding of PCOS from a metabolic perspective and for exploring treatment options.


Assuntos
Proteína Morfogenética Óssea 4 , Síndrome do Ovário Policístico , Feminino , Humanos , Androgênios/farmacologia , Androgênios/metabolismo , Autofagia , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Glucose/metabolismo , Células da Granulosa/metabolismo , Síndrome do Ovário Policístico/metabolismo
15.
Cells ; 12(9)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37174679

RESUMO

Bone Morphogenetic Protein 4 (BMP4) is a secreted growth factor of the Transforming Growth Factor beta (TGFß) superfamily. The goal of this study was to test whether BMP4 contributes to the pathogenesis of diabetic retinopathy (DR). Immunofluorescence of BMP4 and the vascular marker isolectin-B4 was conducted on retinal sections of diabetic and non-diabetic human and experimental mice. We used Akita mice as a model for type-1 diabetes. Proteins were extracted from the retina of postmortem human eyes and 6-month diabetic Akita mice and age-matched control. BMP4 levels were measured by Western blot (WB). Human retinal endothelial cells (HRECs) were used as an in vitro model. HRECs were treated with BMP4 (50 ng/mL) for 48 h. The levels of phospho-smad 1/5/9 and phospho-p38 were measured by WB. BMP4-treated and control HRECs were also immunostained with anti-Zo-1. We also used electric cell-substrate impedance sensing (ECIS) to calculate the transcellular electrical resistance (TER) under BMP4 treatment in the presence and absence of noggin (200 ng/mL), LDN193189 (200 nM), LDN212854 (200 nM) or inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2; SU5416, 10 µM), p38 (SB202190, 10 µM), ERK (U0126, 10 µM) and ER stress (Phenylbutyric acid or PBA, 30 µmol/L). The impact of BMP4 on matrix metalloproteinases (MMP2 and MMP9) was also evaluated using specific ELISA kits. Immunofluorescence of human and mouse eyes showed increased BMP4 immunoreactivity, mainly localized in the retinal vessels of diabetic humans and mice compared to the control. Western blots of retinal proteins showed a significant increase in BMP4 expression in diabetic humans and mice compared to the control groups (p < 0.05). HRECs treated with BMP4 showed a marked increase in phospho-smad 1/5/9 (p = 0.039) and phospho-p38 (p = 0.013). Immunofluorescence of Zo-1 showed that BMP4-treated cells exhibited significant barrier disruption. ECIS also showed a marked decrease in TER of HRECs by BMP4 treatment compared to vehicle-treated HRECs (p < 0.001). Noggin, LDN193189, LDN212854, and inhibitors of p38 and VEGFR2 significantly mitigated the effects of BMP4 on the TER of HRECs. Our finding provides important insights regarding the role of BMP4 as a potential player in retinal endothelial cell dysfunction in diabetic retinopathy and could be a novel target to preserve the blood-retinal barrier during diabetes.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Camundongos , Humanos , Animais , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Proteína Morfogenética Óssea 4/metabolismo , Retina/metabolismo , Diabetes Mellitus/metabolismo
16.
Curr Mol Med ; 23(4): 324-331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36883260

RESUMO

Bone morphogenetic protein 4 (BMP4) is a multifunctional secretory protein that belongs to the transforming growth factor ß superfamily. BMPs transduce their signaling to the cytoplasm by binding to membrane receptors of the serine/threonine kinase family, including BMP type I and type II receptors. BMP4 participates in various biological processes, such as embryonic development, epithelial-mesenchymal transition, and maintenance of tissue homeostasis. The interaction between BMP4 and the corresponding endogenous antagonists plays a key role in the precise regulation of BMP4 signaling. In this paper, we review the pathogenesis of BMP4-related lung diseases and the foundation on which BMP4 endogenous antagonists have been developed as potential targets.


Assuntos
Proteína Morfogenética Óssea 4 , Pneumopatias , Feminino , Humanos , Gravidez , Proteína Morfogenética Óssea 4/antagonistas & inibidores , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Pneumopatias/tratamento farmacológico , Pneumopatias/genética , Pneumopatias/metabolismo , Proteínas Serina-Treonina Quinases
17.
J Pediatr Surg ; 58(7): 1317-1321, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36906487

RESUMO

OBJECTIVE: To study the influence of gene methylation in the Shh/Bmp4 signaling pathway on the enteric nervous system in the rectum of rat embryos with anorectal malformations (ARMs). METHODS: Pregnant Sprague Dawley rats were divided into three groups; two groups treated with either ethylene thiourea (ETU induce ARM) or ETU+5-azacitidine (5-azaC inhibit DNA methylation) and a normal control group. The levels of DNA methyltransferases (DNMT1, DNMT3a, DNMT3b), the methylation status of the Shh gene promoter region and the expression of the key components were detected by PCR, immunohistochemistry and western blotting. RESULTS: The expression of DNMTs in the rectal tissue of the ETU and ETU+5-azaC groups was higher than that of the control. The expression of DNMT1, DNMT3a and methylation level of the Shh gene promoter in the ETU group was higher than in the ETU+5-azaC group (P < 0.01). The methylation level of the Shh gene promoter was higher in the ETU+5-azaC group than in the control. The Shh and Bmp4 expression in the ETU and ETU+5-azaC groups were lower than in the control, and their expression in the ETU group was also lower than in the ETU+5-azaC group. CONCLUSION: The methylation status of genes in the rectum of the ARM rat model may be changed by intervention. The low methylation level of the Shh gene may promote the expression of key Shh/Bmp4 signaling pathway components.


Assuntos
Malformações Anorretais , Reto , Gravidez , Feminino , Ratos , Animais , Reto/anormalidades , Malformações Anorretais/genética , Ratos Sprague-Dawley , Canal Anal/anormalidades , Metilação de DNA , Transdução de Sinais , Sistema Nervoso/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo
18.
Stem Cell Reports ; 18(3): 688-705, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36764297

RESUMO

In addition to increasing ß-amyloid plaque deposition and tau tangle formation, inhibition of neurogenesis has recently been observed in Alzheimer's disease (AD). This study generated a cellular model that recapitulated neurogenesis defects observed in patients with AD, using induced pluripotent stem cell lines derived from sporadic and familial AD (AD iPSCs). AD iPSCs exhibited impaired neuron and oligodendrocyte generation when expression of several senescence markers was induced. Compound screening using these cellular models identified three drugs able to restore neurogenesis, and extensive morphological quantification revealed cell-line- and drug-type-dependent neuronal generation. We also found involvement of elevated Sma- and Mad-related protein 1/5/9 (SMAD1/5/9) phosphorylation and greater Runt-related transcription factor 2 (RUNX2) expression in neurogenesis defects in AD. Moreover, BMP4 was elevated in AD iPSC medium during neural differentiation and cerebrospinal fluid of patients with AD, suggesting a BMP4-SMAD1/5/9-RUNX2 signaling pathway contribution to neurogenesis defects in AD under senescence-related conditions.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Proteínas Smad
19.
Cell Mol Gastroenterol Hepatol ; 15(5): 1199-1217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36706916

RESUMO

BACKGROUND & AIMS: Barrett's esophagus is considered to be a metaplastic lesion that predisposes for esophageal adenocarcinoma. Development of Barrett's esophagus is considered to be driven by sonic hedgehog mediated bone morphogenetic protein (BMP) signaling. We aimed to investigate in preclinical in vivo models whether targeting canonical BMP signaling could be an effective treatment for Barrett's esophagus. METHODS AND RESULTS: Selective inhibition of BMP2 and BMP4 within an in vivo organoid model of Barrett's esophagus inhibited development of columnar Barrett's cells, while favoring expansion of squamous cells. Silencing of noggin, a natural antagonist of BMP2, BMP4, and BMP7, in a conditional knockout mouse model induced expansion of a Barrett's-like neo-columnar epithelium from multi-lineage glands. Conversely, in this model specific inhibition of BMP2 and BMP4 led to the development of a neo-squamous lineage. In an ablation model, inhibition of BMP2 and BMP4 resulted in the regeneration of neo-squamous epithelium after the cryoablation of columnar epithelium at the squamocolumnar junction. Through lineage tracing the generation of the neo-squamous mucosa was found to originate from K5+ progenitor squamous cells. CONCLUSIONS: Here we demonstrate that specific inhibitors of BMP2 and BMP4 attenuate the development of Barrett's columnar epithelium, providing a novel potential strategy for the treatment of Barrett's esophagus and the prevention of esophageal adenocarcinoma.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Carcinoma de Células Escamosas , Animais , Camundongos , Adenocarcinoma/patologia , Esôfago de Barrett/tratamento farmacológico , Esôfago de Barrett/patologia , Proteína Morfogenética Óssea 4/metabolismo , Carcinoma de Células Escamosas/patologia , Epitélio/patologia , Proteínas Hedgehog/metabolismo
20.
Dis Model Mech ; 16(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36518009

RESUMO

Bone morphogenetic protein (BMP)4 plays a critical role in regulating neuronal and glial activity in the course of spinal cord injury (SCI). The underlying cause and cellular source of BMP4 accumulation at the injured spinal cord remain unclear. Here, we observed that plasma BMP4 levels are statistically higher in SCI patients than in healthy donors. When comparing rats in the sham group (T9 laminectomy without SCI) with rats in the SCI group, we found a persistent decline in BBB scores, together with necrosis and mononuclear cell accumulation at the contusion site. Moreover, during 2 weeks after SCI both plasma and cerebrospinal fluid levels of BMP4 displayed notable elevation, and a positive correlation. Importantly, percentages of circulating BMP4-positive (BMP4+) monocytes and infiltrating MDMs were higher in the SCI group than in the sham group. Finally, in the SCI+clodronate liposome group, depletion of monocytes effectively attenuated the accumulation of both BMP4+ MDMs and BMP4 in the injured spinal cord. Our results indicated that, following SCI, infiltrating MDMs provide an important source of BMP4 in the injured spinal cord and, therefore, might serve as a potential therapeutic target.


Assuntos
Monócitos , Traumatismos da Medula Espinal , Ratos , Animais , Monócitos/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal/metabolismo , Neurônios/metabolismo , Neuroglia/metabolismo , Proteína Morfogenética Óssea 4/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA