Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
J Nanobiotechnology ; 22(1): 247, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741123

RESUMO

Tyrosine kinase inhibitors have been the standard treatment for patients with Philadelphia chromosome-positive (Ph+) leukemia. However, a series of issues, including drug resistance, relapse and intolerance, are still an unmet medical need. Here, we report the targeted siRNA-based lipid nanoparticles in Ph+ leukemic cell lines for gene therapy of Ph+ leukemia, which specifically targets a recently identified NEDD8 E3 ligase RAPSYN in Ph+ leukemic cells to disrupt the neddylation of oncogenic BCR-ABL. To achieve the specificity for Ph+ leukemia therapy, a single-chain fragment variable region (scFv) of anti-CD79B monoclonal antibody was covalently conjugated on the surface of OA2-siRAPSYN lipid nanoparticles to generate the targeted lipid nanoparticles (scFv-OA2-siRAPSYN). Through effectively silencing RAPSYN gene in leukemic cell lines by the nanoparticles, BCR-ABL was remarkably degraded accompanied by the inhibition of proliferation and the promotion of apoptosis. The specific targeting, therapeutic effects and systemic safety were further evaluated and demonstrated in cell line-derived mouse models. The present study has not only addressed the clinical need of Ph+ leukemia, but also enabled gene therapy against a less druggable target.


Assuntos
Proteínas de Fusão bcr-abl , Nanopartículas , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Nanopartículas/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Inativação Gênica , RNA Interferente Pequeno , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Camundongos Endogâmicos BALB C , Apoptose/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Terapia Genética/métodos , Proliferação de Células/efeitos dos fármacos , Feminino
2.
Free Radic Biol Med ; 219: 76-87, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604315

RESUMO

Diabetic retinopathy (DR) is a highly hazardous and widespread complication of diabetes mellitus (DM). The accumulated reactive oxygen species (ROS) play a central role in DR development. The aim of this research was to examine the impact and mechanisms of mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEV) on regulating ROS and retinal damage in DR. Intravitreal injection of sEV inhibited Cullin3 neddylation, stabilized Nrf2, decreased ROS, reduced retinal inflammation, suppressed Müller gliosis, and mitigated DR. Based on MSC-sEV miRNA sequencing, bioinformatics software, and dual-luciferase reporter assay, miR-143-3p was identified to be the key effector for MSC-sEV's role in regulating neural precursor cell expressed developmentally down-regulated 8 (NEDD8)-mediated neddylation. sEV were able to be internalized by Müller cells. Compared to advanced glycation end-products (AGEs)-induced Müller cells, sEV coculture decreased Cullin3 neddylation, activated Nrf2 signal pathway to combat ROS-induced inflammation. The barrier function of endothelial cells was impaired when endothelial cells were treated with the supernatant of AGEs-induced Müller cells, but was restored when treated with supernatant of AGEs-induced Müller cells cocultured with sEV. The protective effect of sEV was, however, compromised when miR-143-3p was inhibited in sEV. Moreover, the protective efficacy of sEV was diminished when NEDD8 was overexpressed in Müller cells. These findings showed MSC-sEV delivered miR-143-3p to inhibit Cullin3 neddylation, stabilizing Nrf2 to counteract ROS-induced inflammation and reducing vascular leakage. Our findings suggest that MSC-sEV may be a potential nanotherapeutic agent for DR, and that Cullin3 neddylation could be a new target for DR therapy.


Assuntos
Proteínas Culina , Retinopatia Diabética , Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Proteína NEDD8 , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Retinopatia Diabética/patologia , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteínas Culina/metabolismo , Proteínas Culina/genética , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Transdução de Sinais , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/genética , Produtos Finais de Glicação Avançada/metabolismo , Camundongos Endogâmicos C57BL
3.
Nat Commun ; 15(1): 3581, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678024

RESUMO

Immune checkpoint blockade therapy aims to activate the immune system to eliminate cancer cells. However, clinical benefits are only recorded in a subset of patients. Here, we leverage genome-wide CRISPR/Cas9 screens in a Tumor-Immune co-Culture System focusing on triple-negative breast cancer (TNBC). We reveal that NEDD8 loss in cancer cells causes a vulnerability to nivolumab (anti-PD-1). Genetic deletion of NEDD8 only delays cell division initially but cell proliferation is unaffected after recovery. Since the NEDD8 gene is commonly essential, we validate this observation with additional CRISPR screens and uncover enhanced immunogenicity in NEDD8 deficient cells using proteomics. In female immunocompetent mice, PD-1 blockade lacks efficacy against established EO771 breast cancer tumors. In contrast, we observe tumor regression mediated by CD8+ T cells against Nedd8 deficient EO771 tumors after PD-1 blockade. In essence, we provide evidence that NEDD8 is conditionally essential in TNBC and presents as a synergistic drug target for PD-1/L1 blockade therapy.


Assuntos
Inibidores de Checkpoint Imunológico , Proteína NEDD8 , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sistemas CRISPR-Cas , Inibidores de Checkpoint Imunológico/farmacologia , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
4.
Free Radic Biol Med ; 219: 127-140, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614228

RESUMO

Doxorubicin (DOX) is a widely utilized chemotherapeutic agent in clinical oncology for treating various cancers. However, its clinical use is constrained by its significant side effects. Among these, the development of cardiomyopathy, characterized by cardiac remodeling and eventual heart failure, stands as a major concern following DOX chemotherapy. In our current investigation, we have showcased the efficacy of MLN4924 in mitigating doxorubicin-induced cardiotoxicity through direct inhibition of the NEDD8-activating enzyme, NAE. MLN4924 demonstrated the ability to stabilize mitochondrial function post-doxorubicin treatment, diminish cardiomyocyte apoptosis, alleviate oxidative stress-induced damage in the myocardium, enhance cardiac contractile function, mitigate cardiac fibrosis, and impede cardiac remodeling associated with heart failure. At the mechanistic level, MLN4924 intervened in the neddylation process by inhibiting the NEDD8 activating enzyme, NAE, within the murine cardiac tissue subsequent to doxorubicin treatment. This intervention resulted in the suppression of NEDD8 protein expression, reduction in neddylation activity, and consequential manifestation of cardioprotective effects. Collectively, our findings posit MLN4924 as a potential therapeutic avenue for mitigating doxorubicin-induced cardiotoxicity by attenuating heightened neddylation activity through NAE inhibition, thereby offering a viable and promising treatment modality for afflicted patients.


Assuntos
Apoptose , Cardiotoxicidade , Ciclopentanos , Doxorrubicina , Miócitos Cardíacos , Proteína NEDD8 , Pirimidinas , Animais , Doxorrubicina/efeitos adversos , Ciclopentanos/farmacologia , Ciclopentanos/uso terapêutico , Pirimidinas/farmacologia , Camundongos , Proteína NEDD8/metabolismo , Proteína NEDD8/antagonistas & inibidores , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/patologia , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Masculino , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Camundongos Endogâmicos C57BL
5.
Int J Oncol ; 64(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38391033

RESUMO

Neddylation, akin to ubiquitination, represents a post­translational modification of proteins wherein neural precursor cell­expressed developmentally downregulated protein 8 (NEDD8) is modified on the substrate protein through a series of reactions. Neddylation plays a pivotal role in the growth and proliferation of animal cells. In colorectal cancer (CRC), it predominantly contributes to the proliferation, metastasis and survival of tumor cells, decreasing overall patient survival. The strategic manipulation of the NEDD8­mediated neddylation pathway holds immense therapeutic promise in terms of the potential to modulate the growth of tumors by regulating diverse biological responses within cancer cells, such as DNA damage response and apoptosis, among others. MLN4924 is an inhibitor of NEDD8, and its combined use with platinum drugs and irinotecan, as well as cycle inhibitors and NEDD activating enzyme inhibitors screened by drug repurposing, has been found to exert promising antitumor effects. The present review summarizes the recent progress made in the understanding of the role of NEDD8 in the advancement of CRC, suggesting that NEDD8 is a promising anti­CRC target.


Assuntos
Neoplasias Colorretais , Ubiquitinas , Animais , Humanos , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitinas/genética
6.
Adv Sci (Weinh) ; 11(9): e2305907, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126621

RESUMO

Cell cycle dysregulation is a defining feature of breast cancer. Here, 1-methyl-nicotinamide (1-MNA), metabolite of nicotinamide N-methyltransferase(NNMT) is identified, as a novel driver of cell-cycle progression in breast cancer. NNMT, highly expressed in breast cancer tissues, positively correlates with tumor grade, TNM stage, Ki-67 index, and tumor size. Ablation of NNMT expression dramatically suppresses cell proliferation and causes cell-cycle arrest in G0/G1 phase. This phenomenon predominantly stems from the targeted action of 1-MNA, resulting in a specific down-regulation of p27 protein expression. Mechanistically, 1-MNA expedites the degradation of p27 proteins by enhancing cullin-1 neddylation, crucial for the activation of Cullin-1-RING E3 ubiquitin ligase(CRL1)-an E3 ubiquitin ligase targeting p27 proteins.  NNMT/1-MNA specifically up-regulates the expression of UBC12, an E2 NEDD8-conjugating enzyme required for cullin-1 neddylation. 1-MNA showes high binding affinity to UBC12, extending the half-life of UBC12 proteins via preventing their localization to lysosome for degradation. Therefore, 1-MNA is a bioactive metabolite that promotes breast cancer progression by reinforcing neddylation pathway-mediated p27 degradation. The study unveils the link between NNMT enzymatic activity with cell-cycle progression, indicating that 1-MNA may be involved in the remodeling of tumor microenvironment.


Assuntos
Neoplasias da Mama , Proteínas Culina , Humanos , Feminino , Proteínas Culina/metabolismo , Proteína NEDD8/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Processamento de Proteína Pós-Traducional , Microambiente Tumoral , Nicotinamida N-Metiltransferase/metabolismo
7.
Arch Virol ; 169(1): 6, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081982

RESUMO

Neddylation is a post-translational modification that plays an important role not only in cancer development but also in regulating viral infection and replication. Upregulation of neddylation occurs in viral infections, and inhibition of neddylation can suppress viral replication. Neddylation is thought to enhance viral protein stability and replication. Neddylation has been reported to enhance the stability of the regulatory hepatitis B virus (HBV) X protein, modulate viral replication, and enhance hepatocarcinogenesis. Inhibition of neddylation using the NEDD8-activating enzyme E1 inhibitor MLN4924 inhibits viral replication, including that of HBV. Understanding of the role of neddylation in viral infections is critical for developing new therapeutic targets and potential treatment strategies. In this review, we discuss recent progress in the understanding of the effects of neddylation during viral infection, particularly in HBV infection, and strategies for curing viral infection by targeting the neddylation pathway.


Assuntos
Neoplasias , Viroses , Humanos , Proteína NEDD8/metabolismo , Ubiquitinas/genética , Processamento de Proteína Pós-Traducional , Viroses/tratamento farmacológico
8.
Artigo em Chinês | MEDLINE | ID: mdl-37905484

RESUMO

Objective:To analyze the differential expression of neural precursor cell-expressed developmentally downregulated 8(NEDD8) protein in nasal polyp tissues of patients with different pathological types of chronic rhinorhinosinusitis with nasal polyps(CRSwNP). Methods:All specimens were obtained from the specimen library of Beijing Tongren Hospital, and were all patients who underwent nasal endoscopic surgery for chronic rhinosinusitis in Beijing Tongren Hospital. Hematoxylin-eosin staining(HE) was used to detect the number of eosinophils in nasal polyps, and CRSwNP patients were grouped according to the number of eosinophils in nasal polyps, immunohistochemistry was used to detect and analyze the expression level of NEDD8 protein in nasal polyps. Results:The expression level of NEDD8 protein in nasal polyps of patients with eosinophilic chronic rhinorhinosinusitis with nasal polyps was significantly higher than that of patients with non-eosinophilic chronic rhinosinusitis and nasal polyps(P<0.05). In addition, there was a significant positive correlation between the expression level of NEDD8 protein and the number of eosinophils in nasal polyp tissue(r=0.79, P=0.02). Conclusion:There are differences in the expression of NEDD8 protein in patients with chronic rhinosinusitis and nasal polyps of different pathological types.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Humanos , Pólipos Nasais/metabolismo , Rinite/diagnóstico , Proteína NEDD8/metabolismo , Sinusite/diagnóstico , Eosinófilos/metabolismo , Doença Crônica
9.
Theranostics ; 13(14): 5017-5056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771770

RESUMO

Protein neddylation is a post-translational modification, and its best recognized substrates are cullin family proteins, which are the core component of Cullin-RING ligases (CRLs). Given that most neddylation pathway proteins are overactivated in different cancers and fibrotic diseases, targeting neddylation becomes an emerging approach for the treatment of these diseases. To date, numerous neddylation inhibitors have been developed, of which MLN4924 has entered phase I/II/III clinical trials for cancer treatment, such as acute myeloid leukemia, melanoma, lymphoma and solid tumors. Here, we systematically describe the structures and biological functions of the critical enzymes in neddylation, highlight the medicinal chemistry advances in the development of neddylation inhibitors and propose the perspectives concerning targeting neddylation for cancer and fibrotic diseases.


Assuntos
Linfoma , Neoplasias , Humanos , Proteínas Culina/metabolismo , Proteína NEDD8/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Processamento de Proteína Pós-Traducional
10.
Cell Death Dis ; 14(7): 438, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460534

RESUMO

Natural Killer (NK) cells act as important regulators in the development and progression of hematological malignancies and their suppressor activity against Multiple Myeloma (MM) cells has been confirmed in many studies. Significant changes in the distribution of NK cell subsets and dysfunctions of NK cell effector activities were described in MM patients and correlated with disease staging. Thus, restoring or enhancing the functionality of these effectors for the treatment of MM represents a critical need. Neddylation is a post-translational modification that adds a ubiquitin-like molecule, NEDD8, to the substrate protein. One of the outcomes is the activation of the Cullin Ring Ligases (CRLs), a class of ubiquitin-ligases that controls the degradation of about 20% of proteasome-regulated proteins. Overactivation of CRLs has been described in cancer and can lead to tumor growth and progression. Thus, targeting neddylation represents an attractive approach for cancer treatment. Our group has recently described how pharmacologic inhibition of neddylation increases the expression of the NKG2D activating receptor ligands, MICA and MICB, in MM cells, making these cells more susceptible to NK cell degranulation and killing. Here, we extended our investigation to the direct role of neddylation on NK cell effector functions exerted against MM. We observed that inhibition of neddylation enhanced NK cell-mediated degranulation and killing against MM cells and improved Daratumumab/Elotuzumab-mediated response. Mechanistically, inhibition of neddylation increased the expression of Rac1 and RhoA GTPases in NK cells, critical mediators for an efficient degranulation at the immunological synapse of cytotoxic lymphocytes, and augmented the levels of F-actin and perforin polarization in NK cells contacting target cells. Moreover, inhibition of neddylation partially abrogated TGFß-mediated repression of NK cell effector activity. This study describes the role of neddylation on NK cell effector functions and highlights the positive immunomodulatory effects achieved by the inhibition of this pathway in MM.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Proteína NEDD8/metabolismo , Antineoplásicos/farmacologia , Proteínas , Células Matadoras Naturais/metabolismo , Ligases
11.
Int J Oncol ; 62(5)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37083098

RESUMO

As a protein that resembles ubiquitin, neural precursor cell expressed developmentally downregulated 8 (NEDD8) takes part in neddylation, which modifies substrates in a manner similar to ubiquitination and alters the activity of target proteins. Neddylation may affect the activity of multiple signaling pathways, have a regulatory role in tumor formation, progression and metastasis, and influence the prognosis of cancer treatment. The present review summarizes the regulatory roles of NEDD8 in the MDM2­p53, NF­κB, PI3K/AKT/mTOR, hypoxia­inducible factor, Hippo and receptor tyrosine kinase signaling pathways, as well as in the development and progression of lung cancer.


Assuntos
Neoplasias Pulmonares , Ubiquitinas , Humanos , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Ubiquitinação
12.
Int J Biol Sci ; 19(2): 377-392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632463

RESUMO

HER2 is a transmembrane receptor with intrinsic tyrosine kinase activity that is overexpressed in almost 25% of human breast cancers. Here, we report that the neddylation of HER2 is a new post-translational modification that controls its expression and oncogenic activity in human breast cancer. Two critical members in the neddylation pathway, NEDD8 and NEDD8-activating enzyme E1 subunit 1 (NAE1), are detected in human breast specimens. Overexpressed NEDD8 and NAE1 are positively correlated with HER2 expression in human breast cancer. Subsequent structure and function experiments show that HER2 directly interacts with NEDD8 and NAE1, whereas HER2 protein expression is decreased by neddylation depletion. Mechanistically, neddylation inhibition promotes the degradation of HER2 protein by improving its ubiquitination. HER2 overexpression abrogates neddylation depletion-triggered cell growth suppression. The inhibition of neddylation synergized with trastuzumab significantly suppresses growth of HER2 positive breast cancer. Collectively, this study demonstrates a previously undiscovered role of NEDD8-dependent HER2 neddylation promotes tumor growth in breast cancer.


Assuntos
Neoplasias da Mama , Proteína NEDD8 , Proteólise , Receptor ErbB-2 , Ubiquitinação , Feminino , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Processamento de Proteína Pós-Traducional , Receptor ErbB-2/metabolismo , Proteína NEDD8/metabolismo , Progressão da Doença
13.
Acta Pharmacol Sin ; 44(3): 661-669, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36138144

RESUMO

Neddylation is a type of posttranslational protein modification that has been observed to be overactivated in various cancers. UBC12 is one of two key E2 enzymes in the neddylation pathway. Reports indicate that UBC12 deficiency may suppress lung cancer cells, such that UBC12 could play an important role in tumor progression. However, systematic studies regarding the expression profile of UBC12 in cancers and its relationship to cancer prognosis are lacking. In this study, we comprehensively analyzed UBC12 expression in diverse cancer types and found that UBC12 is markedly overexpressed in most cancers (17/21), a symptom that negatively correlates with the survival rates of cancer patients, including gastric cancer. These results demonstrate the suitability of UBC12 as a potential target for cancer treatment. Currently, no effective inhibitor targeting UBC12 has been discovered. We screened a natural product library and found, for the first time, that arctigenin has been shown to significantly inhibit UBC12 enzyme activity and cullin neddylation. The inhibition of UBC12 enzyme activity was newly found to contribute to the effects of arctigenin on suppressing the malignant phenotypes of cancer cells. Furthermore, we performed proteomics analysis and found that arctigenin intervened with cullin downstream signaling pathways and substrates, such as the tumor suppressor PDCD4. In summary, these results demonstrate the importance of UBC12 as a potential therapeutic target for cancer treatment, and, for the first time, the suitability of arctigenin as a potential compound targeting UBC12 enzyme activity. Thus, these findings provide a new strategy for inhibiting neddylation-overactivated cancers.


Assuntos
Proteínas Culina , Neoplasias Pulmonares , Enzimas de Conjugação de Ubiquitina , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Culina/efeitos dos fármacos , Furanos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteína NEDD8/metabolismo , Proteínas de Ligação a RNA , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/efeitos dos fármacos
14.
Proc Natl Acad Sci U S A ; 119(36): e2205608119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037385

RESUMO

Cop9 signalosome (CSN) regulates the function of cullin-RING E3 ubiquitin ligases (CRLs) by deconjugating the ubiquitin-like protein NEDD8 from the cullin subunit. To understand the physiological impact of CSN function on the CRL network and cell proliferation, we combined quantitative mass spectrometry and genome-wide CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) screens to identify factors that modulate cell viability upon inhibition of CSN by the small molecule CSN5i-3. CRL components and regulators strongly modulated the antiproliferative effects of CSN5i-3, and in addition we found two pathways involved in genome integrity, SCFFBXO5-APC/C-GMNN and CUL4DTL-SETD8, that contribute substantially to the toxicity of CSN inhibition. Our data highlight the importance of CSN-mediated NEDD8 deconjugation and adaptive exchange of CRL substrate receptors in sustaining CRL function and suggest approaches for leveraging CSN inhibition for the treatment of cancer.


Assuntos
Replicação do DNA , Ubiquitina-Proteína Ligases , Azepinas/metabolismo , Complexo do Signalossomo COP9/antagonistas & inibidores , Complexo do Signalossomo COP9/genética , Complexo do Signalossomo COP9/metabolismo , Sobrevivência Celular , Proteínas Culina/genética , Proteínas Culina/metabolismo , Imidazóis/metabolismo , Proteína NEDD8/metabolismo , Pirazóis/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
J Virol ; 96(10): e0059822, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35510863

RESUMO

Posttranslational modifications (PTMs) of viral proteins play critical roles in virus infection. The role of neddylation in enterovirus 71 (EV71) replication remains poorly defined. Here, we showed that the structural protein VP2 of EV71 can be modified by neural precursor cell-expressed developmentally downregulated protein 8 (NEDD8) in an E3 ligase X-linked inhibitor of apoptosis protein (XIAP)-dependent manner. Mutagenesis and biochemical analyses mapped the neddylation site at lysine 69 (K69) of VP2 and demonstrated that neddylation reduced the stability of VP2. In agreement with the essential role of VP2 in viral replication, studies with EV71 reporter viruses with wild-type VP2 (enhanced green fluorescent protein [EGFP]-EV71) and a K69R mutant VP2 (EGFP-EV71-VP2 K69R) showed that abolishment of VP2 neddylation increased EV71 replication. In support of this finding, overexpression of NEDD8 significantly inhibited the replication of wild-type EV71 and EGFP-EV71, but not EGFP-EV71-VP2 K69R, whereas pharmacologic inhibition of neddylation with the NEDD8-activating enzyme inhibitor MLN4924 promoted the replication of EV71 in biologically relevant cell types. Our results thus support the notion that EV71 replication can be negatively regulated by host cellular and pathobiological cues through neddylation of VP2 protein. IMPORTANCE Neddylation is a ubiquitin-like posttranslational modification by conjugation of neural precursor cell-expressed developmentally downregulated protein 8 (NEDD8) to specific proteins for regulation of their metabolism and biological activities. In this study, we demonstrated for the first time that EV71 VP2 protein is neddylated at K69 residue to promote viral protein degradation and consequentially suppress multiplication of the virus. Our findings advance knowledge related to the roles of VP2 in EV71 virulence and the neddylation pathway in the host restriction of EV71 infection.


Assuntos
Proteínas do Capsídeo , Enterovirus Humano A , Processamento de Proteína Pós-Traducional , Replicação Viral , Animais , Proteínas do Capsídeo/química , Linhagem Celular Tumoral , Chlorocebus aethiops , Enterovirus Humano A/fisiologia , Células HEK293 , Humanos , Proteína NEDD8/metabolismo , Células Vero , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
16.
J Cell Sci ; 135(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35582972

RESUMO

Neural precursor cell-expressed developmentally down-regulated 8 (NEDD8), an ubiquitin-like protein, is an essential regulator of the DNA damage response. Numerous studies have shown that neddylation (conjugation of NEDD8 to target proteins) dysfunction causes several human diseases, such as cancer. Hence clarifying the regulatory mechanism of neddylation could provide insight into the mechanism of genome stability underlying the DNA damage response (DDR) and carcinogenesis. Here, we demonstrate that dual-specificity tyrosine-regulated kinase 2 (DYRK2) is a novel regulator of neddylation and maintains genome stability. Deletion of DYRK2 leads to persistent DNA double-strand breaks (DSBs) and subsequent genome instability. Mechanistically, DYRK2 promotes neddylation through forming a complex with NAE1, which is a component of NEDD8-activating enzyme E1, and maintaining its protein level by suppressing polyubiquitylation. The present study is the first to demonstrate that DYRK2 controls neddylation and is necessary for maintaining genome stability. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas Culina , Dano ao DNA , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Culina/metabolismo , Dano ao DNA/genética , Instabilidade Genômica/genética , Humanos , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Quinases Dyrk
17.
J Exp Clin Cancer Res ; 41(1): 115, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354476

RESUMO

BACKGROUND: The inhibition of neddylation by the preclinical drug MLN4924 represents a new strategy to combat cancer. However, despite being effective against hematologic malignancies, its success in solid tumors, where cell-cell and cell-ECM interactions play essential roles, remains elusive. METHODS: Here, we studied the effects of MLN4924 on cell growth, migration and invasion in cultured prostate cancer cells and in disease-relevant prostate tumoroids. Using focused protein profiling, drug and RNAi screening, we analyzed cellular pathways activated by neddylation inhibition. RESULTS: We show that mechanical stress induced by MLN4924 in prostate cancer cells significantly affects the therapeutic outcome. The latter depends on the cell type and involves distinct Rho isoforms. In LNCaP and VCaP cells, the stimulation of RhoA and RhoB by MLN4924 markedly upregulates the level of tight junction proteins at cell-cell contacts, which augments the mechanical strain induced by Rho signaling. This "tight junction stress response" (TJSR) causes the collapse of cell monolayers and a characteristic rupture of cancer spheroids. Notably, TJSR is a major cause of drug-induced apoptosis in these cells. On the other hand, in PC3 cells that underwent partial epithelial-to-mesenchymal transition (EMT), the stimulation of RhoC induces an adverse effect by promoting amoeboid cell scattering and invasion. We identified complementary targets and drugs that allow for the induction of TJSR without stimulating RhoC. CONCLUSIONS: Our finding that MLN4924 acts as a mechanotherapeutic opens new ways to improve the efficacy of neddylation inhibition as an anticancer approach.


Assuntos
Apoptose , Neoplasias , Proliferação de Células , Humanos , Masculino , Proteína NEDD8/metabolismo , Estresse Mecânico
18.
Neuro Oncol ; 24(11): 1857-1868, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35305088

RESUMO

BACKGROUND: Neddylation inhibition, affecting posttranslational protein function and turnover, is a promising therapeutic approach to cancer. We report vulnerability to MLN4924 or pevonedistat (a neddylation inhibitor) in a subset of glioblastoma (GBM) preclinical models and identify biomarkers, mechanisms, and signatures of differential response. METHODS: GBM sequencing data were queried for genes associated with MLN4924 response status; candidates were validated by molecular techniques. Time-course transcriptomics and proteomics revealed processes implicated in MLN4924 response. RESULTS: Vulnerability to MLN4924 is associated with elevated S-phase populations, re-replication, and DNA damage. Transcriptomics and shotgun proteomics depict PTEN signaling, DNA replication, and chromatin instability pathways as significant differentiators between sensitive and resistant models. Loss of PTEN and its nuclear functions is associated with resistance to MLN4924. Time-course proteomics identified elevated TOP2A in resistant models through treatment. TOP2A inhibitors combined with MLN4924 prove synergistic. CONCLUSIONS: We show that PTEN status serves as both a novel biomarker for MLN4924 response in GBM and reveals a vulnerability to TOP2A inhibitors in combination with MLN4924.


Assuntos
Glioblastoma , PTEN Fosfo-Hidrolase , Inibidores da Topoisomerase II , Humanos , Apoptose , Linhagem Celular Tumoral , Ciclopentanos/farmacologia , Ciclopentanos/uso terapêutico , Glioblastoma/tratamento farmacológico , Proteína NEDD8/metabolismo , PTEN Fosfo-Hidrolase/genética , Pirimidinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Resistencia a Medicamentos Antineoplásicos
19.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101976

RESUMO

Blood-brain barrier (BBB) breakdown and inflammation occurring at the BBB have a key, mainly a deleterious role in the pathophysiology of ischemic stroke. Neddylation is a ubiquitylation-like pathway that is critical in various cellular functions by conjugating neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) to target proteins. However, the roles of neddylation pathway in ischemic stroke remain elusive. Here, we report that NEDD8 conjugation increased during acute phase after ischemic stroke and was present in intravascular and intraparenchymal neutrophils. Inhibition of neddylation by MLN4924, also known as pevonedistat, inactivated cullin-RING E3 ligase (CRL), and reduced brain infarction and improved functional outcomes. MLN4924 treatment induced the accumulation of the CRL substrate neurofibromatosis 1 (NF1). By using virus-mediated NF1 silencing, we show that NF1 knockdown abolished MLN4924-dependent inhibition of neutrophil trafficking. These effects were mediated through activation of endothelial P-selectin and intercellular adhesion molecule-1 (ICAM-1), and blocking antibodies against P-selectin or anti-ICAM-1 antibodies reversed NF1 silencing-induced increase in neutrophil infiltration in MLN4924-treated mice. Furthermore, we found that NF1 silencing blocked MLN4924-afforded BBB protection and neuroprotection through activation of protein kinase C δ (PKCδ), myristoylated alanine-rich C-kinase substrate (MARCKS), and myosin light chain (MLC) in cerebral microvessels after ischemic stroke, and treatment of mice with the PKCδ inhibitor rottlerin reduced this increased BBB permeability. Our study demonstrated that increased neddylation promoted neutrophil trafficking and thus exacerbated injury of the BBB and stroke outcomes. We suggest that the neddylation inhibition may be beneficial in ischemic stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Ciclopentanos/farmacologia , Proteína NEDD8/metabolismo , Proteínas do Tecido Nervoso , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Pirimidinas/farmacologia , Ubiquitina-Proteína Ligases , Animais , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/enzimologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/enzimologia , Masculino , Camundongos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo
20.
Mol Biol Rep ; 49(1): 403-412, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34716866

RESUMO

BACKGROUND: Hepatitis B Virus (HBV) is the most common cause of chronic liver disease worldwide. The mechanisms that regulate HBV viral replication remain poorly defined. Here, we show that blocking of the neddylation elicits antiviral effect against HBV replication, indicating that NEDD8 supports viral production. METHODS AND RESULTS: To explore role of neddylation, HBV-replicating HepG2.2.15.7 cells and HBV-infected HepG2-hNTCP-30 cells were treated with siNEDD8 and MLN4924, a potent and selective NEDD8-activating enzyme inhibitor. Cell viability, intracellular and extracellular HBV DNA, covalently closed circular DNA (cccDNA), HBsAg, HBeAg, and HBcrAg were measured to assess the consequences of the various treatments on viral replication. Our data showed that HBV infection increased NEDD8 expression in human liver cell lines. Symmetrically, NEDD8 knockdown by siRNA or MLN4924 treatments decreased HBV replication in HepG2.2.15.7 and HepG2-hNTCP-30 cells. Notably, HBsAg, and HBeAg secretions were strongly suppressed in the culture supernatants, but not the HBcrAg. These results indicate that the suppression of NEDD8 decreases HBV replication. However, cccDNA steady level confirms once again its persistence and longevity in chronic infection. CONCLUSION: The manipulation of the neddylation pathway can thus provide new tools interfering with HBV persistence as well as novel therapeutic strategies against chronic hepatitis B.


Assuntos
Antivirais/farmacologia , Ciclopentanos/farmacologia , Vírus da Hepatite B/fisiologia , Proteína NEDD8/metabolismo , Pirimidinas/farmacologia , RNA Interferente Pequeno/farmacologia , Sobrevivência Celular/efeitos dos fármacos , DNA Viral/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Antígenos de Superfície da Hepatite B/genética , Antígenos E da Hepatite B/genética , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Proteína NEDD8/genética , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA