Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338934

RESUMO

Charcot-Marie-Tooth disease (CMT) rarely presents with painful symptoms, which mainly occur in association with myelin protein zero (MPZ) gene mutations. We aimed to further characterize the features of painful neuropathic phenotypes in MPZ-related CMT. We report on a 58-year-old woman with a longstanding history of intermittent migrant pain and dysesthesias. Examination showed minimal clinical signs of neuropathy along with mild changes upon electroneurographic examination, consistent with an intermediate pattern, and small-fiber loss upon skin biopsy. Genetic testing identified the heterozygous variant p.Trp101Ter in MPZ. We identified another 20 CMT patients in the literature who presented with neuropathic pain as a main feature in association with MPZ mutations, mostly in the extracellular MPZ domain; the majority of these patients showed late onset (14/20), with motor-nerve-conduction velocities predominantly in the intermediate range (12/20). It is hypothesized that some MPZ mutations could manifest with, or predispose to, neuropathic pain. However, the mechanisms linking MPZ mutations and pain-generating nerve changes are unclear, as are the possible role of modifier factors. This peculiar CMT presentation may be diagnostically misleading, as it is suggestive of an acquired pain syndrome rather than of an inherited neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth , Neuralgia , Neuropatia de Pequenas Fibras , Feminino , Humanos , Pessoa de Meia-Idade , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Proteína P0 da Mielina/genética , Mutação , Testes Genéticos , Neuralgia/etiologia , Neuralgia/genética , Neuropatia de Pequenas Fibras/genética
2.
Brain Pathol ; 34(1): e13200, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581289

RESUMO

Myelin protein zero (MPZ/P0) is a major structural protein of peripheral nerve myelin. Disease-associated variants in the MPZ gene cause a wide phenotypic spectrum of inherited peripheral neuropathies. Previous nerve biopsy studies showed evidence for subtype-specific morphological features. Here, we aimed at enhancing the understanding of these subtype-specific features and pathophysiological aspects of MPZ neuropathies. We examined archival material from two Central European centers and systematically determined genetic, clinical, and neuropathological features of 21 patients with MPZ mutations compared to 16 controls. Cases were grouped based on nerve conduction data into congenital hypomyelinating neuropathy (CHN; n = 2), demyelinating Charcot-Marie-Tooth (CMT type 1; n = 11), intermediate (CMTi; n = 3), and axonal CMT (type 2; n = 5). Six cases had combined muscle and nerve biopsies and one underwent autopsy. We detected four MPZ gene variants not previously described in patients with neuropathy. Light and electron microscopy of nerve biopsies confirmed fewer myelinated fibers, more onion bulbs and reduced regeneration in demyelinating CMT1 compared to CMT2/CMTi. In addition, we observed significantly more denervated Schwann cells, more collagen pockets, fewer unmyelinated axons per Schwann cell unit and a higher density of Schwann cell nuclei in CMT1 compared to CMT2/CMTi. CHN was characterized by basal lamina onion bulb formation, a further increase in Schwann cell density and hypomyelination. Most late onset axonal neuropathy patients showed microangiopathy. In the autopsy case, we observed prominent neuromatous hyperinnervation of the spinal meninges. In four of the six muscle biopsies, we found marked structural mitochondrial abnormalities. These results show that MPZ alterations not only affect myelinated nerve fibers, leading to either primarily demyelinating or axonal changes, but also affect non-myelinated nerve fibers. The autopsy case offers insight into spinal nerve root pathology in MPZ neuropathy. Finally, our data suggest a peculiar association of MPZ mutations with mitochondrial alterations in muscle.


Assuntos
Doença de Charcot-Marie-Tooth , Proteína P0 da Mielina , Humanos , Proteína P0 da Mielina/genética , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Mutação/genética , Proteínas/genética , Biópsia
3.
Biomolecules ; 13(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37371522

RESUMO

BACKGROUND: The occurrence of accidental nerve damage during surgery and the increasing application of image guidance during head-and-neck surgery have highlighted the need for molecular targeted nerve-sparing interventions. The implementation of such interventions relies on the availability of nerve-specific tracers. In this paper, we describe the development of a truncated peptide that has an optimized affinity for protein zero (P0), the most abundant protein in myelin. METHODS AND MATERIALS: Further C- and N-terminal truncation was performed on the lead peptide Cy5-P0101-125. The resulting nine Cy5-labelled peptides were characterized based on their photophysical properties, P0 affinity, and in vitro staining. These characterizations were combined with evaluation of the crystal structure of P0, which resulted in the selection of the optimized tracer Cy5-P0112-125. A near-infrared Cy7-functionalized derivative (Cy7-P0112-125) was used to perform an initial evaluation of fluorescence-guided surgery in a porcine model. RESULTS: Methodological truncation of the 26-amino-acid lead compound Cy5-P0101-125 resulted in a size reduction of 53.8% for the optimized peptide Cy5-P0112-125. The peptide design and the 1.5-fold affinity gain obtained after truncation could be linked to interactions observed in the crystal structure of the extracellular portion of P0. The near-infrared analogue Cy7-P0112-125 supported nerve illumination during fluorescence-guided surgery in the head-and-neck region in a porcine model. CONCLUSIONS: Methodological truncation yielded a second-generation P0-specific peptide. Initial surgical evaluation suggests that the peptide can support molecular targeted nerve imaging.


Assuntos
Aminoácidos , Proteína P0 da Mielina , Animais , Suínos , Proteína P0 da Mielina/análise , Proteína P0 da Mielina/química , Proteína P0 da Mielina/metabolismo , Aminoácidos/análise , Fluorescência , Peptídeos/análise , Bainha de Mielina/metabolismo
4.
Neurochem Res ; 48(9): 2826-2834, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37148458

RESUMO

Although the beneficial effects of curcumin, extracted from rhizomes of the ginger family genus Curcuma, on the repair and regeneration of nerves have been evaluated in vitro, there are few studies concerning its effects on axon myelination. Here, we used pheochromocytoma cells as an in vitro model of peripheral nerves. Pheochromocytoma cells were cultured alone or cocultured with Schwann cells and treated with increasing concentrations of curcumin. Cell growth was observed, and the expression levels of growth-associated protein 43 (GAP-43), microtubule-associated protein 2 (MAP-2), myelin basic protein (MBP), myelin protein zero (MPZ), Krox-20, and octamer binding factor 6 (Oct-6) were quantified. We found a significant increase in expression of all six proteins following curcumin treatment, with a corresponding increase in the levels of MBP, MPZ, Krox-20, and Oct-6 mRNA. Upregulation was greater with increasing curcumin concentration, showing a concentration-dependent effect. The results suggested that curcumin can promote the growth of axons by upregulating the expression of GAP-43 and MAP-2, stimulate synthesis and secretion of myelin-related proteins, and facilitate formation of the myelin sheath in axons by upregulating the expression of Krox-20 and Oct-6. Therefore, curcumin could be widely applied in future strategies for the treatment of nerve injuries.


Assuntos
Neoplasias das Glândulas Suprarrenais , Curcumina , Feocromocitoma , Humanos , Bainha de Mielina/metabolismo , Curcumina/farmacologia , Proteína GAP-43/metabolismo , Feocromocitoma/metabolismo , Células de Schwann/metabolismo , Proteínas da Mielina/metabolismo , Axônios/metabolismo , Proteína P0 da Mielina/metabolismo , Neoplasias das Glândulas Suprarrenais/metabolismo
5.
Artigo em Chinês | MEDLINE | ID: mdl-36878501

RESUMO

Objective: To investigate the role of CD4+CD25+regulatory cell (CD4+CD25+Treg) in auditory neuropathy (AN) using a rat model of autoimmune auditory neuropathy. Methods: The SD rats were immunized with P0 protein emulsified in complete Freunds adjuvant for 8 weeks. The number of CD4+CD25+Treg in peripheral blood and cochlea and the expression of Foxp3 gene in cochlea were detected respectively 2, 4, 6 and 8 weeks after the immunization with P0 protein in rats. Then CD4+CD25+Treg were transferred intravenously to the AN rats at 2, 4, 6 and 8 weeks of the immunization, respectively. The change of auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) were detected, and the morphological changes in the inner ear were investigated. Results: The number of CD4+CD25+Treg in the peripheral blood of AN rats decreased gradually after 2, 4, 6 and 8 weeks of P0 protein immunization. The number of CD4+CD25+Treg in cochlea gradually increased with the prolongation of immunization time, but the expression of Foxp3 gene in cochlea gradually decreased over time. After intravenous transplantation of CD4+CD25+Treg in AN rats, the threshold of ABR response decreased, and DPOAE had no significant change. The number of spiral ganglion neurons in cochlea increased, and hair cells had no significant change under electron microscope. Conclusions: The decrease in the number and function of CD4+CD25+Treg reduces its inhibitory effect on autoimmune response and promotes the occurrence of autoimmune auditory neuropathy in AN rats. Adoptive transfer of CD4+CD25+Treg can reduce the autoimmune response and promote the recovery of autoimmune auditory neuropathy.


Assuntos
Proteína P0 da Mielina , Linfócitos T Reguladores , Animais , Ratos , Fatores de Transcrição Forkhead , Ratos Sprague-Dawley , Antígenos CD4/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia
6.
Eur J Neurol ; 30(4): 1069-1079, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36692866

RESUMO

BACKGROUND AND PURPOSE: The aim was to characterize the phenotypic and genotypic features of myelin protein zero (MPZ) related neuropathy and provide baseline data for longitudinal natural history studies or drug clinical trials. METHOD: Clinical, neurophysiological and genetic data of 37 neuropathy patients with MPZ mutations were retrospectively collected. RESULTS: Nineteen different MPZ mutations in 23 unrelated neuropathy families were detected, and the frequency of MPZ mutations was 5.84% in total. Mutations c.103_104InsTGGTTTACACCG, c.513dupG, c.521_557del and c.696_699delCAGT had not been reported previously. Hot spot mutation p.Thr124Met was detected in four unrelated families, and seven patients carried de novo mutations. The onset age indicated a bimodal distribution: prominent clustering in the first and fourth decades. The infantile-onset group included 12 families, the childhood-onset group consisted of two families and the adult-onset group included nine families. The Charcot-Marie-Tooth Disease Neuropathy Score ranged from 3 to 25 with a mean value of 15.85 ± 5.88. Mutations that changed the cysteine residue (p.Arg98Cys, p.Cys127Trp, p.Ser140Cys and p.Cys127Arg) in the extracellular region were more likely to cause severe early-onset Charcot-Marie-Tooth disease type 1B (CMT1B) or Dejerine-Sottas syndrome. Nonsense-mediated mRNA decay mutations p.Asp35delInsVVYTD, p.Leu174Argfs*66 and p.Leu172Alafs*63 were related to severe infantile-onset CMT1B or Dejerine-Sottas syndrome; however, mutation p.Val232Valfs*19 was associated with a relatively milder childhood-onset CMT1 phenotype. CONCLUSION: Four novel MPZ mutations are reported that expand the genetic spectrum. De novo mutations accounted for 30.4% and were most related to a severe infantile-onset phenotype. Genetic and clinical data from this cohort will provide the baseline data necessary for clinical trials and natural history studies.


Assuntos
Doença de Charcot-Marie-Tooth , Proteína P0 da Mielina , Humanos , Proteína P0 da Mielina/genética , Doença de Charcot-Marie-Tooth/genética , População do Leste Asiático , Estudos Retrospectivos , Mutação , Fenótipo , Genótipo
7.
Molecules ; 27(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36558148

RESUMO

BACKGROUND: Surgically induced nerve damage is a common but debilitating side effect. By developing tracers that specifically target the most abundant protein in peripheral myelin, namely myelin protein zero (P0), we intend to support fluorescence-guided nerve-sparing surgery. To that end, we aimed to develop a dimeric tracer that shows a superior affinity for P0. METHODS: Following truncation of homotypic P0 protein-based peptide sequences and fluorescence labeling, the lead compound Cy5-P0101-125 was selected. Using a bifunctional fluorescent dye, the dimeric Cy5-(P0101-125)2 was created. Assessment of the performance of the mono- and bi-labeled compounds was based on (photo)physical evaluation. This was followed by in vitro assessment in P0 expressing Schwannoma cell cultures by means of fluorescence confocal imaging (specificity, location of binding) and flow cytometry (binding affinity; KD). RESULTS: Dimerization resulted in a 1.5-fold increase in affinity compared to the mono-labeled counterpart (70.3 +/- 10.0 nM vs. 104.9 +/- 16.7 nM; p = 0.003) which resulted in a 4-fold increase in staining efficiency in P0 expressing Schwannoma cells. Presence of two targeting vectors also improves a pharmacokinetics of labeled compounds by lowering serum binding and optical stability by preventing dye stacking. CONCLUSIONS: Dimerization of the nerve-targeting peptide P0101-125 proves a valid strategy to improve P0 targeting.


Assuntos
Proteína P0 da Mielina , Neurilemoma , Humanos , Proteína P0 da Mielina/química , Proteína P0 da Mielina/metabolismo , Dimerização , Peptídeos/metabolismo
8.
Bioconjug Chem ; 33(6): 1201-1209, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35581017

RESUMO

Alzheimer's disease, a progressive severe neurodegenerative disorder, has been until now incurable, in spite of serious efforts worldwide. We have designed self-assembled myristoyl-KPGPK lipopeptide-based biocompatible nanovesicles, which can inhibit amyloid fibrillation made by the transmembrane GxxxGxxxGxxxG motif of Aß-protein and human myelin protein zero as well as reduce their neurotoxicity. Various spectroscopic and microscopic investigations illuminate that the lipopeptide-based nanovesicles dramatically inhibit random coil-to-ß-sheet transformation of Aß25-37 and human myelin protein zero protein precursor, which is the prerequisite of GxxxGxxxGxxxG motif-mediated fibril formation. Förster resonance energy transfer (FRET) assay using synthesized Cy-3 (FRET donor) and Cy-5 (FRET acceptor)-conjugated Aß25-37 also exhibits that nanovesicles strongly inhibit the fibril formation of Aß25-37. The mouse neuro-2a neuroblastoma cell line is used, which revealed the GxxxGxxxGxxxG-mediated cytotoxicity. However, the neurotoxicity has been diminished by co-incubating the GxxxGxxxGxxxG motif with the nanovesicles.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Amiloide/química , Peptídeos beta-Amiloides/química , Animais , Lipopeptídeos , Camundongos , Proteína P0 da Mielina , Fragmentos de Peptídeos/química
9.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216065

RESUMO

P0 proteins encoded by poleroviruses Brassica yellows virus (BrYV) and Potato leafroll virus (PLRV) are viral suppressors of RNA silencing (VSR) involved in abolishing host RNA silencing to assist viral infection. However, other roles that P0 proteins play in virus infection remain unclear. Here, we found that C-terminal truncation of P0 resulted in compromised systemic infection of BrYV and PLRV. C-terminal truncation affected systemic but not local VSR activities of P0 proteins, but neither transient nor ectopic stably expressed VSR proteins could rescue the systemic infection of BrYV and PLRV mutants. Moreover, BrYV mutant failed to establish systemic infection in DCL2/4 RNAi or RDR6 RNAi plants, indicating that systemic infection might be independent of the VSR activity of P0. Partially rescued infection of BrYV mutant by the co-infected PLRV implied the functional conservation of P0 proteins within genus. However, although C-terminal truncation mutant of BrYV P0 showed weaker interaction with its movement protein (MP) when compared to wild-type P0, wild-type and mutant PLRV P0 showed similar interaction with its MP. In sum, our findings revealed the role of P0 in virus systemic infection and the requirement of P0 carboxyl terminal region for the infection.


Assuntos
Luteoviridae/genética , Luteoviridae/patogenicidade , Proteína P0 da Mielina/genética , Proteínas Virais/genética , Brassica/virologia , Mutação/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Interferência de RNA/fisiologia , Nicotiana/virologia
10.
Reprod Sci ; 28(9): 2685-2698, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33905082

RESUMO

Uterine carcinosarcoma (UCS) is a malignant tumor with a high tendency to invasion and metastasis. However, the underlying invasion and metastasis mechanisms of UCS remain poorly understood. Genetic alteration and tumor-infiltrating immune cells play important roles in tumorigenesis, progression, and metastasis. To better understand the underlying mechanisms of UCS, we screened tumor-infiltrating immune cells by applying CIBERSORT algorithm and constructed nomograms to predict the prognosis of UCS patients based on metastasis-specific tumor-infiltrating immune cells and genes, and demonstrated their utility by the high AUC values. Combining gene co-expression and experimental validation results, we propose a potential mechanism of AK8, MPZ, and mast cells activated might play important parts in UCS metastasis.


Assuntos
Biomarcadores Tumorais/genética , Carcinossarcoma/genética , Carcinossarcoma/imunologia , Técnicas de Apoio para a Decisão , Nomogramas , Microambiente Tumoral/imunologia , Neoplasias Uterinas/genética , Neoplasias Uterinas/imunologia , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Carcinossarcoma/metabolismo , Carcinossarcoma/secundário , Movimento Celular , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Mastócitos/imunologia , Pessoa de Meia-Idade , Proteína P0 da Mielina/metabolismo , Invasividade Neoplásica , Valor Preditivo dos Testes , Prognóstico , Reprodutibilidade dos Testes , Células Tumorais Cultivadas , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia
11.
Int J Mol Sci ; 21(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992609

RESUMO

To counteract host antiviral RNA silencing, plant viruses encode numerous viral suppressors of RNA silencing (VSRs). P0 proteins have been identified as VSRs in many poleroviruses. However, their suppressor function has not been fully characterized. Here, we investigated the function of P0 from pea mild chlorosis virus (PMCV) in the suppression of local and systemic RNA silencing via green fluorescent protein (GFP) co-infiltration assays in wild-type and GFP-transgenic Nicotiana benthamiana (line 16c). Amino acid deletion analysis showed that N-terminal residues Asn 2 and Val 3, but not the C-terminus residues from 230-270 aa, were necessary for PMCV P0 (P0PM) VSR activity. P0PM acted as an F-box protein, and triple LPP mutation (62LPxx79P) at the F-box-like motif abolished its VSR activity. In addition, P0PM failed to interact with S-phase kinase-associated protein 1 (SKP1), which was consistent with previous findings of P0 from potato leafroll virus. These data further support the notion that VSR activity of P0 is independent of P0-SKP1 interaction. Furthermore, we examined the effect of P0PM on ARGONAUTE1 (AGO1) protein stability, and co-expression analysis showed that P0PM triggered AGO1 degradation. Taken together, our findings suggest that P0PM promotes degradation of AGO1 to suppress RNA silencing independent of SKP1 interaction.


Assuntos
Proteínas F-Box/metabolismo , Luteoviridae/metabolismo , Proteína P0 da Mielina/metabolismo , Nicotiana/genética , Nicotiana/virologia , Necrose e Clorose das Plantas/virologia , Interferência de RNA , Proteínas Virais/metabolismo , Proteínas Argonautas/metabolismo , Proteínas de Fluorescência Verde/genética , Mutação , Organismos Geneticamente Modificados , Necrose e Clorose das Plantas/genética , Proteínas de Plantas/metabolismo , Proteólise , Proteínas Quinases Associadas a Fase S/metabolismo
12.
Commun Biol ; 3(1): 121, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170207

RESUMO

Charcot-Marie-Tooth (CMT) disease is a hereditary neuropathy mainly caused by gene mutation of peripheral myelin proteins including myelin protein zero (P0, MPZ). Large myelin protein zero (L-MPZ) is an isoform of P0 that contains an extended polypeptide synthesized by translational readthrough at the C-terminus in tetrapods, including humans. The physiological role of L-MPZ and consequences of an altered L-MPZ/P0 ratio in peripheral myelin are not known. To clarify this, we used genome editing to generate a mouse line (L-MPZ mice) that produced L-MPZ instead of P0. Motor tests and electrophysiological, immunohistological, and electron microscopy analyses show that homozygous L-MPZ mice exhibit CMT-like phenotypes including thin and/or loose myelin, increased small-caliber axons, and disorganized axo-glial interactions. Heterozygous mice show a milder phenotype. These results highlight the importance of an appropriate L-MPZ/P0 ratio and show that aberrant readthrough of a myelin protein causes neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Proteína P0 da Mielina/química , Proteína P0 da Mielina/metabolismo , Regulação para Cima/genética , Animais , Axônios/metabolismo , Axônios/patologia , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Edição de Genes , Heterozigoto , Homozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Mutação , Proteína P0 da Mielina/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Fenótipo , Isoformas de Proteínas/metabolismo
13.
ACS Biomater Sci Eng ; 6(3): 1744-1754, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33455377

RESUMO

The preservation of cranial nerves is a major problem that surgeons encounter when resecting a tumor in the posterior cranial fossa. Most cranial nerve injuries occur because the tight adhesion between the tumor capsule and cranial nerves renders the nerves indistinguishable. In this study, a nerve-specific nanoscale contrast agent was developed for visually distinguishing cranial nerves from the tumor surface in real time. To enable the contrast agent to specifically bind peripheral nerves, a previously reported biodegradable multiblock polyurethane nanoparticle (BMPU NP) was conjugated with an antibody against myelin protein zero (MPZ, P0), which is expressed on myelin sheaths in peripheral nerve fibers. Coomassie brilliant blue G (CB) was encapsulated into the BMPU NP for visual contrast. The CB-BMPU NP specifically stained mouse peripheral nerve fibers blue when directly applied to the nerve surface ex vivo and in vivo. The CB-BMPU NP also achieved satisfactory visual contrast of the trigeminal nerve in a mouse nerve-tissue adhesion model. This study offers new insights for the development of intraoperatively applied nerve-specific contrast agents for delineating cranial nerves adhered to tumors.


Assuntos
Traumatismos dos Nervos Cranianos , Bainha de Mielina , Animais , Meios de Contraste , Nervos Cranianos , Camundongos , Proteína P0 da Mielina
14.
Clinics ; 75: e1622, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1142786

RESUMO

OBJECTIVES: To investigate the effects of an intratympanic injection of dexamethasone combined with gentamicin on the expression level of serum P0 protein antibodies in patients with Meniere's disease (MD). METHODS: A total of 136 patients with MD treated in our hospital were enrolled in this study. Among them, 68 patients were treated with an intratympanic injection of dexamethasone combined with gentamicin (observation group). Another 68 patients were treated with gentamicin alone (control group). RESULTS: After treatment, the expression levels of IgG and IgM in the two groups significantly decreased (p<0.05); the levels in the observation group were significantly lower than those in the control group (p<0.05). The incidences of vertigo, tinnitus, and gait instability in the observation group were significantly lower than those in the control group (p<0.05). Vestibular symptom index (VSI) scores in the observation group were significantly lower than those in the control group (p<0.05). We observed no significant difference between the two groups in the number of vertigo attacks 6 months after treatment (p>0.05). CONCLUSION: For patients with MD, dexamethasone combined with gentamicin can reduce the incidence of vertigo, tinnitus, and gait instability, but it has no effect on the efficacy or number of vertigo attacks 6 months after treatment. Therefore, the levels of myelin P0 protein antibodies after treatment can be used as predictors of vertigo at 6 months after treatment.


Assuntos
Humanos , Proteína P0 da Mielina , Doença de Meniere/tratamento farmacológico , Dexametasona/uso terapêutico , Gentamicinas/uso terapêutico , Resultado do Tratamento , Injeção Intratimpânica , Antibacterianos/uso terapêutico
15.
J Neurosci Methods ; 323: 77-81, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31125589

RESUMO

BACKGROUND: Schwannomas are peripheral nerve sheath tumors composed entirely of Schwann-lineage cells that cause pain and sensory-motor dysfunction through compression of peripheral nerves, the spinal cord, and/or the brain stem. Treatment of schwannoma is largely limited to resection which itself has limited value. The goal of this study is to establish a technique to identify the most efficient and tissue-specific promoter for use in a schwannoma gene therapy construct. NEW METHOD: This work involves transfection of schwannoma cells with adeno-associated viral vector plasmids expressing GFP under different myelin cell specific promoters. The transfected cells were evaluated for green fluorescence intensity in vitro, and in vivo after implantation into sciatic nerves of nude mice. RESULTS: Our data demonstrate that myelin protein zero (MPZ, P0) and peripheral myelin protein 22 (PMP22) promoters produce greater GFP expression in schwannoma cell lines than myelin basic protein (MBP) promoter. In vitro, P0 promoter activity in schwannoma cell lines was shown to be less active than the cytomegalovirus and chicken ß-actin (CBA) promoter. However, we did not observe any significant difference between the activity of the CBA and P0 promoters in a xenograft schwannoma model. COMPARISON WITH EXISTING METHODS(S): We show here the influence of the peripheral nerve microenvironment on promoter efficacy in expressing transgenes using simple transfection by lipofection followed by prompt implantation of the transfected cells into the sciatic nerve of nude mice. CONCLUSIONS: We demonstrate that of the myelin specific promoters evaluated, P0 is optimal for driving expression of transgenes in schwannoma cells.


Assuntos
Neoplasias do Sistema Nervoso Central/terapia , Terapia Genética , Proteína Básica da Mielina , Proteína P0 da Mielina/metabolismo , Proteínas da Mielina , Neurilemoma/terapia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Proteína Básica da Mielina/metabolismo
16.
Glia ; 67(5): 950-966, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30637802

RESUMO

Direct conversion is considered a promising approach to obtain tissue-specific cells for cell therapies; however, this strategy depends on exogenous gene expression that may cause undesired adverse effects such as tumorigenesis. By optimizing the Schwann cell induction system, which was originally developed for trans-differentiation of bone marrow mesenchymal stem cells into Schwann cells, we established a system to directly convert adult human skin fibroblasts into cells comparable to authentic human Schwann cells without gene introduction. Serial treatments with beta-mercaptoethanol, retinoic acid, and finally a cocktail of basic fibroblast growth factor, forskolin, platelet-derived growth factor-AA, and heregulin-ß1 (EGF domain) converted fibroblasts into cells expressing authentic Schwann cell markers at an efficiency of approximately 75%. Genome-wide gene expression analysis suggested the conversion of fibroblasts into the Schwann cell-lineage. Transplantation of induced Schwann cells into severed peripheral nerve of rats facilitated axonal regeneration and robust functional recovery in sciatic function index comparable to those of authentic human Schwann cells. The contributions of induced Schwann cells to myelination of regenerated axons and re-formation of neuromuscular junctions were also demonstrated. Our data clearly demonstrated that cells comparable to functional Schwann cells feasible for the treatment of neural disease can be induced from adult human skin fibroblasts without gene introduction. This direct conversion system will be beneficial for clinical applications to peripheral and central nervous system injuries and demyelinating diseases.


Assuntos
Diferenciação Celular/fisiologia , Fibroblastos/fisiologia , Traumatismos dos Nervos Periféricos/cirurgia , Recuperação de Função Fisiológica/fisiologia , Células de Schwann/fisiologia , Células de Schwann/transplante , Animais , Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Locomoção/fisiologia , Masculino , Microscopia Eletrônica , Proteína P0 da Mielina/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fatores de Transcrição SOXE/metabolismo , Células de Schwann/ultraestrutura , Soro/fisiologia , Pele/citologia , Fatores de Tempo , Tretinoína/farmacologia
17.
J Endocrinol ; 239(3): 277-287, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30400012

RESUMO

Rodent stem cells demonstrated regenerative effects in diabetic neuropathy via improvement in nerve perfusion. As a pre-clinical step, we explored if human mobilized mononuclear cells (hMNC) would have the same effects in rats. hMNC were injected into Rt. hind-limb muscles of streptozotocin-induced diabetic nude rats, and the grafts were monitored using with MRI. After 4 weeks, the effects were compared with those in the vehicle-injected Lt. hind limbs. Nerve conduction, muscle perfusion and gene expression of sciatic nerves were assessed. Induction of diabetes decreased nerve function and expression of Mpz and Met in the sciatic nerves, which are related with myelination. hMNC injection significantly improved the amplitude of compound muscle action potentials along with muscle perfusion and sciatic nerve Mpz expression. On MRI, hypointense signals were observed for 4 weeks at the graft site, but their correlation with the presence of hMNC was detectable for only 1 week. To evaluate paracrine effects of hMNC, IMS32 cells were tested with hepatocyte growth factor (HGF), which had been reported as a myelination-related factor from stem cells. We could observe that HGF enhanced Mpz expression in the IMS32 cells. Because hMNC secreted HGF, IMS32 cells were co-cultured with hMNC, and the expression of Mpz increased along with morphologic maturation. The hMNC-induced Mpz expression was abrogated by treatment of anti-HGF. These results suggest that hMNC could improve diabetic neuropathy, possibly through enhancement of myelination as well as perfusion. According to in vitro studies, HGF was involved in the hMNC-induced myelination activity, at least in part.


Assuntos
Nefropatias Diabéticas/terapia , Leucócitos Mononucleares/transplante , Potenciais de Ação , Adulto , Animais , Glicemia , Linhagem Celular , Técnicas de Cocultura , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Proteína P0 da Mielina/metabolismo , Ratos Nus , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo
18.
Semin Pediatr Neurol ; 26: 52-55, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29961519

RESUMO

We describe an infant with an early-onset demyelinating neuropathy who presented with an upper extremity monoplegia and progressive asymmetric weakness. Neurophysiologic testing revealed a generalized severe neuropathy with marked slowing of nerve conduction. The disproportionate severity and asymmetry of upper extremity involvement at presentation was atypical of inherited neuropathies, and an initial diagnosis of chronic inflammatory demyelinating polyneuropathy was considered. Nerve biopsy showed severe depletion of large myelinated fibers without inflammatory cells, and focally folded myelin sheaths were seen on electron microscopy. Genetic testing revealed a de novo heterozygous mutation in the myelin protein zero gene.


Assuntos
Doenças Desmielinizantes/diagnóstico , Doenças Desmielinizantes/genética , Hemiplegia/diagnóstico , Hemiplegia/genética , Proteína P0 da Mielina/genética , Doenças Desmielinizantes/patologia , Diagnóstico Diferencial , Feminino , Hemiplegia/etiologia , Hemiplegia/patologia , Humanos , Lactente , Mutação , Nervos Periféricos/patologia , Nervos Periféricos/fisiopatologia
19.
Clin Neurophysiol ; 129(1): 21-32, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136549

RESUMO

OBJECTIVE: Nerve ultrasound (US) data on myelin protein zero (MPZ)-related Charcot-Marie-Tooth disease (CMT) are lacking. To offer a comprehensive perspective on MPZ-related CMTs, we combined nerve US with clinics, electrodiagnosis and histopathology. METHODS: We recruited 36 patients (12 MPZ mutations), and correlated nerve US to clinical, electrodiagnostic measures, and sural nerve biopsy. RESULTS: According to motor nerve conduction velocity (MNCV) criteria, nine patients were categorized as "demyelinating" CMT1B, 17 as "axonal" CMT2I/J, and 10 as dominant "intermediate" CMTDID. Sural nerve biopsy showed hypertrophic de-remyelinating neuropathy with numerous complex onion bulbs in one patient, de-remyelinating neuropathy with scanty/absent onion bulbs in three, axonal neuropathy in two, mixed demyelinating-axonal neuropathy in five. Electrodiagnosis significantly differed in CMT1B vs. CMT2I/J and CMTDID subgroups. CMT1B had slightly enlarged nerve cross sectional area (CSA) especially at proximal upper-limb (UL) sites. CSA was negatively correlated to UL MNCV and not increased at entrapment sites. Major sural nerve pathological patterns were uncorrelated to UL nerve US and MNCV. CONCLUSIONS: Sural nerve biopsy confirmed the wide pathological spectrum of MPZ-CMT. UL nerve US identified two major patterns corresponding to the CMT1B and CMT2I/J-CMTDID subgroups. SIGNIFICANCE: Nerve US phenotype of MPZ-CMT diverged from those in other demyelinating peripheral neuropathies and may have diagnostic value.


Assuntos
Doença de Charcot-Marie-Tooth/fisiopatologia , Proteína P0 da Mielina/deficiência , Adulto , Idoso , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios Motores/fisiologia , Proteína P0 da Mielina/genética , Proteína P0 da Mielina/metabolismo , Nervo Sural/diagnóstico por imagem , Nervo Sural/metabolismo , Nervo Sural/fisiopatologia , Ultrassonografia
20.
Glia ; 65(10): 1626-1639, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28657129

RESUMO

Oligodendrocytes and Schwann cells not only form myelin in the central and peripheral nervous system, but also provide metabolic and trophic support to the axons they ensheathe. Acetyl-CoA is potentially a key molecule in Schwann cells and oligodendrocytes because it is at the crossroads of cellular lipid biosynthesis and energy generation. The main route for acetyl-CoA production is the oxidation of pyruvate by the pyruvate dehydrogenase complex (PDC). PDC deficiency in humans results in neurodegeneration and developmental impairments in both white and gray matter structures. To address the importance of PDC in myelinating glia, we deleted Pdha1 gene specifically in oligodendrocytes and Schwann cells. Surprisingly, sciatic and optic nerve morphology and the motor performance of Pdha1f/Y; CnpCre/+ mice are undistinguishable from those of controls at 1 month of age. In addition, myelin is stably maintained for at least 10 months. However, Pdha1f/Y; CnpCre/+ mice showed reduced fiber density and signs of axonal degeneration in both sciatic and optic nerves from 6 months of age. In contrast, 10 month-old mice bearing a floxed Pdha1 gene with either P0-Cre (expressed only by Schwann cells) or NG2-CreER (expressed in oligodendrocyte precursor cells) do not show any sign of axonal pathology or alterations in myelin structure or thickness. This indicates that the axonopathy is specific to the Pdha1f/Y; CnpCre/+ mice. Taken together, these results suggest that acetyl-CoA derived from pyruvate is not necessary for myelin maintenance and, thus, myelin-forming cells are not likely to contribute to the pathophysiology of PDC deficiency.


Assuntos
Acetilcoenzima A/metabolismo , Bainha de Mielina/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/genética , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antígenos/genética , Antígenos/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína P0 da Mielina/genética , Proteína P0 da Mielina/metabolismo , Bainha de Mielina/patologia , Proteínas do Tecido Nervoso/metabolismo , Condução Nervosa/genética , Nervo Óptico/patologia , Proteoglicanas/genética , Proteoglicanas/metabolismo , Complexo Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/fisiopatologia , Nervo Isquiático/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA