Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38892327

RESUMO

Both tissue and blood lead levels are elevated in renal cell carcinoma (RCC) patients. These studies assessed the impact of the subchronic lead challenge on the progression of RCC in vitro and in vivo. Lead challenge of Renca cells with 0.5 µM lead acetate for 10 consecutive passages decreased E-cadherin expression and cell aggregation. Proliferation, colony formation, and wound healing were increased. When lead-challenged cells were injected into mice, tumor size at day 21 was increased; interestingly, this increase was seen in male but not female mice. When mice were challenged with 32 ppm lead in drinking water for 20 weeks prior to tumor cell injection, there was an increase in tumor size in male, but not female, mice at day 21. To investigate the mechanism underlying the sex differences, the expression of sex hormone receptors in Renca cells was examined. Control Renca cells expressed estrogen receptor (ER) alpha but not ER beta or androgen receptor (AR), as assessed by qPCR, and the expression of ERα was increased in tumors in both sexes. In tumor samples harvested from lead-challenged cells, both ERα and AR were detected by qPCR, yet there was a significant decrease in AR seen in lead-challenged tumor cells from male mice only. This was paralleled by a plate-based array demonstrating the same sex difference in BMP-7 gene expression, which was also significantly decreased in tumors harvested from male but not female mice; this finding was validated by immunohistochemistry. A similar expression pattern was seen in tumors harvested from the mice challenged with lead in the drinking water. These data suggest that lead promotes RCC progression in a sex-dependent via a mechanism that may involve sex-divergent changes in BMP-7 expression.


Assuntos
Proteína Morfogenética Óssea 7 , Carcinoma de Células Renais , Proliferação de Células , Neoplasias Renais , Animais , Feminino , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Masculino , Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/genética , Camundongos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/induzido quimicamente , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chumbo/toxicidade , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Fatores Sexuais
2.
Adv Sci (Weinh) ; 11(26): e2307452, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38708713

RESUMO

Tumor heterogeneity, the presence of multiple distinct subpopulations of cancer cells between patients or among the same tumors, poses a major challenge to current targeted therapies. The way these different subpopulations interact among themselves and the stromal niche environment, and how such interactions affect cancer stem cell behavior has remained largely unknown. Here, it is shown that an FGF-BMP7-INHBA signaling positive feedback loop integrates interactions among different cell populations, including mammary gland stem cells, luminal epithelial and stromal fibroblast niche components not only in organ regeneration but also, with certain modifications, in cancer progression. The reciprocal dependence of basal stem cells and luminal epithelium is based on basal-derived BMP7 and luminal-derived INHBA, which promote their respective expansion, and is regulated by stromal-epithelial FGF signaling. Targeting this interaction loop, for example, by reducing the function of one or more of its components, inhibits organ regeneration and breast cancer progression. The results have profound implications for overcoming drug resistance because of tumor heterogeneity in future targeted therapies.


Assuntos
Neoplasias da Mama , Nicho de Células-Tronco , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Animais , Feminino , Nicho de Células-Tronco/fisiologia , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Camundongos , Células Epiteliais/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/genética , Microambiente Tumoral
3.
Int J Nanomedicine ; 19: 3475-3495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623080

RESUMO

Purpose: Human umbilical cord mesenchymal stem cell (hucMSC)-derived small extracellular vesicles (sEVs) are natural nanocarriers with promising potential in treating liver fibrosis and have widespread applications in the fields of nanomedicine and regenerative medicine. However, the therapeutic efficacy of natural hucMSC-sEVs is currently limited owing to their non-specific distribution in vivo and partial removal by mononuclear macrophages following systemic delivery. Thus, the therapeutic efficacy can be improved through the development of engineered hucMSC-sEVs capable to overcome these limitations. Patients and Methods: To improve the anti-liver fibrosis efficacy of hucMSC-sEVs, we genetically engineered hucMSC-sEVs to overexpress the anti-fibrotic gene bone morphogenic protein 7 (BMP7) in parental cells. This was achieved using lentiviral transfection, following which BMP7-loaded hucMSC-sEVs were isolated through ultracentrifugation. First, the liver fibrosis was induced in C57BL/6J mice by intraperitoneal injection of 50% carbon tetrachloride (CCL4) twice a week for 8 weeks. These mice were subsequently treated with BMP7+sEVs via tail vein injection, and the anti-liver fibrosis effect of BMP7+sEVs was validated using small animal in vivo imaging, immunohistochemistry (IHC), tissue immunofluorescence, and enzyme-linked immunosorbent assay (ELISA). Finally, cell function studies were performed to confirm the in vivo results. Results: Liver imaging and liver histopathology confirmed that the engineered hucMSC-sEVs could reach the liver of mice and aggregate around activated hepatic stellate cells (aHSCs) with a significantly stronger anti-liver fibrosis effect of BMP7-loaded hucMSC-sEVs compared to those of blank or negative control-transfected hucMSC-sEVs. In vitro, BMP7-loaded hucMSC-sEVs promoted the phenotypic reversal of aHSCs and inhibited their proliferation to enhance the anti-fibrotic effects. Conclusion: These engineered BMP7-loaded hucMSC-sEVs offer a novel and promising strategy for the clinical treatment of liver fibrosis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Camundongos , Humanos , Células Estreladas do Fígado/patologia , Camundongos Endogâmicos C57BL , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/terapia , Cirrose Hepática/metabolismo , Fibrose , Vesículas Extracelulares/patologia , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo
4.
Neoplasia ; 52: 100997, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38669760

RESUMO

Neurodevelopmental cell communication plays a crucial role in neuroblastoma prognosis. However, determining the impact of these communication pathways on prognosis is challenging due to limited sample sizes and patchy clinical survival information of single cell RNA-seq data. To address this, we have developed the cell communication pathway prognostic model (CCPPM) in this study. CCPPM involves the identification of communication pathways through single-cell RNA-seq data, screening of prognosis-significant pathways using bulk RNA-seq data, conducting functional and attribute analysis of these pathways, and analyzing the post-effects of communication within these pathways. By employing the CCPPM, we have identified ten communication pathways significantly influencing neuroblastoma, all related to axongenesis and neural projection development, especially the BMP7-(BMPR1B-ACVR2B) communication pathway was found to promote tumor cell migration by activating the transcription factor SMAD1 and regulating UNK and MYCBP2. Notably, BMP7 expression was higher in neuroblastoma samples with distant metastases. In summary, CCPPM offers a novel approach to studying the influence of cell communication pathways on disease prognosis and identified detrimental communication pathways related to neurodevelopment.


Assuntos
Comunicação Celular , Neuroblastoma , Transdução de Sinais , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Neuroblastoma/genética , Humanos , Prognóstico , Regulação Neoplásica da Expressão Gênica , Análise de Célula Única/métodos , Biologia Computacional/métodos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/genética , Movimento Celular
5.
J Pharm Pharmacol ; 76(6): 656-671, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38429940

RESUMO

BACKGROUND: We administered Bushen Huoxue Huazhuo Formula (BSHXHZF) and transplanted bone marrow mesenchymal stem cells (BMSCs) into mice with Wilson's disease (WD)-related liver fibrosis to evaluate the liver-protecting mechanism of this prescription. METHODS: Mice, randomly divided into different treatment groups, showed histopathological changes and degree of hepatocyte apoptosis. For hepatic hydroxyproline (Hyp) determination, transforming growth factor-ß1 (TGF-ß1) and bone morphogenetic protein-7 (BMP-7) mRNA and protein were measured. Chemical profiling of the extract of BSHXHZF using The liquid chromatography-mass spectrometry (LC-MS/MS) and revealing its antifibrosis mechanism using metabolomics. RESULTS: TCM+BMSC group livers exhibited few inflammatory cells. TUNEL revealed abundant brown apoptotic cells in model control groups, while the TCM+BMSC groups showed a significant increase in blue negative expression of liver cells. Hyp in toxic milk (TX) mice groups was significantly lower than that in model control groups (MG). Compared with MG, TGF-ß1 expression was significantly lower than all other groups, while BMP-7 expression was significantly higher. Metabolic analysis identified 20 potential biomarkers and 10 key pathways, indicating that BSHXHZF+BMSC intervention has a significant regulatory effect on metabolic disorders of these small molecule substances. CONCLUSION: BSHXHZF combined with BMSCs can inhibit liver fibrosis and hepatocyte apoptosis by improving related metabolic disorders, and achieving therapeutic effects in WD-related liver fibrosis.


Assuntos
Proteína Morfogenética Óssea 7 , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Degeneração Hepatolenticular , Cirrose Hepática , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Metabolômica , Fator de Crescimento Transformador beta1 , Animais , Cirrose Hepática/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Metabolômica/métodos , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Degeneração Hepatolenticular/terapia , Degeneração Hepatolenticular/metabolismo , Degeneração Hepatolenticular/tratamento farmacológico , Proteína Morfogenética Óssea 7/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Apoptose/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos , Espectroscopia de Prótons por Ressonância Magnética , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Hidroxiprolina/metabolismo
6.
Altern Lab Anim ; 51(6): 363-375, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831588

RESUMO

Human umbilical cord-derived mesenchymal stem cells (hucMSCs) can differentiate into multiple cell lineages, but few methods have been developed to generate kidney lineage cells. Due to their human origin, pluripotent nature and immunomodulatory properties, these stem cells are attractive candidates for clinical applications such as the repair or regeneration of damaged organs. This study evaluated the renal differentiation potential of hucMSCs, when exposed for 10 days to optimised concentrations of retinoic acid, activin-A and bone morphogenetic protein-7 (BMP-7) in various combinations, with and without the priming of the cells with a Wnt signalling pathway activator (CHIR99021). The hucMSCs were isolated and characterised according to surface marker expression (CD73, CD90, CD44, CD146 and CD8) and tri-lineage differentiation potential. The expression of key marker genes (OSR1, TBXT, HOXA13, SIX2, PAX2, KRT18 and ZO1) was examined by qRT-PCR. Specific marker protein expression (E-cadherin, cytokeratin-8 and cytokeratin-19) was analysed by immunocytochemistry. CHIR99021-primed cells treated with the retinoic acid, activin-A and BMP-7 cocktail showed epithelial cell-like differentiation - i.e. distinct phenotypic changes, as well as upregulated gene and protein expression, were observed that were consistent with an epithelial cell phenotype. Thus, our results showed that hucMSCs can efficiently differentiate into renal epithelial-like cells. This work may help in the development of focused therapeutic strategies, in which lineage-defined human stem cells can be used for renal regeneration.


Assuntos
Proteína Morfogenética Óssea 7 , Células-Tronco Mesenquimais , Humanos , Proteína Morfogenética Óssea 7/metabolismo , Cordão Umbilical , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Células Epiteliais , Tretinoína/metabolismo , Ativinas/farmacologia , Ativinas/metabolismo , Células Cultivadas
7.
Genes (Basel) ; 14(6)2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37372307

RESUMO

Bone morphogenetic proteins (BMPs) play important roles in a lot of biological processes, such as bone development, cell proliferation, cell differentiation, growth, etc. However, the functions of abalone BMP genes are still unknown. This study aimed to better understand the characterization and biological function of BMP7 of Haliotis discus hannai (hdh-BMP7) via cloning and sequencing analysis. The coding sequence (CDS) length of hdh-BMP7 is 1251 bp, which encodes 416 amino acids including a signal peptide (1-28 aa), a transforming growth factor-ß (TGF-ß) propeptide (38-272 aa), and a mature TGF-ß peptide (314-416 aa). The analysis of expression showed that hdh-BMP7 mRNA was widely expressed in all the examined tissues of H. discus hannai. Four SNPs were related to growth traits. The results of RNA interference (RNAi) showed that the mRNA expression levels of hdh-BMPR I, hdh-BMPR II, hdh-smad1, and hdh-MHC declined after hdh-BMP7 was silenced. After RNAi experiment for 30 days, the shell length, shell width, and total weight were found to be reduced in H. discus hannai (p < 0.05). The results of real-time quantitative reverse transcription PCR revealed that the hdh-BMP7 mRNA was lower in abalone of the S-DD-group than in the L-DD-group. Based on these data, we hypothesized that BMP7 gene has a positive role in the growth of H. discus hannai.


Assuntos
Proteína Morfogenética Óssea 7 , Gastrópodes , Animais , Proteína Morfogenética Óssea 7/metabolismo , Gastrópodes/genética , Gastrópodes/metabolismo , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Chem Biol Interact ; 382: 110559, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247809

RESUMO

BACKGROUND: Nephrotic syndrome (NS) is a chronic kidney disease mainly caused by impaired podocytes, ultimately resulting in massive proteinuria or even end-stage renal disease (ESRD). METHODS: The objective of this study was to explore the potential pathogenesis of NS caused by podocyte injury, and further explore the underlying mechanism through data mining, bioinformatics analysis, and experimental verification. The integrated analyses including Seurat, CellChat, gene ontology (GO), and molecular docking were performed based on the single-cell RNA-seq data (scRNA-seq). The adriamycin (ADR)-induced podocyte injury model in vitro was established to conduct the experimental verification for bioinformatics analysis results through western blot and real-time quantitative PCR (RT-qPCR). RESULTS: The results of bioinformatics analysis revealed that the bone morphogenetic protein (BMP) signaling pathway was involved in the podocyte-to-podocyte communication, which plays a crucial role in podocyte injury. The expression of BMP7 was significantly increased in ADR-induced podocytes through activating the Adenosine-monophosphate activated-protein kinase/Mammalian target of rapamycin (AMPK/mTOR) mediated autophagy pathway, and these findings were confirmed by in vitro experiments. CONCLUSION: This study first demonstrated that BMP7 participated in ADR-induced podocyte injury. The BMP7/AMPK/mTOR mediated autophagy pathway may play a crucial role in podocyte injury, which may be the potential therapeutic target for NS patients.


Assuntos
Podócitos , Animais , Humanos , Podócitos/metabolismo , Podócitos/patologia , Sirolimo/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Simulação de Acoplamento Molecular , Análise da Expressão Gênica de Célula Única , Serina-Treonina Quinases TOR/metabolismo , Doxorrubicina/toxicidade , Doxorrubicina/metabolismo , Mamíferos/metabolismo , Autofagia , Apoptose , Proteína Morfogenética Óssea 7/metabolismo
9.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37047609

RESUMO

Alterations in the expression of numerous genes and the miRNAs that are recognized as their regulators in the endometrial cells of women with endometriosis may disrupt the intracellular signaling pathways associated with epithelial-mesenchymal transition (EMT). So far, the functional role of BMP7 in endometrial physiology has been confirmed, especially in the context of fertility, but the role of the activation of a specific mechanism operating through the BMP-SMAD-CDH1 axis in the formation of endometrial lesions remains unexplored. The aim of this study was to evaluate the expression profile of miR-542-3p and the EMT markers (BMP7, SMAD4, CDH1) in matched eutopic endometrium (EUE) and ectopic endometrium (ECE) samples from women with endometriosis in relation to healthy women. The levels of expression of the studied genes and miRNA in peripheral blood mononuclear cells (PBMCs) obtained from women diagnosed with endometriosis and those without the disease were also evaluated. Fifty-four patients (n = 54: with endometriosis-n = 29 and without endometriosis-n = 25) were included in the study. A comparative analysis of the relative mean expression values (RQ) of the studied mRNA and miRNA assessed by RT-qPCR demonstrated downregulation of BMP7, SMAD4, and CDH1 expression in ectopic lesions and upregulation in the eutopic endometrium compared with the control group. In the eutopic tissue of women with endometriosis, miR-542-3p expression was similar to that of the control but significantly lower than in endometrial lesions. We also confirmed a trend towards a negative correlation between miR-542-3p and BMP7 in ectopic tissue, and in PBMC, a significant negative correlation of miR-542-3p with further BMP signaling genes, i.e., SMAD4 and CDH1, was observed. These results indicate that the miRNA selected by us may be a potential negative regulator of BMP7-SMAD4-CDH1 signaling associated with EMT. The different patterns of BMP7, SMAD4, and CDH1 gene expression in ECE, EUE, and the control endometrium observed by us suggests the loss of the endometrial epithelium phenotype in women with endometriosis and demonstrates their involvement in the pathogenesis and pathomechanism of this disease.


Assuntos
Endometriose , MicroRNAs , Doenças Uterinas , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Endometriose/metabolismo , Leucócitos Mononucleares/metabolismo , Doenças Uterinas/patologia , Endométrio/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo
10.
Neurochem Res ; 48(9): 2687-2700, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37071344

RESUMO

Excessive activation of pro-inflammatory (M1) microglia phenotypes after spinal cord injury (SCI) disrupts tissue repair and increases the risk of secondary SCI. We previously reported that adeno-associated virus (AAV) mediated delivery of bone morphogenetic protein 7 (BMP7) promotes functional recovery after SCI by reducing oligodendrocyte loss and demyelination; however, little is known about the early effects of BMP7 in ameliorating neuroinflammation in the acute SCI phase. Herein, we demonstrate that treatment with recombinant human BMP7 (rhBMP7) suppresses the viability of LPS-induced HMC3 microglia cells and increases the proportion with the M2 phenotype. Consistently, in a rat SCI model, rhBMP7 decreases the activation of microglia and promotes M2 polarization. After rhBMP7 administration, the STAT3 signaling pathway was activated in LPS-induced HMC3 cells and microglia in spinal cord lesions. Furthermore, the levels of TNF-α and IL-1ß were significantly decreased in cell culture supernatants, lesion sites of injured spinal cords, and cerebrospinal fluid circulation after rhBMP7 administration, thus reducing neuron loss in the injured spinal cord and promoting functional recovery after SCI. These results provide insight into the immediate early mechanisms by which BMP7 may ameliorate the inflammation response to secondary SCI.


Assuntos
Microglia , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Microglia/metabolismo , Doenças Neuroinflamatórias , Inflamação/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/farmacologia , Lipopolissacarídeos/toxicidade , Traumatismos da Medula Espinal/patologia , Medula Espinal/metabolismo , Fator de Transcrição STAT3/metabolismo
11.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901687

RESUMO

Bone effects attributed to bisphenols (BPs) include the inhibition of growth and differentiation. This study analyzes the effect of BPA analogs (BPS, BPF, and BPAF) on the gene expression of the osteogenic markers RUNX2, osterix (OSX), bone morphogenetic protein-2 (BMP-2), BMP-7, alkaline phosphatase (ALP), collagen-1 (COL-1), and osteocalcin (OSC). Human osteoblasts were obtained by primary culture from bone chips harvested during routine dental work in healthy volunteers and were treated with BPF, BPS, or BPAF for 24 h at doses of 10-5, 10-6, and 10-7 M. Untreated cells were used as controls. Real-time PCR was used to determine the expression of the osteogenic marker genes RUNX2, OSX, BMP-2, BMP-7, ALP, COL-1, and OSC. The expression of all studied markers was inhibited in the presence of each analog; some markers (COL-1; OSC, BMP2) were inhibited at all three doses and others only at the highest doses (10-5 and 10-6 M). Results obtained for the gene expression of osteogenic markers reveal an adverse effect of BPA analogs (BPF, BPS, and BPAF) on the physiology of human osteoblasts. The impact on ALP, COL-1, and OSC synthesis and therefore on bone matrix formation and mineralization is similar to that observed after exposure to BPA. Further research is warranted to determine the possible contribution of BP exposure to the development of bone diseases such as osteoporosis.


Assuntos
Proteína Morfogenética Óssea 7 , Subunidade alfa 1 de Fator de Ligação ao Core , Humanos , Proteína Morfogenética Óssea 7/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/metabolismo , Osteogênese , Expressão Gênica , Compostos Benzidrílicos/farmacologia
12.
Neurol Res ; 45(5): 440-448, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36542543

RESUMO

OBJECTIVES: Spinal cord injury (SCI) is caused by external direct or indirect factors with high disability rate, which may even endanger the life of patients. To explore the role of bone morphogenetic protein 7 (BMP-7) in the differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into neurons in vitro. METHODS: BMSCs were isolated and cultured by whole bone marrow adherence method. Adipogenic induction and osteogenic differentiation were used to test the multi⁃directional differentiation ability of BMSCs. RESULTS: After 28 days of adipogenic induction, BMSCs showed lipid droplets in the cytoplasm. After osteogenic induction, there were opaque lumps of mineral nodules in BMSCs. There were also orange-red or red mineral nodules in the extracellular matrix. The BMSCs in the 75 ng/ml BMP-7 group were morphologically similar to the neurons. After induction with BMP-7 for 2 h, the NF200 mRNA expression was higher, mRNA expression levels of SYN1, MAP2 and GFAP were higher. Positive rate of immunofluorescence staining in the BMP-7 group was notably increased. The positive rate of NSE immunofluorescence staining in the BMP-7 group was higher. CONCLUSION: BMP-7 can induce rat BMSCs to differentiate into neurons in vitro.


Assuntos
Proteína Morfogenética Óssea 7 , Células-Tronco Mesenquimais , Ratos , Animais , Proteína Morfogenética Óssea 7/farmacologia , Proteína Morfogenética Óssea 7/metabolismo , Osteogênese/genética , Células Cultivadas , Células da Medula Óssea/metabolismo , Diferenciação Celular , Neurônios , RNA Mensageiro/metabolismo
13.
Tissue Eng Part A ; 29(7-8): 200-210, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36565024

RESUMO

Periodontitis is an oral disease caused by bacterial infection that has stages according to the severity of tissue destruction. The advanced stage of periodontitis presents irreversible destruction of soft and hard tissues, which finally results in loss of teeth. When conventional treatment modalities show limited results, tissue regeneration therapy is required in patients with advanced periodontitis. In the present study, we aimed to evaluate the effect of bone marrow-derived mesenchymal stem cells (BM-MSCs) delivering bone morphogenetic protein 7 (BMP7) on tissue regeneration in a periodontitis model. BMP7 is a member of the BMP family that shows bone-forming ability; however, BMPs rapid clearing and degradation and unproven efficacy make it difficult to apply it in clinical dentistry. To overcome this, we established BMP7-expressing engineered BM-MSCs (BMP7-eBMSCs) that showed superior osteogenic differentiation potential when subcutaneously transplanted with a biphasic calcium phosphate scaffold into immunocompromised mice. Furthermore, the efficacy of BMP7-eBMSC transplantation for periodontal tissue regeneration was evaluated in a rat ligature-induced periodontitis model. Upon measuring two-dimensional and three-dimensional amounts of regenerated alveolar bone using microcomputed tomography, the amounts were found to be significantly higher in the BMP7-eBMSC transplantation group than in the eBMSC transplantation group. Most importantly, fibrous periodontal ligament (PDL) tissue regeneration was also achieved upon BMP7-eBMSC transplantation, which was evaluated by calculating the modified relative connective tissue attachment. The amount of connective tissue attachment in the BMP7-eBMSC transplantation group was significantly higher than that in the ligature-induced periodontitis group, although the increase was comparable between the BMP7-eBMSC and human PDL stem cell transplantation groups. Taken together, our results suggested that sustainable release of BMP7 induces periodontal tissue regeneration and that transplantation of BMP7-eBMSCs is a feasible treatment option for periodontal regeneration. Impact Statement Periodontitis is the second most common human dental disease affecting chronic systemic diseases. Despite the tremendous efforts trying to cure the damaged periodontal tissues using tissue engineering technologies, a definitive regenerative method has not been in consensus. Researchers are seeking more feasible and abundant source of mesenchymal stem cells (MSCs), and furthermore, how to use reliable growth factors under more efficient control are the issues to be solved. In this study, we aimed to evaluate the effect of bone morphogenetic protein 7 (BMP7) gene delivering bone marrow-derived MSCs on periodontal tissue regeneration to evaluate the efficacy of BMP7 and engineered BMSCs for periodontal tissue regeneration.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Periodontite , Humanos , Ratos , Camundongos , Animais , Osteogênese , Proteína Morfogenética Óssea 7/farmacologia , Proteína Morfogenética Óssea 7/metabolismo , Microtomografia por Raio-X , Transplante de Células-Tronco Mesenquimais/métodos , Periodontite/terapia , Periodontite/metabolismo , Ligamento Periodontal , Diferenciação Celular
14.
J Periodontal Res ; 58(2): 296-307, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36585537

RESUMO

OBJECTIVE: The aim of the study was to evaluate the effect of doxycycline- and dexamethasone-doped collagen membranes on the proliferation and differentiation of osteoblasts. BACKGROUND: Collagen barrier membranes are frequently used to promote bone regeneration and to boost this biological activity their functionalization with antibacterial and immunomodulatory substances has been suggested. METHODS: The design included commercially available collagen membranes doped with doxycycline (Dox-Col-M) or dexamethasone (Dex-Col-M), as well as undoped membranes (Col-M) as controls, which were placed in contact with cultured MG63 osteoblast-like cells (ATCC). Cell proliferation was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay and differentiation by measuring the alkaline phosphatase (ALP) activity using spectrophotometry. Real-time quantitative polymerase chain reaction was used to study the expression of the genes: Runx-2, OSX, ALP, OSC, OPG, RANKL, Col-I, BMP-2, BMP-7, TGF-ß1, VEGF, TGF-ßR1, TGF-ßR2, and TGF-ßR3. Scanning electron microscopy was used to study osteoblast morphology. Data were assessed using one-way analysis of variance or Kruskal-Wallis tests, once their distribution normality was assessed by Kolmogorov-Smirnov tests (p > .05). Bonferroni for multiple comparisons were carried out (p < .05). RESULTS: Osteoblast proliferation was significantly enhanced in the functionalized membranes as follows: (Col-M < Dex-Col-M < Dox-Col-M). ALP activity was significantly higher on cultured osteoblasts on Dox-Col-M. Runx-2, OSX, ALP, OSC, BMP-2, BMP-7, TGF-ß1, VEGF, TGF-ßR1, TGF-ßR2, and TGF-ßR3 were overexpressed, and RANKL was down-regulated in osteoblasts cultured on Dox-Col-M. The osteoblasts cultured in contact with the functionalized membranes demonstrated an elongated spindle-shaped morphology. CONCLUSION: The functionalization of collagen membranes with Dox promoted an increase in the proliferation and differentiation of osteoblasts.


Assuntos
Proteína Morfogenética Óssea 7 , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta1/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Doxiciclina/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Diferenciação Celular , Colágeno/farmacologia , Colágeno/metabolismo , Osteoblastos , Proliferação de Células , Dexametasona/farmacologia , Fosfatase Alcalina/metabolismo
15.
Sci Rep ; 12(1): 14850, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050373

RESUMO

Sizzled (Szl) is both a secreted frizzled related protein (sFRP) and a naturally occurring inhibitor of the zinc metalloproteinase bone morphogenetic protein-1 (BMP-1), a key regulator of extracellular matrix assembly and growth factor activation. Here we present a new crystal structure for Szl which differs from that previously reported by a large scale (90°) hinge rotation between its cysteine-rich and netrin-like domains. We also present results of a molecular docking analysis showing interactions likely to be involved in the inhibition of BMP-1 activity by Szl. When compared with known structures of BMP-1 in complex with small molecule inhibitors, this reveals features that may be helpful in the design of new inhibitors to prevent the excessive accumulation of extracellular matrix that is the hallmark of fibrotic diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Xenopus , Proteína Morfogenética Óssea 1/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas de Xenopus/metabolismo
16.
Growth Horm IGF Res ; 66: 101499, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084573

RESUMO

OBJECTIVES: Insulin-like growth factor 1 receptor (IGF-1R) is a transmembrane tyrosine kinase receptor of the insulin receptor family. Its expression is consistently increased in hepatocellular carcinoma (HCC) tissue, and it participates in hepatic carcinogenesis. Targeting IGF-1R may be a potential therapeutic approach against hepatocellular carcinoma. This study therefore aimed to explore the effect of IGF-1R on hepatocellular carcinoma cells. METHODS: IGF-1R silencing cell lines were established by small-interfering RNAs in hepatocellular carcinoma cell line SMMC7721, after which the proliferation, invasion, and apoptosis of SMMC7721 was evaluated. The activation of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and the expression of bone morphogenetic protein (BMP)-2 and BMP-7 were measured using Western blot analysis. RESULTS: The results indicated that the knockdown of IGF-1R can inhibit the proliferation and invasion of HCC and promote the apoptosis of SMMC7721 by inhibiting the PI3K/AKT signaling pathway. Furthermore, depletion of IGF-1R was found to suppress the expression of BMP-2 and BMP-7. CONCLUSIONS: The findings suggest that IGF-1R plays an important role in the progression of HCC. Therefore, IGF-1R is a potential target for the treatment of HCC in clinic.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptor IGF Tipo 1 , Humanos , Apoptose , Proteína Morfogenética Óssea 7/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias Hepáticas/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo
17.
Exp Oncol ; 44(1): 39-46, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35548963

RESUMO

The aim of the study was to compare the expression of markers of bone remodeling in vitro in breast cancer (BCa) cells and prostate cancer (PCa) cells varying in their malignancy phenotype. MATERIALS AND METHODS: The study was performed on human BCa cells (MCF-7 and MDA-MB-231 lines) and PCa cells (LNCaP and DU-145 lines). Expression levels of bone tissue remodeling proteins (osteopontin (OPN), osteonectin (ON) and bone morphogenetic protein 7 (BMP-7) were determined immunocytochemically. The mRNA levels of bone tissue remodeling proteins OPN (SPP1), ON (SPARC), BMP-7 (BMP7)) and miRNA-10b, -27a, -29b, -145, -146a were assessed by quantitative reverse transcription polymerase chain reaction. To search for miRNAs involved in the regulation of target genes, miRNet v. 2.0 resource was used. RESULTS: We have shown that highly malignant MDA-MB-231 cells are characterized by significantly higher expression of OPN and ON on the background of decreased SPARC and BMP7 mRNA expression. In highly malignant DU-145 cells, ON and SPP1, SPARC, and BMP7 mRNA expression was significantly higher compared with low malignant LNCaP cells. MDA-MB-231 line was characterized by significantly higher expression of miRNA-10b, -27a, -29b, -145 and -146a. In DU-145 cells, significantly lower levels of expression of miRNAs-27a and -145 against the background of increasing levels of miRNAs-29b and -146a were recorded. CONCLUSION: High malignancy phenotype of the BCa and PCa cells is characterized by high levels of expression of bone remodeling proteins, which may be caused by impaired regulation of their expression at the epigenetic level.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Próstata , Biomarcadores , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Osso e Ossos/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Neoplasias da Próstata/genética , RNA Mensageiro/genética
18.
Cell Death Dis ; 13(3): 254, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314669

RESUMO

Tubulointerstitial fibrosis (TIF) is involved in the development of diabetic kidney disease (DKD). Transforming growth factor ß1 (TGF-ß1) is involved in the extensive fibrosis of renal tissue by facilitating the partial epithelial-mesenchymal transition (EMT), increasing the synthesis of extracellular matrix (ECM), inhibiting degradation, inducing apoptosis of renal parenchyma cells, and activating renal interstitial fibroblasts and inflammatory cells. Recent studies indicated that bone morphogenetic protein-7 (BMP-7) upregulated the expression of endogenous SnoN against renal TIF induced by TGF-ß1 or hyperglycemia. Nevertheless, the mechanisms underlying the BMP-7-mediated restoration of SnoN protein level remains elusive. The present study demonstrated the increased expression of BMP-7 in diabetic mellitus (DM) mice by hydrodynamic tail vein injection of overexpressed BMP-7 plasmid, which attenuated the effects of DM on kidney in mice. Partial tubular EMT and the accumulation of Collagen-III were resisted in DM mice that received overexpressed BMP-7 plasmid. Similar in vivo results showed that BMP-7 was competent to alleviate NRK-52E cells undergoing partial EMT in a high-glucose milieu. Furthermore, exogenous BMP-7 activated the Smad1/5 pathway to promote gene transcription of SnoN and intervened ubiquitination of SnoN; both effects repaired the SnoN protein level in renal tubular cells and kidney tissues of DM mice. Therefore, these findings suggested that BMP-7 could upregulate SnoN mRNA and protein levels by activating the classical Smad1/5 pathway to refrain from the partial EMT of renal tubular epithelial cells and the deposition of ECM in DKD-induced renal fibrosis.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Proteína Morfogenética Óssea 7/metabolismo , Diabetes Mellitus/patologia , Nefropatias Diabéticas/patologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Fibrose , Túbulos Renais/patologia , Camundongos , Proteína Smad1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
19.
Physiol Rep ; 9(22): e15119, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34806343

RESUMO

Rheumatoid arthritis targets numerous organs in patients, including the skeletal muscle, resulting in rheumatoid cachexia. In the muscle niche, satellite cells, macrophages, and myofibroblasts may be affected and the factors they release altered. This study aimed to assess these cell types, cytokines, and growth factors and their relationships to muscle fiber size and number in a rodent collagen-induced arthritis (CIA) model, in order to identify new therapeutic targets. Fiber cross-sectional area (CSA) was 57% lower in CIA than controls (p < 0.0001), thus smaller but more fibers visible per field of view. Immunostaining indicated the increased presence of satellite cells, macrophages, myofibroblasts, and myonuclei per field of view in CIA (p < 0.01), but this finding was not maintained when taking fiber number into consideration. Western blots of gastrocnemius samples indicated that tumor necrosis factor-α was significantly elevated (p < 0.01) while interleukin-10 (IL-10) was decreased (p < 0.05) in CIA. This effect was maintained (and heightened for IL-10) when expressed per fiber number. Myogenic regulatory factors (MyoD and myogenin), transforming growth factor-ß and inhibitor of differentiation were significantly elevated in CIA muscle and levels correlated significantly with CSA. Several of these factors remained elevated, but bone morphogenetic protein-7 decreased when considering fiber number per area. In conclusion, CIA-muscle demonstrated a good regenerative response. Myoblast numbers per fiber were not elevated, suggesting their activity results from the persistent inflammatory signaling which also significantly hampered maintenance of muscle fiber size. A clearer picture of signaling events at cellular level in arthritis muscle may be derived from expressing data per fiber.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Caquexia/metabolismo , Inflamação/metabolismo , Músculo Esquelético/metabolismo , Regeneração/fisiologia , Animais , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Proteína Morfogenética Óssea 7/metabolismo , Caquexia/patologia , Citocinas/metabolismo , Interleucina-10/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Proteína MyoD/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Miogenina/metabolismo , Ratos , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Fator de Crescimento Transformador beta/metabolismo
20.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830044

RESUMO

BMPs regulate synovial quiescence and adult neurogenesis in the hippocampus in non-stress conditions. However, changes in BMP expression that are induced by inflammation during rheumatoid arthritis (RA) have not yet been reported. Here, we show that signalling with synovial BMPs (BMP-4 and -7) mediates the effect of systemic inflammation on adult neurogenesis in the hippocampus during pristane-induced arthritis (PIA) in Dark Agouti (DA) rats, an animal model of RA. Moreover, we show gender differences in BMP expressions and their antagonists (Noggin and Gremlin) during PIA and their correlations with the clinical course and IL-17A and TNF-α levels in serum. Our results indicate gender differences in the clinical course, where male rats showed earlier onset and earlier recovery but a worse clinical course in the first two phases of the disease (onset and peak), which correlates with the initial increase of serum IL-17A level. The clinical course of the female rats worsened in remission. Their prolonged symptoms could be a reflection of an increased TNF-α level in serum during remission. Synovial inflammation was greater in females in PIA-remission with greater synovial BMP and antagonist expressions. More significant correlations between serum cytokines (IL-17A and TNF-α), and synovial BMPs and their antagonists were found in females than in males. On the other hand, males showed an increase in hippocampal BMP-4 expression during the acute phase, but both genders showed a decrease in antagonist expressions during PIA in general. Both genders showed a decrease in the number of Ki-67+ and SOX-2+ and DCX+ cells and in the ratio of DCX+ to Ki67+ cells in the dentate gyrus during PIA. However, in PIA remission, females showed a faster increase in the number of Ki67+, SOX-2+, and DCX+ cells and a faster increase in the DCX/Ki67 ratio than males. Both genders showed an increase of hippocampal BMP-7 expression during remission, although males constantly showed greater BMP-7 expression at all time points. Our data show that gender differences exist in the BMP expressions in the periphery-hippocampus axis and in the IL-17A and TNF-α levels in serum, which could imply differences in the mechanisms for the onset and progression of the disease, the clinical course severity, and adult neurogenesis with subsequent neurological complications between genders.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Hipocampo/metabolismo , Articulações/metabolismo , Neurogênese , Envelhecimento , Animais , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Proteína Duplacortina/metabolismo , Feminino , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-17/sangue , Antígeno Ki-67/metabolismo , Masculino , Ratos , Fatores de Transcrição SOXB1/metabolismo , Fatores Sexuais , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Terpenos/toxicidade , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA