Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
J Biol Chem ; 299(5): 104705, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059180

RESUMO

The DNA mismatch repair (MMR) system is a major DNA repair system that suppresses both inherited and sporadic cancers in humans. In eukaryotes, the MutSα-dependent and MutSß-dependent MMR pathways correct DNA polymerase errors. Here, we investigated these two pathways on a whole genome level in Saccharomyces cerevisiae. We found that inactivation of MutSα-dependent MMR increases the genome-wide mutation rate by ∼17-fold and loss of MutSß-dependent MMR elevates the genome-wide mutation rate by ∼4-fold. We also found that MutSα-dependent MMR does not show a preference for protecting coding or noncoding DNA from mutations, whereas MutSß-dependent MMR preferentially protects noncoding DNA from mutations. The most frequent mutations in the msh6Δ strain are C>T transitions, whereas 1- to 6-bp deletions are the most common genetic alterations in the msh3Δ strain. Strikingly, MutSα-dependent MMR is more important than MutSß-dependent MMR for protection from 1-bp insertions, while MutSß-dependent MMR has a more critical role in the defense against 1-bp deletions and 2- to 6-bp indels. We also determined that a mutational signature of yeast MSH6 loss is similar to mutational signatures of human MMR deficiency. Furthermore, our analysis showed that compared to other 5'-NCN-3' trinucleotides, 5'-GCA-3' trinucleotides are at the highest risk of accumulating C>T transitions at the central position in the msh6Δ cells and that the presence of a G/A base at the -1 position is important for the efficient MutSα-dependent suppression of C>T transitions. Our results highlight key differences between the roles of the MutSα-dependent and MutSß-dependent MMR pathways.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteína MutS de Ligação de DNA com Erro de Pareamento , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo
2.
J Biol Chem ; 298(11): 102505, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36126773

RESUMO

MutS homologs (MSHs) are highly conserved core components of DNA mismatch repair. Mismatch recognition provokes ATP-binding by MSH proteins that drives a conformational transition from a short-lived lesion-searching clamp to an extremely stable sliding clamp on the DNA. Here, we have expanded on previous bulk biochemical studies to examine the stability, lifetime, and kinetics of bacterial and human MSH sliding clamps on mismatched DNA using surface plasmon resonance and single-molecule analysis of fluorescently labeled proteins. We found that ATP-bound MSH complexes bound to blocked-end or very long mismatched DNAs were extremely stable over a range of ionic conditions. These observations underpinned the development of a high-throughput Förster resonance energy transfer system that specifically detects the formation of MSH sliding clamps on mismatched DNA. The Förster resonance energy transfer system is capable of distinguishing between HsMSH2-HsMSH3 and HsMSH2-HsMSH6 and appears suitable for chemical inhibitor screens. Taken together, our results provide additional insight into MSH sliding clamps as well as methods to distinguish their functions in mismatch repair.


Assuntos
Proteínas de Escherichia coli , Proteína MutS de Ligação de DNA com Erro de Pareamento , Humanos , Trifosfato de Adenosina/metabolismo , Pareamento Incorreto de Bases , DNA/metabolismo , Reparo de Erro de Pareamento de DNA , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteínas MutS/genética , Ligação Proteica
3.
DNA Repair (Amst) ; 119: 103392, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36095926

RESUMO

MutS initiates mismatch repair by recognizing mismatches in newly replicated DNA. Specific interactions between MutS and mismatches within double-stranded DNA promote ADP-ATP exchange and a conformational change into a sliding clamp. Here, we demonstrated that MutS from Pseudomonas aeruginosa associates with primed DNA replication intermediates. The predicted structure of this MutS-DNA complex revealed a new DNA binding site, in which Asn 279 and Arg 272 appeared to directly interact with the 3'-OH terminus of primed DNA. Mutation of these residues resulted in a noticeable defect in the interaction of MutS with primed DNA substrates. Remarkably, MutS interaction with a mismatch within primed DNA induced a compaction of the protein structure and impaired the formation of an ATP-bound sliding clamp. Our findings reveal a novel DNA binding mode, conformational change and intramolecular signaling for MutS recognition of mismatches within primed DNA structures.


Assuntos
Proteínas de Escherichia coli , Proteína MutS de Ligação de DNA com Erro de Pareamento , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Pareamento Incorreto de Bases , DNA/metabolismo , Replicação do DNA , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Ligação Proteica
4.
Structure ; 30(7): 973-982.e4, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35439431

RESUMO

MutS family proteins are classified into MutS-I and -II lineages: MutS-I recognizes mismatched DNA and initiates mismatch repair, whereas MutS-II recognizes DNA junctions to modulate recombination. MutS-I forms dimeric clamp-like structures enclosing the mismatched DNA, and its composite ATPase sites regulate DNA-binding modes. Meanwhile, the structures of MutS-II have not been determined; accordingly, it remains unknown how MutS-II recognizes DNA junctions and how nucleotides control DNA binding. Here, we solved the ligand-free and ADP-bound crystal structures of bacterial MutS2 belonging to MutS-II. MutS2 also formed a dimeric clamp-like structure with composite ATPase sites. The ADP-bound MutS2 was more flexible compared to the ligand-free form and could be more suitable for DNA entry. The inner hole of the MutS2 clamp was two times larger than that of MutS-I, and site-directed mutagenesis analyses revealed DNA-binding sites at the inner hole. Based on these, a model is proposed that describes how MutS2 recognizes DNA junctions.


Assuntos
Proteínas de Escherichia coli , Proteína MutS de Ligação de DNA com Erro de Pareamento , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/química , Proteínas de Bactérias/química , DNA/metabolismo , Reparo de Erro de Pareamento de DNA , Proteínas de Escherichia coli/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo
5.
Molecules ; 27(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35458636

RESUMO

Covalent protein capture (cross-linking) by reactive DNA derivatives makes it possible to investigate structural features by fixing complexes at different stages of DNA-protein recognition. The most common cross-linking methods are based on reactive groups that interact with native or engineered cysteine residues. Nonetheless, high reactivity of most of such groups leads to preferential fixation of early-stage complexes or even non-selective cross-linking. We synthesised a set of DNA reagents carrying an acrylamide group attached to the C5 atom of a 2'-deoxyuridine moiety via various linkers and studied cross-linking with MutS as a model protein. MutS scans DNA for mismatches and damaged nucleobases and can form multiple non-specific complexes with DNA that may cause non-selective cross-linking. By varying the length of the linker between DNA and the acrylamide group and by changing the distance between the reactive nucleotide and a mismatch in the duplex, we showed that cross-linking occurs only if the distance between the acrylamide group and cysteine is optimal within the DNA-protein complex. Thus, acrylamide-modified DNA duplexes are excellent tools for studying DNA-protein interactions because of high selectivity of cysteine trapping.


Assuntos
Cisteína , Proteínas de Escherichia coli , Acrilamida , Pareamento Incorreto de Bases , Cisteína/química , DNA/química , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteínas
7.
Nat Struct Mol Biol ; 29(1): 59-66, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35013597

RESUMO

DNA mismatch repair detects and corrects mismatches introduced during DNA replication. The protein MutS scans for mismatches and coordinates the repair cascade. During this process, MutS undergoes multiple conformational changes in response to ATP binding, hydrolysis and release, but how ATP induces the various MutS conformations is incompletely understood. Here we present four cryogenic electron microscopy structures of Escherichia coli MutS at sequential stages of the ATP hydrolysis cycle that reveal how ATP binding and hydrolysis induce closing and opening of the MutS dimer, respectively. Biophysical analysis demonstrates how DNA binding modulates the ATPase cycle by prevention of hydrolysis during scanning and mismatch binding, while preventing ADP release in the sliding clamp state. Nucleotide release is achieved when MutS encounters single-stranded DNA that is produced during removal of the daughter strand. The combination of ATP binding and hydrolysis and its modulation by DNA enables MutS to adopt the different conformations needed to coordinate the sequential steps of the mismatch repair cascade.


Assuntos
Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Reparo de Erro de Pareamento de DNA , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/ultraestrutura , Difosfato de Adenosina/metabolismo , Domínio Catalítico , Escherichia coli , Hidrólise , Modelos Moleculares , Ligação Proteica , Multimerização Proteica
8.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34402879

RESUMO

MutS is a key component of the mismatch repair (MMR) pathway. Members of the MutS protein family are present in prokaryotes, eukaryotes, and viruses. Six MutS homologs (MSH1-6) have been identified in yeast, of which three function in nuclear MMR, while MSH1 functions in mitochondrial DNA repair. MSH proteins are believed to be well conserved in animals, except for MSH1-which is thought to be lost. Two intriguing exceptions to this general picture have been found, both in the class Anthozoa within the phylum Cnidaria. First, an ortholog of the yeast-MSH1 was reported in one hexacoral species. Second, a MutS homolog (mtMutS) has been found in the mitochondrial genome of all octocorals. To understand the origin and potential functional implications of these exceptions, we investigated the evolution of the MutS family both in Cnidaria and in animals in general. Our study confirmed the acquisition of octocoral mtMutS by horizontal gene transfer from a giant virus. Surprisingly, we identified MSH1 in all hexacorals and several sponges and placozoans. By contrast, MSH1 orthologs were lacking in other cnidarians, ctenophores, and bilaterian animals. Furthermore, while we identified MSH2 and MSH6 in nearly all animals, MSH4, MSH5, and, especially, MSH3 were missing in multiple species. Overall, our analysis revealed a dynamic evolution of the MutS family in animals, with multiple losses of MSH1, MSH3, some losses of MSH4 and MSH5, and a gain of the octocoral mtMutS. We propose that octocoral mtMutS functionally replaced MSH1 that was present in the common ancestor of Anthozoa.


Assuntos
Proteínas de Saccharomyces cerevisiae , Animais , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Nucleic Acids Res ; 48(20): 11322-11334, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080020

RESUMO

Mismatch repair is a highly conserved cellular pathway responsible for repairing mismatched dsDNA. Errors are detected by the MutS enzyme, which most likely senses altered mechanical property of damaged dsDNA rather than a specific molecular pattern. While the curved shape of dsDNA in crystallographic MutS/DNA structures suggests the role of DNA bending, the theoretical support is not fully convincing. Here, we present a computational study focused on a base-pair opening into the minor groove, a specific base-pair motion observed upon interaction with MutS. Propensities for the opening were evaluated in terms of two base-pair parameters: Opening and Shear. We tested all possible base pairs in anti/anti, anti/syn and syn/anti orientations and found clear discrimination between mismatches and canonical base-pairs only for the opening into the minor groove. Besides, the discrimination gap was also confirmed in hotspot and coldspot sequences, indicating that the opening could play a more significant role in the mismatch recognition than previously recognized. Our findings can be helpful for a better understanding of sequence-dependent mutability. Further, detailed structural characterization of mismatches can serve for designing anti-cancer drugs targeting mismatched base pairs.


Assuntos
Pareamento Incorreto de Bases , Reparo de Erro de Pareamento de DNA , DNA/química , Simulação de Dinâmica Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Pareamento de Bases , Biologia Computacional , DNA/metabolismo , Ligação de Hidrogênio , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Termodinâmica
10.
Proc Natl Acad Sci U S A ; 117(30): 17775-17784, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32669440

RESUMO

DNA mismatch repair (MMR), the guardian of the genome, commences when MutS identifies a mismatch and recruits MutL to nick the error-containing strand, allowing excision and DNA resynthesis. Dominant MMR models posit that after mismatch recognition, ATP converts MutS to a hydrolysis-independent, diffusive mobile clamp that no longer recognizes the mismatch. Little is known about the postrecognition MutS mobile clamp and its interactions with MutL. Two disparate frameworks have been proposed: One in which MutS-MutL complexes remain mobile on the DNA, and one in which MutL stops MutS movement. Here we use single-molecule FRET to follow the postrecognition states of MutS and the impact of MutL on its properties. In contrast to current thinking, we find that after the initial mobile clamp formation event, MutS undergoes frequent cycles of mismatch rebinding and mobile clamp reformation without releasing DNA. Notably, ATP hydrolysis is required to alter the conformation of MutS such that it can recognize the mismatch again instead of bypassing it; thus, ATP hydrolysis licenses the MutS mobile clamp to rebind the mismatch. Moreover, interaction with MutL can both trap MutS at the mismatch en route to mobile clamp formation and stop movement of the mobile clamp on DNA. MutS's frequent rebinding of the mismatch, which increases its residence time in the vicinity of the mismatch, coupled with MutL's ability to trap MutS, should increase the probability that MutS-MutL MMR initiation complexes localize near the mismatch.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Pareamento Incorreto de Bases , DNA/química , DNA/genética , Hidrólise , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Proteínas MutL/química , Proteínas MutL/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Relação Estrutura-Atividade
11.
Talanta ; 205: 120154, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450442

RESUMO

Mutant DNAs are important markers useful for the diagnosis of human disease. Single-nucleotide polymorphisms (SNPs) represent the most common types of DNA mutations. As there is only a one base pair change in a single nucleotide between the SNP and the wild-type DNA, it is difficult to distinguish the SNPs. In this report, a highly sensitive and selective detection and discrimination of SNPs is performed using MutS, gold nanoparticles (AuNP) and a resonator. A single mismatched base exists between the SNP mutation and the probe DNA on the resonator, and MutS binds to the DNA at the location of the mismatch. As MutS is attached to AuNP (MutS-AuNP), both MutS and AuNP are adsorbed onto the resonator. The detection is based on the resonance frequency shift of the resonator following the adsorption of MutS-AuNP on the resonator. Highly sensitive detection of DNA mutations was achieved using AuNPs that act as mass amplifiers, and the obtained limit of detected was 100 fM. Additionally, our proposed method detected mutations in the presence of as little as 0.1% wild-type, and discrimination of specific mutations was also achieved. The results obtained from our proposed method suggest its potential for diagnosing cancer patients.


Assuntos
Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Microtecnologia/instrumentação , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Polimorfismo de Nucleotídeo Único , Humanos , Simulação de Dinâmica Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Mutação , Tamanho da Partícula , Conformação Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética
12.
J Biol Chem ; 294(15): 5813-5826, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30770470

RESUMO

MutL homolog 1 (MLH1) is a key DNA mismatch repair protein, which plays an important role in maintenance of genomic stability and the DNA damage response. Here, we report that MLH1 is a novel substrate of histone deacetylase 6 (HDAC6). HDAC6 interacts with and deacetylates MLH1 both in vitro and in vivo Interestingly, deacetylation of MLH1 blocks the assembly of the MutSα-MutLα complex. Moreover, we have identified four novel acetylation sites in MLH1 by MS analysis. The deacetylation mimetic mutant, but not the WT and the acetylation mimetic mutant, of MLH1 confers resistance to 6-thioguanine. Overall, our findings suggest that the MutSα-MutLα complex serves as a sensor for DNA damage response and that HDAC6 disrupts the MutSα-MutLα complex by deacetylation of MLH1, leading to the tolerance of DNA damage.


Assuntos
Dano ao DNA , Desacetilase 6 de Histona/metabolismo , Proteína 1 Homóloga a MutL/metabolismo , Acetilação/efeitos dos fármacos , Linhagem Celular , Desacetilase 6 de Histona/genética , Humanos , Proteína 1 Homóloga a MutL/genética , Proteínas MutL/genética , Proteínas MutL/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Mutação , Tioguanina/farmacologia
13.
Nucleic Acids Res ; 46(20): 10782-10795, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30272207

RESUMO

MutS homologs identify base-pairing errors made in DNA during replication and initiate their repair. In the presence of adenosine triphosphate, MutS induces DNA bending upon mismatch recognition and subsequently undergoes conformational transitions that promote its interaction with MutL to signal repair. In the absence of MutL, these transitions lead to formation of a MutS mobile clamp that can move along the DNA. Previous single-molecule FRET (smFRET) studies characterized the dynamics of MutS DNA-binding domains during these transitions. Here, we use protein-DNA and DNA-DNA smFRET to monitor DNA conformational changes, and we use kinetic analyses to correlate DNA and protein conformational changes to one another and to the steps on the pathway to mobile clamp formation. The results reveal multiple sequential structural changes in both MutS and DNA, and they suggest that DNA dynamics play a critical role in the formation of the MutS mobile clamp. Taking these findings together with data from our previous studies, we propose a unified model of coordinated MutS and DNA conformational changes wherein initiation of mismatch repair is governed by a balance of DNA bending/unbending energetics and MutS conformational changes coupled to its nucleotide binding properties.


Assuntos
Pareamento Incorreto de Bases/genética , Reparo de Erro de Pareamento de DNA , DNA/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Conformação de Ácido Nucleico , Pareamento de Bases/fisiologia , Reparo de Erro de Pareamento de DNA/genética , Escherichia coli , Transferência Ressonante de Energia de Fluorescência , Instabilidade Genômica/genética , Modelos Moleculares , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica/fisiologia , Conformação Proteica , Domínios Proteicos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
14.
Proc Natl Acad Sci U S A ; 115(38): 9598-9603, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30181289

RESUMO

Somatic mutations on glycine 34 of histone H3 (H3G34) cause pediatric cancers, but the underlying oncogenic mechanism remains unknown. We demonstrate that substituting H3G34 with arginine, valine, or aspartate (H3G34R/V/D), which converts the non-side chain glycine to a large side chain-containing residue, blocks H3 lysine 36 (H3K36) dimethylation and trimethylation by histone methyltransferases, including SETD2, an H3K36-specific trimethyltransferase. Our structural analysis reveals that the H3 "G33-G34" motif is recognized by a narrow substrate channel, and that H3G34/R/V/D mutations impair the catalytic activity of SETD2 due to steric clashes that impede optimal SETD2-H3K36 interaction. H3G34R/V/D mutations also block H3K36me3 from interacting with mismatch repair (MMR) protein MutSα, preventing the recruitment of the MMR machinery to chromatin. Cells harboring H3G34R/V/D mutations display a mutator phenotype similar to that observed in MMR-defective cells. Therefore, H3G34R/V/D mutations promote genome instability and tumorigenesis by inhibiting MMR activity.


Assuntos
Carcinogênese/genética , Glioma/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Linhagem Celular Tumoral , Criança , Reparo de Erro de Pareamento de DNA/genética , Instabilidade Genômica/genética , Glioma/patologia , Glicina/genética , Células HEK293 , Histonas/metabolismo , Humanos , Metilação , Mutação , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional/genética
15.
J Biol Chem ; 293(37): 14285-14294, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30072380

RESUMO

Sliding clamps on DNA consist of evolutionarily conserved enzymes that coordinate DNA replication, repair, and the cellular DNA damage response. MutS homolog (MSH) proteins initiate mismatch repair (MMR) by recognizing mispaired nucleotides and in the presence of ATP form stable sliding clamps that randomly diffuse along the DNA. The MSH sliding clamps subsequently load MutL homolog (MLH/PMS) proteins that form a second extremely stable sliding clamp, which together coordinate downstream MMR components with the excision-initiation site that may be hundreds to thousands of nucleotides distant from the mismatch. Specific or nonspecific binding of other proteins to the DNA between the mismatch and the distant excision-initiation site could conceivably obstruct the free diffusion of these MMR sliding clamps, inhibiting their ability to initiate repair. Here, we employed bulk biochemical analysis, single-molecule fluorescence imaging, and mathematical modeling to determine how sliding clamps might overcome such hindrances along the DNA. Using both bacterial and human MSH proteins, we found that increasing the number of MSH sliding clamps on a DNA decreased the association of the Escherichia coli transcriptional repressor LacI to its cognate promoter LacO. Our results suggest a simple mechanism whereby thermal diffusion of MSH sliding clamps along the DNA alters the association kinetics of other DNA-binding proteins over extended distances. These observations appear generally applicable to any stable sliding clamp that forms on DNA.


Assuntos
DNA Bacteriano/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Thermus/metabolismo , Trifosfato de Adenosina/metabolismo , Pareamento Incorreto de Bases , Modelos Teóricos , Ligação Proteica , Ressonância de Plasmônio de Superfície
16.
Sci Rep ; 8(1): 10036, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968756

RESUMO

We report that long double-stranded DNA confined to quasi-1D nanochannels undergoes superdiffusive motion under the action of the enzyme T4 DNA ligase in the presence of necessary co-factors. Inside the confined environment of the nanochannel, double-stranded DNA molecules stretch out due to self-avoiding interactions. In absence of a catalytically active enzyme, we see classical diffusion of the center of mass. However, cooperative interactions of proteins with the DNA can lead to directed motion of DNA molecules inside the nanochannel. Here we show directed motion in this configuration for three different proteins (T4 DNA ligase, MutS, E. coli DNA ligase) in the presence of their energetic co-factors (ATP, NAD+).


Assuntos
DNA Ligases/metabolismo , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Ligases/fisiologia , Proteínas de Ligação a DNA/genética , Difusão , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Movimento (Física) , Proteína MutS de Ligação de DNA com Erro de Pareamento/fisiologia , NAD/metabolismo
17.
Nucleic Acids Res ; 46(1): 256-266, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29182773

RESUMO

The DNA mismatch repair (MMR) pathway removes errors that appear during genome replication. MutS is the primary mismatch sensor and forms an asymmetric dimer that encircles DNA to bend it to scan for mismatches. The mechanism utilized to load DNA into the central tunnel was unknown and the origin of the force required to bend DNA was unclear. We show that, in absence of DNA, MutS forms a symmetric dimer wherein a gap exists between the monomers through which DNA can enter the central tunnel. The comparison with structures of MutS-DNA complexes suggests that the mismatch scanning monomer (Bm) will move by nearly 50 Å to associate with the other monomer (Am). Consequently, the N-terminal domains of both monomers will press onto DNA to bend it. The proposed mechanism of toroid formation evinces that the force required to bend DNA arises primarily due to the movement of Bm and hence, the MutS dimer acts like a pair of pliers to bend DNA. We also shed light on the allosteric mechanism that influences the expulsion of adenosine triphosphate from Am on DNA binding. Overall, this study provides mechanistic insight regarding the primary event in MMR i.e. the assembly of the MutS-DNA complex.


Assuntos
Proteínas de Bactérias/metabolismo , Pareamento Incorreto de Bases , Reparo de Erro de Pareamento de DNA , DNA/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , DNA/química , DNA/genética , Modelos Moleculares , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , Multimerização Proteica
18.
Methods Enzymol ; 592: 77-101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28668131

RESUMO

DNA mismatch repair (MMR) is necessary to prevent incorporation of polymerase errors into the newly synthesized DNA strand, as they would be mutagenic. In humans, errors in MMR cause a predisposition to cancer, called Lynch syndrome. The MMR process is performed by a set of ATPases that transmit, validate, and couple information to identify which DNA strand requires repair. To understand the individual steps in the repair process, it is useful to be able to study these large molecular machines structurally and functionally. However, the steps and states are highly transient; therefore, the methods to capture and enrich them are essential. Here, we describe how single-cysteine variants can be used for specific cross-linking and labeling approaches that allow trapping of relevant transient states. Analysis of these defined states in functional and structural studies is instrumental to elucidate the molecular mechanism of this important DNA MMR process.


Assuntos
Reagentes de Ligações Cruzadas/química , Cisteína/química , Reparo de Erro de Pareamento de DNA , Proteínas de Escherichia coli/química , Escherichia coli/química , Transferência Ressonante de Energia de Fluorescência/métodos , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Cisteína/genética , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Mutação Puntual , Conformação Proteica
19.
J Mol Diagn ; 19(1): 57-64, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27810331

RESUMO

Colorectal (CRCs) and endometrioid (EMCs) cancers in patients with Lynch syndrome exhibit microsatellite instability (MSI) detected by PCR or immunohistochemistry (IHC). While both assays are equally sensitive for CRCs, some suggest that PCR has a higher false-negative rate than IHC in EMCs. We assessed the MSI profiles of 91 EMC and 311 CRC specimens using five mononucleotide repeat markers: BAT25, BAT26, NR21, NR24, and MONO27. EMCs with high MSI (MSI-H) showed a mean left shift of 3 nucleotides (nt), which was significantly different from 6 nt in CRCs. A shift of 1 nt was observed in multiple markers in 76% of MSI-H EMCs, whereas only 12% of MSI-H CRCs displayed a 1-nt shift in one of five markers. IHC against four mismatch repair proteins was performed in 78 EMCs. Loss of staining in one or more proteins was detected in 18 of 19 tumors that were MSI-H by PCR. When EMC tumor cell burden was diluted to <30%, MSI-H was no longer observed in two of three EMCs with a mean nucleotide shift of 1 nt. These results indicate that EMC and CRC MSI profiles are different and that caution should be exercised when interpreting the results, as subtle, 1-nt changes may be missed. These findings provide a potential cause of previously reported discordant MSI and IHC results in EMCs.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Endometrioide/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias do Endométrio/genética , Instabilidade de Microssatélites , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Endometrioide/metabolismo , Carcinoma Endometrioide/patologia , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Reações Falso-Negativas , Feminino , Humanos , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Estudos Retrospectivos , Adulto Jovem
20.
Nature ; 539(7630): 583-587, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27851738

RESUMO

Mismatched nucleotides arise from polymerase misincorporation errors, recombination between heteroallelic parents and chemical or physical DNA damage. Highly conserved MutS (MSH) and MutL (MLH/PMS) homologues initiate mismatch repair and, in higher eukaryotes, act as DNA damage sensors that can trigger apoptosis. Defects in human mismatch repair genes cause Lynch syndrome or hereditary non-polyposis colorectal cancer and 10-40% of related sporadic tumours. However, the collaborative mechanics of MSH and MLH/PMS proteins have not been resolved in any organism. We visualized Escherichia coli (Ec) ensemble mismatch repair and confirmed that EcMutS mismatch recognition results in the formation of stable ATP-bound sliding clamps that randomly diffuse along the DNA with intermittent backbone contact. The EcMutS sliding clamps act as a platform to recruit EcMutL onto the mismatched DNA, forming an EcMutS-EcMutL search complex that then closely follows the DNA backbone. ATP binding by EcMutL establishes a second long-lived DNA clamp that oscillates between the principal EcMutS-EcMutL search complex and unrestricted EcMutS and EcMutL sliding clamps. The EcMutH endonuclease that targets mismatch repair excision only binds clamped EcMutL, increasing its DNA association kinetics by more than 1,000-fold. The assembly of an EcMutS-EcMutL-EcMutH search complex illustrates how sequential stable sliding clamps can modulate one-dimensional diffusion mechanics along the DNA to direct mismatch repair.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA/metabolismo , Difusão , Proteínas de Escherichia coli/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas MutL/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Trifosfato de Adenosina/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/química , Endonucleases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Cinética , Complexos Multiproteicos/química , Proteínas MutL/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Transporte Proteico , Imagem Individual de Molécula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA