Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338934

RESUMO

Charcot-Marie-Tooth disease (CMT) rarely presents with painful symptoms, which mainly occur in association with myelin protein zero (MPZ) gene mutations. We aimed to further characterize the features of painful neuropathic phenotypes in MPZ-related CMT. We report on a 58-year-old woman with a longstanding history of intermittent migrant pain and dysesthesias. Examination showed minimal clinical signs of neuropathy along with mild changes upon electroneurographic examination, consistent with an intermediate pattern, and small-fiber loss upon skin biopsy. Genetic testing identified the heterozygous variant p.Trp101Ter in MPZ. We identified another 20 CMT patients in the literature who presented with neuropathic pain as a main feature in association with MPZ mutations, mostly in the extracellular MPZ domain; the majority of these patients showed late onset (14/20), with motor-nerve-conduction velocities predominantly in the intermediate range (12/20). It is hypothesized that some MPZ mutations could manifest with, or predispose to, neuropathic pain. However, the mechanisms linking MPZ mutations and pain-generating nerve changes are unclear, as are the possible role of modifier factors. This peculiar CMT presentation may be diagnostically misleading, as it is suggestive of an acquired pain syndrome rather than of an inherited neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth , Neuralgia , Neuropatia de Pequenas Fibras , Feminino , Humanos , Pessoa de Meia-Idade , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Proteína P0 da Mielina/genética , Mutação , Testes Genéticos , Neuralgia/etiologia , Neuralgia/genética , Neuropatia de Pequenas Fibras/genética
2.
Brain Pathol ; 34(1): e13200, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581289

RESUMO

Myelin protein zero (MPZ/P0) is a major structural protein of peripheral nerve myelin. Disease-associated variants in the MPZ gene cause a wide phenotypic spectrum of inherited peripheral neuropathies. Previous nerve biopsy studies showed evidence for subtype-specific morphological features. Here, we aimed at enhancing the understanding of these subtype-specific features and pathophysiological aspects of MPZ neuropathies. We examined archival material from two Central European centers and systematically determined genetic, clinical, and neuropathological features of 21 patients with MPZ mutations compared to 16 controls. Cases were grouped based on nerve conduction data into congenital hypomyelinating neuropathy (CHN; n = 2), demyelinating Charcot-Marie-Tooth (CMT type 1; n = 11), intermediate (CMTi; n = 3), and axonal CMT (type 2; n = 5). Six cases had combined muscle and nerve biopsies and one underwent autopsy. We detected four MPZ gene variants not previously described in patients with neuropathy. Light and electron microscopy of nerve biopsies confirmed fewer myelinated fibers, more onion bulbs and reduced regeneration in demyelinating CMT1 compared to CMT2/CMTi. In addition, we observed significantly more denervated Schwann cells, more collagen pockets, fewer unmyelinated axons per Schwann cell unit and a higher density of Schwann cell nuclei in CMT1 compared to CMT2/CMTi. CHN was characterized by basal lamina onion bulb formation, a further increase in Schwann cell density and hypomyelination. Most late onset axonal neuropathy patients showed microangiopathy. In the autopsy case, we observed prominent neuromatous hyperinnervation of the spinal meninges. In four of the six muscle biopsies, we found marked structural mitochondrial abnormalities. These results show that MPZ alterations not only affect myelinated nerve fibers, leading to either primarily demyelinating or axonal changes, but also affect non-myelinated nerve fibers. The autopsy case offers insight into spinal nerve root pathology in MPZ neuropathy. Finally, our data suggest a peculiar association of MPZ mutations with mitochondrial alterations in muscle.


Assuntos
Doença de Charcot-Marie-Tooth , Proteína P0 da Mielina , Humanos , Proteína P0 da Mielina/genética , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Mutação/genética , Proteínas/genética , Biópsia
3.
Eur J Neurol ; 30(4): 1069-1079, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36692866

RESUMO

BACKGROUND AND PURPOSE: The aim was to characterize the phenotypic and genotypic features of myelin protein zero (MPZ) related neuropathy and provide baseline data for longitudinal natural history studies or drug clinical trials. METHOD: Clinical, neurophysiological and genetic data of 37 neuropathy patients with MPZ mutations were retrospectively collected. RESULTS: Nineteen different MPZ mutations in 23 unrelated neuropathy families were detected, and the frequency of MPZ mutations was 5.84% in total. Mutations c.103_104InsTGGTTTACACCG, c.513dupG, c.521_557del and c.696_699delCAGT had not been reported previously. Hot spot mutation p.Thr124Met was detected in four unrelated families, and seven patients carried de novo mutations. The onset age indicated a bimodal distribution: prominent clustering in the first and fourth decades. The infantile-onset group included 12 families, the childhood-onset group consisted of two families and the adult-onset group included nine families. The Charcot-Marie-Tooth Disease Neuropathy Score ranged from 3 to 25 with a mean value of 15.85 ± 5.88. Mutations that changed the cysteine residue (p.Arg98Cys, p.Cys127Trp, p.Ser140Cys and p.Cys127Arg) in the extracellular region were more likely to cause severe early-onset Charcot-Marie-Tooth disease type 1B (CMT1B) or Dejerine-Sottas syndrome. Nonsense-mediated mRNA decay mutations p.Asp35delInsVVYTD, p.Leu174Argfs*66 and p.Leu172Alafs*63 were related to severe infantile-onset CMT1B or Dejerine-Sottas syndrome; however, mutation p.Val232Valfs*19 was associated with a relatively milder childhood-onset CMT1 phenotype. CONCLUSION: Four novel MPZ mutations are reported that expand the genetic spectrum. De novo mutations accounted for 30.4% and were most related to a severe infantile-onset phenotype. Genetic and clinical data from this cohort will provide the baseline data necessary for clinical trials and natural history studies.


Assuntos
Doença de Charcot-Marie-Tooth , Proteína P0 da Mielina , Humanos , Proteína P0 da Mielina/genética , Doença de Charcot-Marie-Tooth/genética , População do Leste Asiático , Estudos Retrospectivos , Mutação , Fenótipo , Genótipo
4.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216065

RESUMO

P0 proteins encoded by poleroviruses Brassica yellows virus (BrYV) and Potato leafroll virus (PLRV) are viral suppressors of RNA silencing (VSR) involved in abolishing host RNA silencing to assist viral infection. However, other roles that P0 proteins play in virus infection remain unclear. Here, we found that C-terminal truncation of P0 resulted in compromised systemic infection of BrYV and PLRV. C-terminal truncation affected systemic but not local VSR activities of P0 proteins, but neither transient nor ectopic stably expressed VSR proteins could rescue the systemic infection of BrYV and PLRV mutants. Moreover, BrYV mutant failed to establish systemic infection in DCL2/4 RNAi or RDR6 RNAi plants, indicating that systemic infection might be independent of the VSR activity of P0. Partially rescued infection of BrYV mutant by the co-infected PLRV implied the functional conservation of P0 proteins within genus. However, although C-terminal truncation mutant of BrYV P0 showed weaker interaction with its movement protein (MP) when compared to wild-type P0, wild-type and mutant PLRV P0 showed similar interaction with its MP. In sum, our findings revealed the role of P0 in virus systemic infection and the requirement of P0 carboxyl terminal region for the infection.


Assuntos
Luteoviridae/genética , Luteoviridae/patogenicidade , Proteína P0 da Mielina/genética , Proteínas Virais/genética , Brassica/virologia , Mutação/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Interferência de RNA/fisiologia , Nicotiana/virologia
5.
Commun Biol ; 3(1): 121, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170207

RESUMO

Charcot-Marie-Tooth (CMT) disease is a hereditary neuropathy mainly caused by gene mutation of peripheral myelin proteins including myelin protein zero (P0, MPZ). Large myelin protein zero (L-MPZ) is an isoform of P0 that contains an extended polypeptide synthesized by translational readthrough at the C-terminus in tetrapods, including humans. The physiological role of L-MPZ and consequences of an altered L-MPZ/P0 ratio in peripheral myelin are not known. To clarify this, we used genome editing to generate a mouse line (L-MPZ mice) that produced L-MPZ instead of P0. Motor tests and electrophysiological, immunohistological, and electron microscopy analyses show that homozygous L-MPZ mice exhibit CMT-like phenotypes including thin and/or loose myelin, increased small-caliber axons, and disorganized axo-glial interactions. Heterozygous mice show a milder phenotype. These results highlight the importance of an appropriate L-MPZ/P0 ratio and show that aberrant readthrough of a myelin protein causes neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Proteína P0 da Mielina/química , Proteína P0 da Mielina/metabolismo , Regulação para Cima/genética , Animais , Axônios/metabolismo , Axônios/patologia , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Edição de Genes , Heterozigoto , Homozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Mutação , Proteína P0 da Mielina/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Fenótipo , Isoformas de Proteínas/metabolismo
6.
Semin Pediatr Neurol ; 26: 52-55, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29961519

RESUMO

We describe an infant with an early-onset demyelinating neuropathy who presented with an upper extremity monoplegia and progressive asymmetric weakness. Neurophysiologic testing revealed a generalized severe neuropathy with marked slowing of nerve conduction. The disproportionate severity and asymmetry of upper extremity involvement at presentation was atypical of inherited neuropathies, and an initial diagnosis of chronic inflammatory demyelinating polyneuropathy was considered. Nerve biopsy showed severe depletion of large myelinated fibers without inflammatory cells, and focally folded myelin sheaths were seen on electron microscopy. Genetic testing revealed a de novo heterozygous mutation in the myelin protein zero gene.


Assuntos
Doenças Desmielinizantes/diagnóstico , Doenças Desmielinizantes/genética , Hemiplegia/diagnóstico , Hemiplegia/genética , Proteína P0 da Mielina/genética , Doenças Desmielinizantes/patologia , Diagnóstico Diferencial , Feminino , Hemiplegia/etiologia , Hemiplegia/patologia , Humanos , Lactente , Mutação , Nervos Periféricos/patologia , Nervos Periféricos/fisiopatologia
7.
Clin Neurophysiol ; 129(1): 21-32, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136549

RESUMO

OBJECTIVE: Nerve ultrasound (US) data on myelin protein zero (MPZ)-related Charcot-Marie-Tooth disease (CMT) are lacking. To offer a comprehensive perspective on MPZ-related CMTs, we combined nerve US with clinics, electrodiagnosis and histopathology. METHODS: We recruited 36 patients (12 MPZ mutations), and correlated nerve US to clinical, electrodiagnostic measures, and sural nerve biopsy. RESULTS: According to motor nerve conduction velocity (MNCV) criteria, nine patients were categorized as "demyelinating" CMT1B, 17 as "axonal" CMT2I/J, and 10 as dominant "intermediate" CMTDID. Sural nerve biopsy showed hypertrophic de-remyelinating neuropathy with numerous complex onion bulbs in one patient, de-remyelinating neuropathy with scanty/absent onion bulbs in three, axonal neuropathy in two, mixed demyelinating-axonal neuropathy in five. Electrodiagnosis significantly differed in CMT1B vs. CMT2I/J and CMTDID subgroups. CMT1B had slightly enlarged nerve cross sectional area (CSA) especially at proximal upper-limb (UL) sites. CSA was negatively correlated to UL MNCV and not increased at entrapment sites. Major sural nerve pathological patterns were uncorrelated to UL nerve US and MNCV. CONCLUSIONS: Sural nerve biopsy confirmed the wide pathological spectrum of MPZ-CMT. UL nerve US identified two major patterns corresponding to the CMT1B and CMT2I/J-CMTDID subgroups. SIGNIFICANCE: Nerve US phenotype of MPZ-CMT diverged from those in other demyelinating peripheral neuropathies and may have diagnostic value.


Assuntos
Doença de Charcot-Marie-Tooth/fisiopatologia , Proteína P0 da Mielina/deficiência , Adulto , Idoso , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios Motores/fisiologia , Proteína P0 da Mielina/genética , Proteína P0 da Mielina/metabolismo , Nervo Sural/diagnóstico por imagem , Nervo Sural/metabolismo , Nervo Sural/fisiopatologia , Ultrassonografia
8.
Glia ; 65(10): 1626-1639, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28657129

RESUMO

Oligodendrocytes and Schwann cells not only form myelin in the central and peripheral nervous system, but also provide metabolic and trophic support to the axons they ensheathe. Acetyl-CoA is potentially a key molecule in Schwann cells and oligodendrocytes because it is at the crossroads of cellular lipid biosynthesis and energy generation. The main route for acetyl-CoA production is the oxidation of pyruvate by the pyruvate dehydrogenase complex (PDC). PDC deficiency in humans results in neurodegeneration and developmental impairments in both white and gray matter structures. To address the importance of PDC in myelinating glia, we deleted Pdha1 gene specifically in oligodendrocytes and Schwann cells. Surprisingly, sciatic and optic nerve morphology and the motor performance of Pdha1f/Y; CnpCre/+ mice are undistinguishable from those of controls at 1 month of age. In addition, myelin is stably maintained for at least 10 months. However, Pdha1f/Y; CnpCre/+ mice showed reduced fiber density and signs of axonal degeneration in both sciatic and optic nerves from 6 months of age. In contrast, 10 month-old mice bearing a floxed Pdha1 gene with either P0-Cre (expressed only by Schwann cells) or NG2-CreER (expressed in oligodendrocyte precursor cells) do not show any sign of axonal pathology or alterations in myelin structure or thickness. This indicates that the axonopathy is specific to the Pdha1f/Y; CnpCre/+ mice. Taken together, these results suggest that acetyl-CoA derived from pyruvate is not necessary for myelin maintenance and, thus, myelin-forming cells are not likely to contribute to the pathophysiology of PDC deficiency.


Assuntos
Acetilcoenzima A/metabolismo , Bainha de Mielina/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/genética , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antígenos/genética , Antígenos/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína P0 da Mielina/genética , Proteína P0 da Mielina/metabolismo , Bainha de Mielina/patologia , Proteínas do Tecido Nervoso/metabolismo , Condução Nervosa/genética , Nervo Óptico/patologia , Proteoglicanas/genética , Proteoglicanas/metabolismo , Complexo Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/fisiopatologia , Nervo Isquiático/patologia
10.
Neuromuscul Disord ; 26(12): 837-840, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27614573

RESUMO

Two siblings with Charcot-Marie-Tooth (CMT) 1B due to a c.517G>C (p.Gly173Arg) mutation in the MPZ gene both developed an acute cauda syndrome with unbearable back pain radiating to both legs, progressive muscle weakness of the legs, and saddle hypesthesia with fecal and urinary incontinence. MRI showed in both patients a lumbar spinal canal totally filled with hypertrophic caudal nerve roots. We performed acute decompression. Postoperatively, in both patients, the back pain resolved immediately, there was a significant improvement of both the paresis of the legs and the hypesthesia, and there was a full return of continence. There was no recurrence of acute symptoms during respectively 19 years and 1.5 years of follow-up. We conclude that in patients with CMT and a related cauda syndrome because of hypertrophic caudal nerve roots, acute decompression can be an effective and safe treatment with long-term efficacy.


Assuntos
Cauda Equina/cirurgia , Doença de Charcot-Marie-Tooth/cirurgia , Descompressão Cirúrgica , Idoso , Dor nas Costas/etiologia , Dor nas Costas/cirurgia , Cauda Equina/diagnóstico por imagem , Cauda Equina/patologia , Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/genética , Feminino , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Masculino , Pessoa de Meia-Idade , Proteína P0 da Mielina/genética , Irmãos
11.
BMC Dev Biol ; 16(1): 16, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27184910

RESUMO

BACKGROUND: The pituitary gland is a highly vascularized tissue that requires coordinated interactions between the neural ectoderm, oral ectoderm, and head mesenchyme during development for proper physiological function. The interactions between the neural ectoderm and oral ectoderm, especially the role of the pituitary organizer in shaping the pituitary precursor, Rathke's pouch, are well described. However, less is known about the role of head mesenchyme in pituitary organogenesis. The head mesenchyme is derived from definitive mesoderm and neural crest, but the relative contributions of these tissues to the mesenchyme adjacent to the pituitary are not known. RESULTS: We carried out lineage tracing experiments using two neural crest-specific mouse cre lines, Wnt1-cre and P0-cre, and determined that the head mesenchyme rostral to the pituitary gland is neural crest derived. To assess the role of the neural crest in pituitary development we ablated it, using Wnt1-cre to delete Ctnnb1 (ß-catenin), which is required for neural crest development. The Wnt1-cre is active in the neural ectoderm, principally in the mesencephalon, but also in the posterior diencephalon. Loss of ß-catenin in this domain causes a rostral shift in the ventral diencephalon, including the pituitary organizer, resulting in pituitary dysmorphology. The neural crest deficient embryos have abnormally dilated pituitary vasculature due to a loss of neural crest derived pericytes. CONCLUSIONS: ß-catenin in the Wnt1 expression domain, including the neural crest, plays a critical role in regulation of pituitary gland growth, development, and vascularization.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mesencéfalo/metabolismo , Crista Neural/metabolismo , Organogênese/genética , Hipófise/metabolismo , beta Catenina/genética , Animais , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Feminino , Imuno-Histoquímica , Hibridização In Situ , Masculino , Mesencéfalo/embriologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Proteína P0 da Mielina/genética , Proteína P0 da Mielina/metabolismo , Crista Neural/embriologia , Hipófise/embriologia , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , beta Catenina/metabolismo
12.
J Appl Toxicol ; 36(12): 1629-1638, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27080906

RESUMO

Cadmium is an extremely toxic heavy metal that widely occurs in industrial workplaces with various hazardous effects on brain functions. The cytotoxic effects of cadmium chloride (CdCl2 ) on the neuroglial components of the zebrafish brain were analysed by detecting the glial fibrillary acidic protein (GFAP) expression and the mRNA levels of myelin genes mbp, mpz and plp1 in adult specimens exposed to cadmium for 2, 7 and 16 days. A significant decrease in the GFAP protein by Western blotting experiments was observed after 2 days of treatment, reaching 55% after 16 days. No change was observed in the mRNA levels. Using immunohistochemistry, a reduction in GFAP-positive structures was revealed with a progressive trend in all the brains at 2, 7 and 16 days of treatment. In particular, a considerable reduction in GFAP-positive fibres, with a different course, was observed in the ventricle areas and at the pial surface and in blood vessels after 16 days. Our experiments also showed a structural and chemical alteration of myelin and upregulation of mpz mRNA levels, the oligodendrocyte gene that is upregulated in experiments of neuronal injury, but not of plp1 and mbp mRNA levels, other myelin structural genes. These data confirm the toxic action of cadmium on the zebrafish brain. This action is time-dependent and involves the glial cells, key components of the protection and function of nerve cells, hence the basis for many neurological diseases. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Encéfalo/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/efeitos dos fármacos , Peixe-Zebra/metabolismo , Animais , Encéfalo/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Básica da Mielina/genética , Proteína P0 da Mielina/genética , Proteína Proteolipídica de Mielina/genética , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Neuroglia/metabolismo , RNA Mensageiro/genética , Peixe-Zebra/genética
13.
Brain ; 138(Pt 11): 3193-205, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26297559

RESUMO

See Scherer (doi:10.1093/awv279) for a scientific commentary on this article.Charcot-Marie-Tooth type 1 neuropathies are inherited disorders of the peripheral nervous system caused by mutations in Schwann cell-related genes. Typically, no causative cure is presently available. Previous preclinical data of our group highlight the low grade, secondary inflammation common to distinct Charcot-Marie-Tooth type 1 neuropathies as a disease amplifier. In the current study, we have tested one of several available clinical agents targeting macrophages through its inhibition of the colony stimulating factor 1 receptor (CSF1R). We here show that in two distinct mouse models of Charcot-Marie-Tooth type 1 neuropathies, the systemic short- and long-term inhibition of CSF1R by oral administration leads to a robust decline in nerve macrophage numbers by ∼70% and substantial reduction of the typical histopathological and functional alterations. Interestingly, in a model for the dominant X-linked form of Charcot-Marie-Tooth type 1 neuropathy, the second most common form of the inherited neuropathies, macrophage ablation favours maintenance of axonal integrity and axonal resprouting, leading to preserved muscle innervation, increased muscle action potential amplitudes and muscle strengths in the range of wild-type mice. In another model mimicking a mild, demyelination-related Charcot-Marie-Tooth type 1 neuropathy caused by reduced P0 (MPZ) gene dosage, macrophage blockade causes an improved preservation of myelin, increased muscle action potential amplitudes, improved nerve conduction velocities and ameliorated muscle strength. These observations suggest that disease-amplifying macrophages can produce multiple adverse effects in the affected nerves which likely funnel down to common clinical features. Surprisingly, treatment of mouse models mimicking Charcot-Marie-Tooth type 1A neuropathy also caused macrophage blockade, but did not result in neuropathic or clinical improvements, most likely due to the late start of treatment of this early onset disease model. In summary, our study shows that targeting peripheral nerve macrophages by an orally administered inhibitor of CSF1R may offer a highly efficacious and safe treatment option for at least two distinct forms of the presently non-treatable Charcot-Marie-Tooth type 1 neuropathies.


Assuntos
Axônios/efeitos dos fármacos , Doença de Charcot-Marie-Tooth/imunologia , Doenças Desmielinizantes/imunologia , Força da Mão , Macrófagos/efeitos dos fármacos , Condução Nervosa/efeitos dos fármacos , Nervos Periféricos/efeitos dos fármacos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Animais , Axônios/patologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Conexinas/deficiência , Conexinas/genética , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Proteína P0 da Mielina/genética , Proteínas da Mielina/genética , Nervos Periféricos/imunologia , Nervos Periféricos/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/imunologia , Proteína beta-1 de Junções Comunicantes
14.
J Neurosci ; 35(22): 8640-52, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26041929

RESUMO

Myelination of peripheral nerves by Schwann cells requires coordinate regulation of gene repression as well as gene activation. Several chromatin remodeling pathways critical for peripheral nerve myelination have been identified, but the functions of histone methylation in the peripheral nerve have not been elucidated. To determine the role of histone H3 Lys27 methylation, we have generated mice with a Schwann cell-specific knock-out of Eed, which is an essential subunit of the polycomb repressive complex 2 (PRC2) that catalyzes methylation of histone H3 Lys27. Analysis of this mutant revealed no significant effects on early postnatal development of myelin. However, its loss eventually causes progressive hypermyelination of small-diameter axons and apparent fragmentation of Remak bundles. These data identify the PRC2 complex as an epigenomic modulator of mature myelin thickness, which is associated with changes in Akt phosphorylation. Interestingly, we found that Eed inactivation causes derepression of several genes, e.g., Sonic hedgehog (Shh) and Insulin-like growth factor-binding protein 2 (Igfbp2), that become activated after nerve injury, but without activation of a primary regulator of the injury program, c-Jun. Analysis of the activated genes in cultured Schwann cells showed that Igfbp2 regulates Akt activation. Our results identify an epigenomic pathway required for establishing thickness of mature myelin and repressing genes that respond to nerve injury.


Assuntos
Regulação da Expressão Gênica/fisiologia , Bainha de Mielina/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/citologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Imunoprecipitação da Cromatina , Proteínas Hedgehog/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Proteína P0 da Mielina/genética , Proteína Oncogênica v-akt/metabolismo , Complexo Repressor Polycomb 2/genética , Ratos , Nervo Isquiático/ultraestrutura , Transdução de Sinais/fisiologia , Transfecção
15.
J Neuroinflammation ; 12: 49, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25879857

RESUMO

BACKGROUND: We could previously identify components of both the innate and the adaptive immune system as disease modifiers in the pathogenesis of models for Charcot-Marie-Tooth (CMT) neuropathies type 1B and 1X. As part of the adaptive immune system, here we investigated the role of antibodies in a model for CMT1B. METHODS: Antibodies were localized and characterized in peripheral nerves of the CMT1B model by immunohistochemistry and Western blot analysis. Experimental ablation of antibodies was performed by cross breeding the CMT1B models with mutants deficient in B-lymphocytes (JHD-/- mutants). Ameliorated demyelination by antibody deficiency was reverted by intravenous injection of mouse IgG fractions. Histopathological analysis was performed by immunocytochemistry and light and quantitative electron microscopy. RESULTS: We demonstrate that in peripheral nerves of a mouse model for CMT1B, endogenous antibodies strongly decorate endoneurial tubes of peripheral nerves. These antibodies comprise IgG and IgM subtypes and are preferentially, but not exclusively, associated with nerve fiber aspects nearby the nodes of Ranvier. In the absence of antibodies, the early demyelinating phenotype is substantially ameliorated. Reverting the neuropathy by reconstitution with murine IgG fractions identified accumulating antibodies as potentially pathogenic at this early stage of disease. CONCLUSIONS: Our study demonstrates that in a mouse model for CMT1B, endogenous antibodies contribute to early macrophage-mediated demyelination and disease progression. Thus, both the innate and adaptive immune system are mutually interconnected in a genetic model for demyelination. Since in Wallerian degeneration antibodies have also been shown to be involved in myelin phagocytosis, our study supports our view that inherited demyelination and Wallerian degeneration share common mechanisms, which are detrimental when activated under nonlesion conditions.


Assuntos
Anticorpos/metabolismo , Doença de Charcot-Marie-Tooth/complicações , Doenças Desmielinizantes/etiologia , Análise de Variância , Animais , Antígenos de Diferenciação/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doenças Desmielinizantes/imunologia , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína P0 da Mielina/deficiência , Proteína P0 da Mielina/genética , Proteína P0 da Mielina/imunologia , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Transdução de Sinais/imunologia
16.
Neuropathology ; 35(3): 254-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25388615

RESUMO

Our patient is a 65-year-old woman presenting with bilateral pes cavus, pronounced distal muscle wasting, weakness and areflexia. Electrophysiological findings included diffuse unrecordable motor and sensory responses. While the CMT phenotype was evident, the lack of family history and the severe, but unspecific electrophysiological impairment, was a challenge for genetic diagnosis. A sural nerve biopsy was performed, showing a severe loss of myelinated fibers with residual axons surrounded by myelin outfoldings. Whereas myelin outfoldings are a pathological hallmark of autosomal recessive CMT4B1 and CMT4B2, due to mutations in myotubularin-related 2 (MTMR2) and 13 (MTMR13) genes respectively, they may also occur in nerve biopsies from CMT1B patients. By direct sequencing, a novel heterozygous transversion c.410G>T in MPZ gene was demonstrated, producing an amino acid change from glycine to valine in position 108 (p.G108V). In HeLa cells the fusion P0G108V-EGFP was normally trafficked to the cell membrane, but with decreased P0 adhesion function, compared with wild-type P0, thus supporting a pathogenic role of the new variant. In conclusion this case highlights the relevance, in selected cases, of sural nerve biopsy to orient the genetic/molecular tests, while in vitro analyses may strengthen the pathogenic role of novel mutations.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Mutação , Proteína P0 da Mielina/genética , Nervo Sural/patologia , Idoso , Biópsia , Feminino , Humanos
17.
Rev. biol. trop ; 62(4): 1285-1293, oct.-dic. 2014. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-753690

RESUMO

The p.Thr124Met mutation in the myelin protein zero (MPZ) causes the Charcot-Marie-Tooth disease type 2J, a peripheral neuropathy with additional symptoms as pupillary alterations and deafness. It was observed in several families around the world originating e. g. from Germany, Belgium, Japan, Italy and North America. Here we report Central American patients originating from a family in Costa Rica carrying this mutation. Clinical, electrophysiological and molecular analysis of patients and controls were performed, including gene and linked markers´ sequencing. Carriers share almost the entire haplotype with two non related Belgian CMT patients. As a result of the haplotype analysis, based on ten markers (seven SNPs, two microsatellites and an intronic polyA stretch), the founder effect hypothesis for this allele migration is suggestive. Rev. Biol. Trop. 62 (4): 1285-1293. Epub 2014 December 01.


La mutación p.thr124Met en la proteína mielina cero (MPZ) causa la enfermedad de Charcot-Marie-Tooth tipo 2J, una neuropatía periférica con síntomas adicionales como alteraciones pupilares y sordera. Se ha observado en varias familias alrededor del mundo, originarias de Alemania, Bélgica, Japón, Italia y Norteamérica, entre otras. Aquí reportamos a pacientes centroamericanos provenientes de Costa Rica que acarrean esta mutación. Se realizaron análisis clínico, electrofisiológico y molecular de pacientes y controles, incluyendo secuenciación del gen y de marcadores ligados a éste. Estos pacientes comparten casi por completo el haplotipo con dos pacientes belgas no emparentados. Como resultado del análisis de los haplotipos, basado en diez marcadores (siete SNPs, dos microsatélites y un elemento poli-A intrónico), se sugiere que se ha dado un efecto fundador en la migración de este alelo.


Assuntos
Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Doença de Charcot-Marie-Tooth/genética , Perda Auditiva Neurossensorial/genética , Proteína P0 da Mielina/genética , Mutação Puntual/genética , Estudos de Casos e Controles , Costa Rica , Doença de Charcot-Marie-Tooth/etnologia , Efeito Fundador , Haplótipos , Perda Auditiva Neurossensorial/etnologia , Linhagem
18.
ASN Neuro ; 6(5)2014.
Artigo em Inglês | MEDLINE | ID: mdl-25290060

RESUMO

In the developing peripheral nervous system, a coordinated reciprocal signaling between Schwann cells and axons is crucial for accurate myelination. The myelin and lymphocyte protein MAL is a component of lipid rafts that is important for targeting proteins and lipids to distinct domains. MAL overexpression impedes peripheral myelinogenesis, which is evident by a delayed onset of myelination and reduced expression of the myelin protein zero (Mpz/P0) and the low-affinity neurotrophin receptor p75(NTR). This study shows that MAL overexpression leads to a significant reduction of Mpz and p75(NTR) expression in primary mouse Schwann cell cultures, which was already evident before differentiation, implicating an effect of MAL in early Schwann cell development. Their transcription was robustly reduced, despite normal expression of essential transcription factors and receptors. Further, the cAMP response element-binding protein (CREB) and phosphoinositide 3-kinase signaling pathways important for Schwann cell differentiation were correctly induced, highlighting that other so far unknown rate limiting factors do exist. We identified novel genes expressed by Schwann cells in a MAL-dependent manner in vivo and in vitro. A number of those, including S100a4, RhoU and Krt23, are implicated in cytoskeletal organization and plasma membrane dynamics. We showed that S100a4 is predominantly expressed by nonmyelinating Schwann cells, whereas RhoU was localized within myelin membranes, and Krt23 was detected in nonmyelinating as well as in myelinating Schwann cells. Their differential expression during early peripheral nerve development further underlines their possible role in influencing Schwann cell differentiation and myelination.


Assuntos
Diferenciação Celular/genética , Citoesqueleto/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo , Células de Schwann/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colforsina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína P0 da Mielina/genética , Proteína P0 da Mielina/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/genética , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/genética , Proteínas S100/metabolismo , Células de Schwann/efeitos dos fármacos , Nervo Isquiático/citologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
19.
Acta Neuropathol ; 127(4): 573-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24232507

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are Schwann cell-derived malignancies that arise from plexiform neurofibromas in patients with mutation of the neurofibromin 1 (NF1) gene. We have shown that the growth factor neuregulin-1 (NRG1) also contributes to human neurofibroma and MPNST pathogenesis and that outbred C57BL/6J × SJL/J transgenic mice overexpressing NRG1 in Schwann cells (P0-GGFß3 mice) recapitulate the process of neurofibroma-MPNST progression. However, it is unclear whether NRG1 acts predominantly within NF1-regulated signaling cascades or instead activates other essential cascades that cooperate with NF1 loss to promote tumorigenesis. We now report that tumorigenesis is suppressed in inbred P0-GGFß3 mice on a C57BL/6J background. To determine whether NRG1 overexpression interacts with reduced Nf1 or Trp53 gene dosage to "unmask" tumorigenesis in these animals, we followed cohorts of inbred P0-GGFß3;Nf1+/−, P0-GGFß3;Trp53+/− and control (P0-GGFß3, Nf1+/− and Trp53+/−) mice for 1 year. We found no reduction in survival or tumors in control and P0-GGFß3;Nf1+/− mice. In contrast, P0-GGFß3;Trp53+/− mice died on average at 226 days, with MPNSTs present in 95 % of these mice. MPNSTs in inbred P0-GGFß3;Trp53+/− mice arose de novo from micro-MPNSTs that uniformly develop intraganglionically. These micro-MPNSTs are of lower grade (WHO grade II-III) than the major MPNSTs (WHO grade III-IV); array comparative genomic hybridization showed that lower grade MPNSTs also had fewer genomic abnormalities. Thus, P0-GGFß3;Trp53+/− mice represent a novel model of low- to high-grade MPNST progression. We further conclude that NRG1 promotes peripheral nervous system neoplasia predominantly via its effects on the signaling cascades affected by Nf1 loss.


Assuntos
Expressão Gênica , Haploinsuficiência/genética , Neuregulina-1/metabolismo , Neoplasias do Nervo Óptico/genética , Neoplasias do Nervo Óptico/patologia , Proteína Supressora de Tumor p53/genética , Animais , Desmina/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteína P0 da Mielina/genética , Proteína P0 da Mielina/metabolismo , Neurofibroma/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Raízes Nervosas Espinhais/metabolismo , Raízes Nervosas Espinhais/patologia
20.
Exp Cell Res ; 322(1): 108-21, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24246222

RESUMO

PACAP and its cognate peptide VIP participate in various biological functions, including myelin maturation and synthesis. However, defining whether these peptides affect peripheral expression of myelin proteins still remains unanswered. To address this issue, we assessed whether PACAP or VIP contribute to regulate the expression of three myelin proteins (MAG, MBP and MPZ, respectively) using the rat schwannoma cell line (RT4-P6D2T), a well-established model to study myelin gene expression. In addition, we endeavored to partly unravel the underlying molecular mechanisms involved. Expression of myelin-specific proteins was assessed in cells grown either in normal serum (10% FBS) or serum starved and treated with or without 100 nM PACAP or VIP. Furthermore, through pharmacological approach using the PACAP/VIP receptor antagonist (PACAP6-38) or specific pathway (MAPK or PI3K) inhibitors we defined the relative contribution of receptors and/or signaling pathways on the expression of myelin proteins. Our data show that serum starvation (24h) significantly increased both MAG, MBP and MPZ expression. Concurrently, we observed increased expression of endogenous PACAP and related receptors. Treatment with PACAP or VIP further exacerbated starvation-induced expression of myelin markers, suggesting that serum withdrawal might sensitize cells to peptide activity. Stimulation with either peptides increased phosphorylation of Akt at Ser473 residue but had no effect on phosphorylated Erk-1/2. PACAP6-38 (10 µM) impeded starvation- or peptide-induced expression of myelin markers. Similar effects were obtained after pretreatment with the PI3K inhibitor (wortmannin, 10 µM) but not the MAPKK inhibitor (PD98059, 50 µM). Together, the present finding corroborate the hypothesis that PACAP and VIP might contribute to the myelinating process preferentially via the canonical PI3K/Akt signaling pathway, providing the basis for future studies on the role of these peptides in demyelinating diseases.


Assuntos
Proteínas da Mielina/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Receptores Tipo II de Peptídeo Intestinal Vasoativo/fisiologia , Células de Schwann/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia , Animais , Linhagem Celular Tumoral , Ativação Enzimática/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Proteína P0 da Mielina/genética , Proteína P0 da Mielina/metabolismo , Proteínas da Mielina/metabolismo , Glicoproteína Associada a Mielina/genética , Glicoproteína Associada a Mielina/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Células de Schwann/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA