Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cells ; 12(13)2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37443708

RESUMO

p38γ MAPK (also called ERK6 or SAPK3) is a family member of stress-activated MAPKs and has common and specific roles as compared to other p38 proteins in signal transduction. Recent studies showed that, in addition to inflammation, p38γ metabolic signaling is involved in physiological exercise and in pathogenesis of cancer, diabetes, and Alzheimer's disease, indicating its potential as a therapeutic target. p38γphosphorylates at least 19 substrates through which p38γ activity is further modified to regulate life-important cellular processes such as proliferation, differentiation, cell death, and transformation, thereby impacting biological outcomes of p38γ-driven pathogenesis. P38γ signaling is characterized by its unique reciprocal regulation with its specific phosphatase PTPH1 and by its direct binding to promoter DNAs, leading to transcriptional activation of targets including cancer-like stem cell drivers. This paper will review recent findings about p38γ inflammation and metabolic signaling in physiology and diseases. Moreover, we will discuss the progress in the development of p38γ-specific pharmacological inhibitors for therapeutic intervention in disease prevention and treatment by targeting the p38γ signaling network.


Assuntos
Proteína Quinase 12 Ativada por Mitógeno , Transdução de Sinais , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Fosforilação
2.
Cancer Gene Ther ; 30(9): 1181-1189, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37248432

RESUMO

Gastrointestinal cancers are a leading cause of cancer morbidity and mortality worldwide with 4.2 million new cases and 3.2 million deaths estimated in 2020. Despite the advances in primary and adjuvant therapies, patients still develop distant metastases and require novel therapies. Mitogen­activated protein kinase (MAPK) cascades are crucial signaling pathways that regulate many cellular processes, including proliferation, differentiation, apoptosis, stress responses and cancer development. p38 Mitogen Activated Protein Kinases (p38 MAPKs) includes four isoforms: p38α (MAPK14), p38ß (MAPK11), p38γ (MAPK12), and p38δ (MAPK13). p38 MAPK was first identified as a stress response protein kinase that phosphorylates different transcriptional factors. Dysregulation of p38 pathways, in particular p38γ, are associated with cancer development, metastasis, autophagy and tumor microenvironment. In this article, we provide an overview of p38 and p38γ with respect to gastrointestinal cancers. Furthermore, targeting p38γ is also discussed as a potential therapy for gastrointestinal cancers.


Assuntos
Neoplasias Gastrointestinais , Proteína Quinase 11 Ativada por Mitógeno , Humanos , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Transdução de Sinais , Neoplasias Gastrointestinais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Microambiente Tumoral
3.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108523

RESUMO

Protein kinase p38γ is an attractive target against cancer because it plays a pivotal role in cancer cell proliferation by phosphorylating the retinoblastoma tumour suppressor protein. Therefore, inhibition of p38γ with active small molecules represents an attractive alternative for developing anti-cancer drugs. In this work, we present a rigorous and systematic virtual screening framework to identify potential p38γ inhibitors against cancer. We combined the use of machine learning-based quantitative structure activity relationship modelling with conventional computer-aided drug discovery techniques, namely molecular docking and ligand-based methods, to identify potential p38γ inhibitors. The hit compounds were filtered using negative design techniques and then assessed for their binding stability with p38γ through molecular dynamics simulations. To this end, we identified a promising compound that inhibits p38γ activity at nanomolar concentrations and hepatocellular carcinoma cell growth in vitro in the low micromolar range. This hit compound could serve as a potential scaffold for further development of a potent p38γ inhibitor against cancer.


Assuntos
Antineoplásicos , Simulação de Dinâmica Molecular , Antineoplásicos/farmacologia , Bioensaio , Descoberta de Drogas , Ligantes , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Proteína Quinase 12 Ativada por Mitógeno/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(35): e2204752119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994673

RESUMO

p38γ and p38δ (p38γ/p38δ) regulate inflammation, in part by controlling tumor progression locus 2 (TPL2) expression in myeloid cells. Here, we demonstrate that TPL2 protein levels are dramatically reduced in p38γ/p38δ-deficient (p38γ/δ-/-) cells and tissues without affecting TPL2 messenger ribonucleic acid (mRNA) expression. We show that p38γ/p38δ posttranscriptionally regulates the TPL2 amount at two different levels. p38γ/p38δ interacts with the TPL2/A20 Binding Inhibitor of NF-κB2 (ABIN2)/Nuclear Factor κB1p105 (NF-κB1p105) complex, increasing TPL2 protein stability. Additionally, p38γ/p38δ regulates TPL2 mRNA translation by modulating the repressor function of TPL2 3' Untranslated region (UTR) mediated by its association with aconitase-1 (ACO1). ACO1 overexpression in wild-type cells increases the translational repression induced by TPL2 3'UTR and severely decreases TPL2 protein levels. p38δ binds to ACO1, and p38δ expression in p38γ/δ-/- cells fully restores TPL2 protein to wild-type levels by reducing the translational repression of TPL2 mRNA. This study reveals a unique mechanism of posttranscriptional regulation of TPL2 expression, which given its central role in innate immune response, likely has great relevance in physiopathology.


Assuntos
Aconitato Hidratase , MAP Quinase Quinase Quinases , Proteína Quinase 12 Ativada por Mitógeno , Proteína Quinase 13 Ativada por Mitógeno , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Regulação da Expressão Gênica , Imunidade Inata , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Proteína Quinase 13 Ativada por Mitógeno/genética , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , RNA Mensageiro/genética
5.
FEBS Lett ; 595(20): 2570-2592, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34455585

RESUMO

We describe here for the first time a lipid-binding-domain (LBD) in p38γ mitogen-activated protein kinase (MAPK) involved in the response of T cells to a newly identified inhibitor, CSH71. We describe how CSH71, which binds to both the LBD and the ATP-binding pocket of p38γ, is selectively cytotoxic to CTCL Hut78 cells but spares normal healthy peripheral blood mononuclear (PBMC) cells, and propose possible molecular mechanisms for its action. p38γ is a key player in CTCL development, and we expect that the ability to regulate its expression by specifically targeting the lipid-binding domain will have important clinical relevance. Our findings characterize novel mechanisms of gene regulation in T lymphoma cells and validate the use of computational screening techniques to identify inhibitors for therapeutic development.


Assuntos
Trifosfato de Adenosina/metabolismo , Linfoma Cutâneo de Células T/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Neoplasias Cutâneas/metabolismo , Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/genética , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética
7.
Cancer Res ; 80(16): 3251-3264, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32580961

RESUMO

KRAS is mutated in most pancreatic ductal adenocarcinomas (PDAC) and yet remains undruggable. Here, we report that p38γ MAPK, which promotes PDAC tumorigenesis by linking KRAS signaling and aerobic glycolysis (also called the Warburg effect), is a novel therapeutic target. p38γ interacted with a glycolytic activator PFKFB3 that was dependent on mutated KRAS. KRAS transformation and overexpression of p38γ increased expression of PFKFB3 and glucose transporter GLUT2, conversely, silencing mutant KRAS, and p38γ decreased PFKFB3 and GLUT2 expression. p38γ phosphorylated PFKFB3 at S467, stabilized PFKFB3, and promoted their interaction with GLUT2. Pancreatic knockout of p38γ decreased p-PFKFB3/PFKFB3/GLUT2 protein levels, reduced aerobic glycolysis, and inhibited PDAC tumorigenesis in KPC mice. PFKFB3 and GLUT2 depended on p38γ to stimulate glycolysis and PDAC growth and p38γ required PFKFB3/S467 to promote these activities. A p38γ inhibitor cooperated with a PFKFB3 inhibitor to blunt aerobic glycolysis and PDAC growth, which was dependent on p38γ. Moreover, overexpression of p38γ, p-PFKFB3, PFKFB3, and GLUT2 in PDAC predicted poor clinical prognosis. These results indicate that p38γ links KRAS oncogene signaling and aerobic glycolysis to promote pancreatic tumorigenesis through PFKFB3 and GLUT2, and that p38γ and PFKFB3 may be targeted for therapeutic intervention in PDAC. SIGNIFICANCE: These findings show that p38γ links KRAS oncogene signaling and the Warburg effect through PFKBF3 and Glut2 to promote pancreatic tumorigenesis, which can be disrupted via inhibition of p38γ and PFKFB3.


Assuntos
Carcinoma Ductal Pancreático/etiologia , Transportador de Glucose Tipo 2/metabolismo , Glicólise , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Neoplasias Pancreáticas/etiologia , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Aerobiose , Animais , Carcinoma Ductal Pancreático/prevenção & controle , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Colágeno , Combinação de Medicamentos , Feminino , Técnicas de Inativação de Genes , Inativação Gênica , Genes ras , Técnicas de Genotipagem , Humanos , Laminina , Masculino , Camundongos , Proteína Quinase 12 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/prevenção & controle , Fosforilação , Prognóstico , Proteoglicanas , Proteínas Proto-Oncogênicas p21(ras)/genética
8.
Biochemistry ; 58(51): 5160-5172, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31794659

RESUMO

The inactive state of mitogen-activated protein kinases (MAPKs) adopts an open conformation while the active state exists in a compact form stabilized by phosphorylation. In the active state, eukaryotic kinases undergo breathing motions related to substrate binding and product release that have not previously been detected in the inactive state. However, docking interactions of partner proteins with inactive MAPK kinases exhibit allostery in binding of activating kinases. Interactions at a site distant from the activation loop are coupled to the configuration of the activation loop, suggesting that the inactive state may also undergo concerted dynamics. X-ray crystallographic studies of nonphosphorylated, inactive p38γ reveal differences in domain orientations and active site structure in the two molecules in the asymmetric unit. One molecule resembles an inactive kinase with an open active site. The second molecule has a rotation of the N-lobe that leads to partial compaction of the active site, resulting in a conformation that is intermediate between the inactive open state and the fully closed state of the activated kinase. Although the compact state of apo p38γ displays several of the features of the activated enzyme, it remains catalytically inert. In solution, the kinase fluctuates on a millisecond time scale between the open ground state and a weakly populated excited state that is similar in structure to the compact state observed in the crystal. The nuclear magnetic resonance and crystal structure data imply that interconversion between the open and compact states involves a molecular switch associated with the DFG loop.


Assuntos
Proteína Quinase 12 Ativada por Mitógeno/química , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência Conservada , Ativação Enzimática , Humanos , Modelos Moleculares , Domínios Proteicos
9.
Biochem Biophys Res Commun ; 516(2): 466-473, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31229268

RESUMO

Recent studies have proposed that p38gamma (p38γ) might be critically involved in tumorigenesis and cancer progression. Its expression and potential functions in human renal cell carcinoma (RCC) are studied here. We show that p38γ mRNA and protein levels are upregulated in human RCC tissues, as compared to its levels in the surrounding normal renal tissues. p38γ upregulation was also detected in established (786-O line) and primary human RCC cells. Functional studies in 786-O cells and primary human RCC cells demonstrated that p38γ silencing (by targeted shRNAs) or CRISPR/Cas9-mediated p38γ knockout (KO) potently inhibited cell growth, viability, proliferation and migration. Furthermore, p38γ shRNA or KO in RCC cells decreased retinoblastoma (Rb) phosphorylation and downregulated cyclin E1/A expression. Additionally, significant apoptosis activation was detected in p38γ-silenced and p38γ-KO RCC cells. Contrarily, ectopic overexpression of p38γ facilitated cell growth, viability, proliferation and migration in RCC cells. Taken together, we show that p38γ overexpression promotes RCC cell growth, proliferation and migration. p38γ could be a novel therapeutic target for human RCC.


Assuntos
Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/patologia , Movimento Celular , Neoplasias Renais/enzimologia , Neoplasias Renais/patologia , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Adulto , Idoso , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Regulação para Cima/genética
10.
Cell Death Dis ; 10(6): 376, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092814

RESUMO

Apoptosis and senescence are two mutually exclusive cell fate programs that can be activated by stress. The factors that instruct cells to enter into senescence or apoptosis are not fully understood, but both programs can be regulated by the stress kinase p38α. Using an inducible system that specifically activates this pathway, we show that sustained p38α activation suffices to trigger massive autophagosome formation and to enhance the basal autophagic flux. This requires the concurrent effect of increased mitochondrial reactive oxygen species production and the phosphorylation of the ULK1 kinase on Ser-555 by p38α. Moreover, we demonstrate that macroautophagy induction by p38α signaling determines that cancer cells preferentially enter senescence instead of undergoing apoptosis. In agreement with these results, we present evidence that the induction of autophagy by p38α protects cancer cells from chemotherapy-induced apoptosis by promoting senescence. Our results identify a new mechanism of p38α-regulated basal autophagy that controls the fate of cancer cells in response to stress.


Assuntos
Autofagia , Senescência Celular , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase 6/antagonistas & inibidores , MAP Quinase Quinase 6/genética , MAP Quinase Quinase 6/metabolismo , Mitocôndrias/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/deficiência , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/deficiência , Proteína Quinase 14 Ativada por Mitógeno/genética , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais
11.
Sci Rep ; 9(1): 7438, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092861

RESUMO

The human protein tyrosine phosphatase non-receptor type 3 (PTPN3) is a PDZ (PSD-95/Dlg/ZO-1) domain-containing phosphatase with a tumor-suppressive or a tumor-promoting role in many cancers. Interestingly, the high-risk genital human papillomavirus (HPV) types 16 and 18 target the PDZ domain of PTPN3. The presence of a PDZ binding motif (PBM) on E6 confers interaction with a number of different cellular PDZ domain-containing proteins and is a marker of high oncogenic potential. Here, we report the molecular basis of interaction between the PDZ domain of PTPN3 and the PBM of the HPV E6 protein. We combined biophysical, NMR and X-ray experiments to investigate the structural and functional properties of the PDZ domain of PTPN3. We showed that the C-terminal sequences from viral proteins encompassing a PBM interact with PTPN3-PDZ with similar affinities to the endogenous PTPN3 ligand MAP kinase p38γ. PBM binding stabilizes the PDZ domain of PTPN3. We solved the X-ray structure of the PDZ domain of PTPN3 in complex with the PBM of the HPV E6 protein. The crystal structure and the NMR chemical shift mapping of the PTPN3-PDZ/peptide complex allowed us to pinpoint the main structural determinants of recognition of the C-terminal sequence of the E6 protein and the long-range perturbations induced upon PBM binding.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 18/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 3/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Ligantes , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Domínios PDZ , Infecções por Papillomavirus/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 3/química , Proteína Tirosina Fosfatase não Receptora Tipo 3/genética , Relação Estrutura-Atividade
12.
Nature ; 568(7753): 557-560, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971822

RESUMO

The cell cycle is a tightly regulated process that is controlled by the conserved cyclin-dependent kinase (CDK)-cyclin protein complex1. However, control of the G0-to-G1 transition is not completely understood. Here we demonstrate that p38 MAPK gamma (p38γ) acts as a CDK-like kinase and thus cooperates with CDKs, regulating entry into the cell cycle. p38γ shares high sequence homology, inhibition sensitivity and substrate specificity with CDK family members. In mouse hepatocytes, p38γ induces proliferation after partial hepatectomy by promoting the phosphorylation of retinoblastoma tumour suppressor protein at known CDK target residues. Lack of p38γ or treatment with the p38γ inhibitor pirfenidone protects against the chemically induced formation of liver tumours. Furthermore, biopsies of human hepatocellular carcinoma show high expression of p38γ, suggesting that p38γ could be a therapeutic target in the treatment of this disease.


Assuntos
Carcinogênese/patologia , Ciclo Celular , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Fígado/enzimologia , Fígado/patologia , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Idoso , Animais , Carcinogênese/efeitos dos fármacos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Feminino , Hepatócitos/citologia , Hepatócitos/patologia , Humanos , Fígado/cirurgia , Neoplasias Hepáticas/induzido quimicamente , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína Quinase 12 Ativada por Mitógeno/antagonistas & inibidores , Fosforilação , Piridonas/farmacologia , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo , Homologia de Sequência , Especificidade por Substrato
13.
Int J Biochem Cell Biol ; 107: 6-13, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30447427

RESUMO

BACKGROUND: The expression of p38 MAPK is high in breast cancer while its subunit p38γ had been rarely reported. We aimed to explain the effect of p38γ in breast cancer from the perspective of metabolomics. METHODS: In this study, we detected the expression of p38γ in 28 breast carcinoma and para-tumor samples. Following MDA-MB-231 cell transfection with p38γ siRNAs and pc-DNA-3.1, cell viability, apoptosis, metastasis were determined through CCK-8, the cytometry analysis, transwell assay and wound healing assay. Finally, gas chromatograph-mass spectrometer (GC-MS) was used for analysis the differential metabolites. RESULTS: The expression of p38γ was significantly up-regulated in breast cancer tissues. The transfection of si-p38γs could inhibit MDA-MB-231 cell propagation, metastasis, and induced cell apoptosis while overexpressed p38γ could promote the cell propagation, metastasis, and inhibit cell apoptosis. A total of 238 metabolites were identified and 72 of them differentially expressed in three groups (all P < 0.05, FDR < 0.05). Then the metabolites were enriched in the metabolism pathway, 85 pathways were included and 27 were significant (all P < 0.05, FDR < 0.05). CONCLUSIONS: p38γ was up-regulated in breast cancer, which exerts a great influence on the cell growth, cell mobility, invasiveness, and apoptosis of MDA-MB-231 cells and also affected the metabolism.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Metabolômica , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Apoptose , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Proteína Quinase 12 Ativada por Mitógeno/genética , Invasividade Neoplásica
14.
Biochim Biophys Acta Mol Basis Dis ; 1864(11): 3605-3617, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30251680

RESUMO

p38γ is a member of p38 MAPK family which contains four isoforms p38α, p38ß, p38γ, and p38δ. p38γ MAPK has unique function and is less investigated. Recent studies revealed that p38γ MAPK may be involved in tumorigenesis and cancer aggressiveness. However, the underlying cellular/molecular mechanisms remain unclear. Epithelial-mesenchymal transition (EMT) is a process that epithelial cancer cells transform to facilitate the loss of epithelial features and gain of mesenchymal phenotype. EMT promotes cancer cell progression and metastasis, and is involved in the regulation of cancer stem cells (CSCs) which have self-renewal capacity and are resistant to chemotherapy and target therapy. We showed that p38γ MAPK significantly increased EMT in breast cancer cells; over-expression of p38γ MAPK enhanced EMT while its down-regulation inhibited EMT. Meanwhile, p38γ MAPK augmented CSC population while knock down of p38γ MAPK decreased CSC ratio in breast cancer cells. MicroRNA-200b (miR-200b) was down-stream of p38γ MAPK and inhibited by p38γ MAPK; miR-200b mimics blocked p38γ MAPK-induced EMT while miR-200b inhibitors promoted EMT. p38γ MAPK regulated miR-200b through inhibiting GATA3. p38γ MAPK induced GATA3 ubiquitination, leading to its proteasome-dependent degradation. Suz12, a Polycomb group protein, was down-stream of miR-200b and involved in miR-200b regulation of EMT. Thus, our study established an important role of p38γ MAPK in EMT and identified a novel signaling pathway for p38γ MAPK-mediated tumor promotion.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Transcrição GATA3/metabolismo , MicroRNAs/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias da Mama/patologia , Carcinogênese/genética , Regulação para Baixo , Feminino , Fator de Transcrição GATA3/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases/genética , Células MCF-7 , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Proteína Quinase 12 Ativada por Mitógeno/genética , Células-Tronco Neoplásicas/metabolismo , RNA Interferente Pequeno/metabolismo , Ubiquitinação
15.
J Invest Dermatol ; 138(11): 2377-2387, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29758280

RESUMO

Current cutaneous T-cell lymphoma (CTCL) therapies are marked by an abbreviated response, subsequent drug resistance, and poor prognosis for patients with advanced disease. An understanding of molecular regulators involved in CTCL is needed to develop effective targeted therapies. One candidate regulator is p38γ, a mitogen-activated protein kinase crucial for malignant T-cell activity and growth. p38γ gene expression is selectively increased in CTCL patient samples and cell lines but not in healthy T cells. In addition, gene silencing of p38γ reduced CTCL cell viability, showing a key role in CTCL pathogenesis. Screening p38γ inhibitors is critical for understanding the mechanism of CTCL tumorigenesis and developing therapeutic applications. We prioritized a potent p38γ inhibitor (F7, also known as PIK75) through a high-throughput kinase inhibitor screen. At nanomolar concentrations, PIK75, a multiple kinase inhibitor, selectively killed CD4+ malignant CTCL cells but spared healthy CD4+ cells; induced significant reduction of tumor size in mouse xenografts; and effectively inhibited p38γ enzymatic activity and phosphorylation of its substrate, DLGH1, in CTCL cells and mouse xenografts. Here, we report that PIK75 has a potential clinical application to serve as a scaffold molecule for the development of a more selective p38γ inhibitor.


Assuntos
Antineoplásicos/uso terapêutico , Linfócitos T CD4-Positivos/fisiologia , Linfoma Cutâneo de Células T/tratamento farmacológico , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Carcinogênese , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Proteína Quinase 12 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 12 Ativada por Mitógeno/genética , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/genética , Carga Tumoral , Células Tumorais Cultivadas , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Biol Chem ; 292(36): 15070-15079, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739874

RESUMO

Mutations in K-Ras and epidermal growth factor receptor (EGFR) are mutually exclusive, but it is not known how K-Ras activation inactivates EGFR, leading to resistance of cancer cells to anti-EGFR therapy. Here, we report that the K-Ras effector p38γ MAPK confers intrinsic resistance to small molecular tyrosine kinase inhibitors (TKIs) by concurrently stimulating EGFR gene transcription and protein dephosphorylation. We found that p38γ increases EGFR transcription by c-Jun-mediated promoter binding and stimulates EGFR dephosphorylation via activation of protein-tyrosine phosphatase H1 (PTPH1). Silencing the p38γ/c-Jun/PTPH1 signaling network increased sensitivities to TKIs in K-Ras mutant cells in which EGFR knockdown inhibited growth. Similar results were obtained with the p38γ-specific pharmacological inhibitor pirfenidone. These results indicate that in K-Ras mutant cancers, EGFR activity is regulated by the p38γ/c-Jun/PTPH1 signaling network, whose disruption may be a novel strategy to restore the sensitivity to TKIs.


Assuntos
Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transcrição Gênica , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Fosforilação/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Transcrição Gênica/efeitos dos fármacos
17.
Heart Lung Circ ; 26(4): 404-412, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27574735

RESUMO

BACKGROUND: It is reported that glucagon-like peptide-1 (GLP-1) has direct cardioprotective effects. We hypothesise that Exenatide, a long half-life analog of GLP-1, might protect the heart against ischaemia/reperfusion (I/R) injury. In this study, the role and mechanism of Exenatide in I/R was investigated. METHODS: Two p38 mitogen-activated protein kinase (MAPK) isoforms p38α or p38γ, were knocked down by recombinant adeno-associated virus (rAAV) in male Sprague-Dawley rats. Then, rats were randomly treated with Exenatide or phosphate buffered saline (PBS) before I/R. Left ventricular function was measured. The translocation of glucose transporter 4 (GLUT4), GLUT1 and fatty acid transporter (FAT)/CD36 was assessed. RESULTS: Exenatide treatment increased the p38γ expression, but not p38α, in I/R rats. Exenatide significantly improved post-ischaemic cardiac function of I/R rats. The administration of Exenatide stimulated the translocation of GLUT4 and GLUT1, while it also increased the GLUT1 expression in the cytoplasm. Meanwhile, it reduced the translocation of FAT/CD36 (p<0.05). However, cardiac down-regulation of p38γ mediated by rAAV abolished not only the Exenatide-induced cardioprotective effects but also the GLUT4, GLUT1 and FAT/CD36 translocation. CONCLUSIONS: These results demonstrated that Exenatide improved cardiac function, increased translocation of GLUTs, and suppressed translocation of FAT/CD36 after myocardial I/R injury. This protective effect was mediated, at least in part, through modulation of the cardiac p38γ MAPK.


Assuntos
Cardiotônicos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , Peptídeos/farmacologia , Peçonhas/farmacologia , Animais , Caderinas/metabolismo , Exenatida , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Ratos , Ratos Sprague-Dawley , Função Ventricular Esquerda/efeitos dos fármacos
18.
Mol Cancer ; 15(1): 52, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27416801

RESUMO

BACKGROUND: Both epidemiological and experimental studies suggest that excessive alcohol exposure increases the risk for breast cancer and enhances metastasis/recurrence. We have previously demonstrated that alcohol enhanced the migration/invasion of breast cancer cells and cancer cells overexpressing ErbB2/HER2 were more sensitive to alcohol exposure. However, the underlying mechanisms remain unclear. This study was designed to investigate the mechanisms underlying alcohol-enhanced aggressiveness of breast cancer. Cancer stem cells (CSCs) play a critical role in cancer metastasis and recurrence. METHODS: We evaluated the effect of chronic alcohol exposure on mammary tumor development/metastasis in MMTV-neu transgenic mice and investigated the cell signaling in response to alcohol exposure in breast cancer cells overexpressing ErbB2/HER2. RESULTS AND DISCUSSION: Chronic alcohol exposure increased breast cancer stem cell-like CSC population and enhanced the lung and colon metastasis in MMTV-neu transgenic mice. Alcohol exposure caused a drastic increase in CSC population and mammosphere formation in breast cancer cells overexpressing ErbB2/HER2. Alcohol exposure stimulated the phosphorylation of p38γ MAPK (p-p38γ) which was co-localized with phosphorylated ErbB2 and CSCs in the mammary tumor tissues. In vitro results confirmed that alcohol activated ErbB2/HER2 and selectively increased p-p38γ MAPK as well as the interaction between p38γ MAPK and its substrate, SAP97. However, alcohol did not affect the expression/phosphorylation of p38α/ß MAPKs. In breast cancer cell lines, high expression of ErbB2 and p-p38γ MAPK was generally correlated with more CSC population. Blocking ErbB2 signaling abolished heregulin ß1- and alcohol-stimulated p-p38γ MAPK and its association with SAP97. More importantly, p38γ MAPK siRNA significantly inhibited an alcohol-induced increase in CSC population, mammosphere formation and migration/invasion of breast cancer cells overexpressing ErbB2. CONCLUSIONS: p38γ MAPK is downstream of ErbB2 and plays an important role in alcohol-enhanced aggressiveness of breast cancer. Therefore, in addition to ErbB2/HER2, p38γ MAPK may be a potential target for the treatment of alcohol-enhanced cancer aggressiveness.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Álcoois/efeitos adversos , Neoplasias da Mama/induzido quimicamente , Proteínas de Membrana/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteína 1 Homóloga a Discs-Large , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Fosforilação
19.
J Biol Chem ; 291(32): 16699-708, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27246854

RESUMO

The human protein tyrosine phosphatase non-receptor type 4 (PTPN4) prevents cell death induction in neuroblastoma and glioblastoma cell lines in a PDZ·PDZ binding motifs-dependent manner, but the cellular partners of PTPN4 involved in cell protection are unknown. Here, we described the mitogen-activated protein kinase p38γ as a cellular partner of PTPN4. The main contribution to the p38γ·PTPN4 complex formation is the tight interaction between the C terminus of p38γ and the PDZ domain of PTPN4. We solved the crystal structure of the PDZ domain of PTPN4 bound to the p38γ C terminus. We identified the molecular basis of recognition of the C-terminal sequence of p38γ that displays the highest affinity among all endogenous partners of PTPN4. We showed that the p38γ C terminus is also an efficient inducer of cell death after its intracellular delivery. In addition to recruiting the kinase, the binding of the C-terminal sequence of p38γ to PTPN4 abolishes the catalytic autoinhibition of PTPN4 and thus activates the phosphatase, which can efficiently dephosphorylate the activation loop of p38γ. We presume that the p38γ·PTPN4 interaction promotes cellular signaling, preventing cell death induction.


Assuntos
Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Complexos Multienzimáticos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 4/metabolismo , Transdução de Sinais/fisiologia , Morte Celular , Linhagem Celular Tumoral , Humanos , Proteína Quinase 12 Ativada por Mitógeno/genética , Complexos Multienzimáticos/genética , Proteína Tirosina Fosfatase não Receptora Tipo 4/genética
20.
Cell Death Dis ; 7: e2119, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26913608

RESUMO

The Wnt inhibitor Dickkopf-1 (DKK-1) has been associated with the occurrence of bone metastases in osteotropic prostate cancer by inhibiting osteoblastogenesis. P38 mitogen-activated protein kinase (MAPK) activity is also dysregulated in advanced prostate cancer. However, the impact of p38 MAPK signaling on DKK-1 remains unknown. Inhibition of p38 MAPK signaling in osteolytic PC3 cells by small molecule inhibitors (doramapimod, LY2228820 and SB202190) suppressed DKK-1 expression, whereas activation of p38 MAPK by anisomycin increased DKK-1. Further dissection by targeting individual p38 MAPK isoforms with siRNA revealed a stronger role for MAPK11 than MAPK14 and MAPK12 in the regulation of DKK-1. Moreover, prostate cancer cells with a predominantly osteolytic phenotype produced sufficient amounts of DKK-1 to inhibit Wnt3a-induced osteoblastic differentiation in C2C12 cells. This inhibition was blocked directly by neutralizing DKK-1 using a specific antibody and also indirectly by blocking p38 MAPK. Furthermore, tissue expression in human prostate cancer revealed a correlation between p38 MAPK and DKK-1 expression with higher expression in tumor compared with normal tissues. These results reveal that p38 MAPK regulates DKK-1 in prostate cancer and may present a potential target in osteolytic prostate cancers.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Anticorpos Neutralizantes/imunologia , Diferenciação Celular , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Masculino , Proteína Quinase 11 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 11 Ativada por Mitógeno/genética , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Naftalenos/farmacologia , Neoplasias da Próstata , Pirazóis/farmacologia , Piridinas/farmacologia , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Transdução de Sinais/efeitos dos fármacos , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA