Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 507
Filtrar
1.
Biomolecules ; 14(5)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38785963

RESUMO

Bones are vital for anchoring muscles, tendons, and ligaments, serving as a fundamental element of the human skeletal structure. However, our understanding of bone development mechanisms and the maintenance of bone homeostasis is still limited. Extracellular signal-related kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, plays a critical role in the pathogenesis and progression of various diseases, especially neoplasms. Recent studies have highlighted ERK5's significant role in both bone development and bone-associated pathologies. This review offers a detailed examination of the latest research on ERK5 in different tissues and diseases, with a particular focus on its implications for bone health. It also examines therapeutic strategies and future research avenues targeting ERK5.


Assuntos
Osso e Ossos , Proteína Quinase 7 Ativada por Mitógeno , Humanos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/enzimologia , Animais
2.
J Mol Recognit ; 37(1): e3067, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956676

RESUMO

Mitogen-activated protein kinase 7 (MAPK7) is a serine/threonine protein kinase that belongs to the MAPK family and plays a vital role in various cellular processes such as cell proliferation, differentiation, gene transcription, apoptosis, metabolism, and cell survival. The elevated expression of MAPK7 has been associated with the onset and progression of multiple aggressive tumors in humans, underscoring the potential of targeting MAPK7 pathways in therapeutic research. This pursuit holds promise for the advancement of anticancer drug development by developing potential MAPK7 inhibitors. To look for potential MAPK7 inhibitors, we exploited structure-based virtual screening of natural products from the ZINC database. First, the Lipinski rule of five criteria was used to filter a large library of ~90,000 natural compounds, followed by ADMET and pan-assay interference compounds (PAINS) filters. Then, top hits were chosen based on their strong binding affinity as determined by molecular docking. Further, interaction analysis was performed to find effective and specific compounds that can precisely bind to the binding pocket of MAPK7. Consequently, two compounds, ZINC12296700 and ZINC02123081, exhibited significant binding affinity and demonstrated excellent drug-like properties. All-atom molecular dynamics simulations for 200 ns confirmed the stability of MAPK7-ZINC12296700 and MAPK7-ZINC02123081 docked complexes. According to the molecular mechanics Poisson-Boltzmann surface area investigation, the binding affinities of both complexes were considerable. Overall, the result suggests that ZINC12296700 and ZINC02123081 might be used as promising leads to develop novel MAPK7 inhibitors. Since these compounds would interfere with the kinase activity of MAPK7, therefore, may be implemented to control cell growth and proliferation in cancer after required validations.


Assuntos
Produtos Biológicos , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Serina-Treonina Quinases/química , Inibidores de Proteínas Quinases/química
3.
Bioorg Med Chem ; 95: 117503, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37862935

RESUMO

The extracellular signal-regulated kinase 5 (Erk5) signaling plays a crucial role in cancer, and regulating its activity may have potential in cancer chemotherapy. In this study, a series of novel 7-azaindole derivatives (4a-5o) were designed and synthesized. Their antitumor activities on human lung cancer A549 cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 4',6-diamidino-2-phenylindole (DAPI) staining and colony formation assay. Among them, compounds 4a, 4 h, 5d and 5j exhibited good anti-proliferative activity with the IC50 values of 6.23 µg/mL, 8.52 µg/mL, 7.33 µg/mL and 4.56 µg/mL, respectively, equivalent to Erk5 positive control XMD8-92 (IC50 = 5.36 µg/mL). The results of structure-activity relationships (SAR) showed that double bond on the piperidine ring and N atoms at the N7 position of 7-azaindole was essential for their antiproliferative activity. Furthermore, compounds 4a and 5j exhibited good inhibition on Erk5 kinase through Western blot analysis and possible action site of compounds with Erk5 kinase was elucidated by molecular docking.


Assuntos
Antineoplásicos , Proteína Quinase 7 Ativada por Mitógeno , Humanos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Proliferação de Células , Relação Estrutura-Atividade , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Estrutura Molecular
4.
J Hazard Mater ; 459: 132226, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37549580

RESUMO

Zearalenone (ZEN) is a widespread and transgenerational toxicant that can cause serious reproductive health risks, which poses a potential threat to global agricultural production and human health; its estrogenic activity can lead to reproductive toxicity through the induction of granulosa cell apoptosis. Herein, comparative transcriptome analysis, single-cell transcriptome analysis, and weighted gene co-expression network analysis (WGCNA) combined with gene knockout in vivo and RNA interference in vitro were used to comprehensively describe the damage caused by ZEN exposure on ovarian granulosa cells. Comparative transcriptome analysis and WGCNA suggested that the tumor necrosis factor (TNF)-α-mediated mitogen-activated protein kinase 7 (MAP2K7)/ AKT serine/threonine kinase 2 (AKT2) axis was disordered after ZEN exposure in porcine granulosa cells (pGCs) and mouse granulosa cells (mGCs). In vivo gene knockout and in vitro RNA interference verified that TNF-α-mediated MAP2K7/AKT2 was the guiding signal in ZEN-induced apoptosis in pGCs and mGCs. Moreover, single-cell transcriptome analysis showed that ZEN exposure could induce changes in the TNF signaling pathway in offspring. Overall, we concluded that the TNF-α-mediated MAP2K7/AKT2 axis was the main signaling pathway of ZEN-induced apoptosis in pGCs and mGCs. This work provides new insights into the mechanism of ZEN toxicity and provides new potential therapeutic targets for the loss of livestock and human reproductive health caused by ZEN.


Assuntos
Zearalenona , Animais , Feminino , Camundongos , Apoptose , MAP Quinase Quinase 7 , Proteína Quinase 7 Ativada por Mitógeno , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Suínos , Transcriptoma , Fator de Necrose Tumoral alfa/genética , Zearalenona/toxicidade
5.
Circ Res ; 133(1): 25-44, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37264926

RESUMO

BACKGROUND: ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation. We aimed to investigate how ERK5 reprograms myeloid cells to the proinflammatory senescent phenotype, subsequently leading to atherosclerosis. METHODS: A ERK5 S496A (dephosphorylation mimic) knock in (KI) mouse model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and atherosclerosis was characterized by hypercholesterolemia induction. The plaque phenotyping in homozygous ERK5 S496A KI and wild type (WT) mice was studied using imaging mass cytometry. Bone marrow-derived macrophages were isolated from hypercholesterolemic mice and characterized using RNA sequencing and functional in vitro approaches, including senescence, mitochondria reactive oxygen species, and inflammation assays, as well as by metabolic extracellular flux analysis. RESULTS: We show that atherosclerosis was inhibited in ERK5 S496A KI mice. Furthermore, ERK5 S496 phosphorylation mediates both senescence-associated secretory phenotype and senescence-associated stemness by upregulating AHR (aryl hydrocarbon receptor) in plaque and bone marrow-derived macrophages isolated from hypercholesterolemic mice. We also discovered that ERK5 S496 phosphorylation could induce NRF2 (NFE2-related factor 2) SUMOylation at a novel K518 site to inhibit NRF2 transcriptional activity without altering ERK5 catalytic activity and mediates oxidized LDL (low-density lipoprotein)-induced senescence-associated secretory phenotype. Specific ERK5 kinase inhibitors (AX15836 and XMD8-92) also inhibited ERK5 S496 phosphorylation, suggesting the involvement of ERK5 S496 phosphorylation in the anti-inflammatory effects of these ERK5 kinase inhibitors. CONCLUSIONS: We discovered a novel mechanism by which the macrophage ERK5-NRF2 axis develops a unique senescence-associated secretory phenotype/stemness phenotype by upregulating AHR to engender atherogenesis. The finding of senescence-associated stemness phenotype provides a molecular explanation to resolve the paradox of senescence in proliferative plaque by permitting myeloid cells to escape the senescence-induced cell cycle arrest during atherosclerosis formation.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Aterosclerose/metabolismo , Inflamação , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
6.
Cancer Immunol Res ; 11(9): 1168-1183, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307577

RESUMO

Exercise changes the tumor microenvironment by remodeling blood vessels and increasing infiltration by cytotoxic immune cells. The mechanisms driving these changes remain unclear. Herein, we demonstrate that exercise normalizes tumor vasculature and upregulates endothelial expression of VCAM1 in YUMMER 1.7 and B16F10 murine models of melanoma but differentially regulates tumor growth, hypoxia, and the immune response. We found that exercise suppressed tumor growth and increased CD8+ T-cell infiltration in YUMMER but not in B16F10 tumors. Single-cell RNA sequencing and flow cytometry revealed exercise modulated the number and phenotype of tumor-infiltrating CD8+ T cells and myeloid cells. Specifically, exercise caused a phenotypic shift in the tumor-associated macrophage population and increased the expression of MHC class II transcripts. We further demonstrated that ERK5 S496A knock-in mice, which are phosphorylation deficient at the S496 residue, "mimicked" the exercise effect when unexercised, yet when exercised, these mice displayed a reversal in the effect of exercise on tumor growth and macrophage polarization compared with wild-type mice. Taken together, our results reveal tumor-specific differences in the immune response to exercise and show that ERK5 signaling via the S496 residue plays a crucial role in exercise-induced tumor microenvironment changes. See related Spotlight by Betof Warner, p. 1158.


Assuntos
Melanoma , Proteína Quinase 7 Ativada por Mitógeno , Animais , Camundongos , Linfócitos T CD8-Positivos , Melanoma/genética , Fenótipo , Fosforilação , Microambiente Tumoral
7.
Cells ; 12(8)2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37190064

RESUMO

Oxidative stress regulates many physiological and pathological processes. Indeed, a low increase in the basal level of reactive oxygen species (ROS) is essential for various cellular functions, including signal transduction, gene expression, cell survival or death, as well as antioxidant capacity. However, if the amount of generated ROS overcomes the antioxidant capacity, excessive ROS results in cellular dysfunctions as a consequence of damage to cellular components, including DNA, lipids and proteins, and may eventually lead to cell death or carcinogenesis. Both in vitro and in vivo investigations have shown that activation of the mitogen-activated protein kinase kinase 5/extracellular signal-regulated kinase 5 (MEK5/ERK5) pathway is frequently involved in oxidative stress-elicited effects. In particular, accumulating evidence identified a prominent role of this pathway in the anti-oxidative response. In this respect, activation of krüppel-like factor 2/4 and nuclear factor erythroid 2-related factor 2 emerged among the most frequent events in ERK5-mediated response to oxidative stress. This review summarizes what is known about the role of the MEK5/ERK5 pathway in the response to oxidative stress in pathophysiological contexts within the cardiovascular, respiratory, lymphohematopoietic, urinary and central nervous systems. The possible beneficial or detrimental effects exerted by the MEK5/ERK5 pathway in the above systems are also discussed.


Assuntos
Antioxidantes , Proteína Quinase 7 Ativada por Mitógeno , Antioxidantes/metabolismo , MAP Quinase Quinase 5/genética , MAP Quinase Quinase 5/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Animais
8.
Cell Tissue Res ; 393(2): 281-296, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37256363

RESUMO

The intestine of zebrafish consists of mucosa, muscularis and serosa. Intestinal epithelial cells (IECs) act as a physical and biochemical barrier to protect against invasion by external commensal bacteria. Cell junction is one of the crucial basis of the barrier function. When cell junctions were disrupted, intestinal permeability would be naturally impeded. Extracellular signal-regulated kinase 5 (ERK5), belonging to the Mitogen-activated protein kinase (MAPK) family, is involved in the normal physiological development of the cardiovascular system and nervous system. But the role of erk5 in intestinal morphogenesis and intestinal function is yet to know. Here, we showed that knockout of the erk5 in zebrafish larvae resulted in intestinal wall hypoplasia, including the thinned intestinal wall, reduced intestinal folds, and disrupted cell junctions. In addition, the intestinal permeability assay demonstrated that knockout of erk5 resulted in increased intestinal permeability. All of these showed that erk5 plays an essential role in the maintenance of intestinal barrier function. Thus, our data indicate that erk5 is a critical effector in intestinal morphogenesis and intestinal function, and dysfunction of erk5 would lead to intestinal diseases.


Assuntos
Proteína Quinase 7 Ativada por Mitógeno , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Intestinos , Células Epiteliais/metabolismo , Permeabilidade , Mucosa Intestinal/metabolismo
9.
J Med Chem ; 66(7): 4491-4502, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37002872

RESUMO

The extracellular signal-regulated kinase 5 (ERK5) signaling pathway is one of four conventional mitogen-activated protein (MAP) kinase pathways. Genetic perturbation of ERK5 has suggested that modulation of ERK5 activity may have therapeutic potential in cancer chemotherapy. This Miniperspective examines the evidence for ERK5 as a drug target in cancer, the structure of ERK5, and the evolution of structurally distinct chemotypes of ERK5 kinase domain inhibitors. The emerging complexities of ERK5 pharmacology are discussed, including the confounding phenomenon of paradoxical ERK5 activation by small-molecule ERK5 inhibitors. The impact of the recent development and biological evaluation of potent and selective bifunctional degraders of ERK5 and future opportunities in ERK modulation are also explored.


Assuntos
Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Transdução de Sinais/fisiologia , Fosforilação , Proteína Quinase 7 Ativada por Mitógeno , Processamento de Proteína Pós-Traducional
10.
In Vivo ; 37(2): 644-648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881097

RESUMO

BACKGROUND/AIM: Mitogen-activated protein kinases (MAPKs) are important regulatory molecules, which have essential roles in physiology and pathology. In the present study, we examined the possible correlation between the MAPK7 gene and colorectal cancer risk in the Turkish population. MATERIALS AND METHODS: A total of 100 human DNA samples (50 colorectal cancer patients and 50 healthy individuals) were sequenced using next-generation sequencing to define the potential genetic variations in the MAPK7 gene. RESULTS: Five genetic variations (MAPK7; rs2233072, rs2233076, rs181138364, rs34984998, rs148989290) were detected in our study group. The G (variant) allele of the MAPK7; rs2233072 (T>G) gene polymorphism was found in 76% of colorectal cancer cases, and 66% of controls. The prevalence of rs2233076, rs181138364, rs34984998, and rs148989290 gene variations was quite rare in the subjects and no significant association in terms of genotype and allele frequencies was observed between the cases and controls. CONCLUSION: No statistically significant correlation between the MAP7 kinase gene variations and colorectal cancer risk was observed. This is the first investigation in the Turkish population that may initiate additional studies in larger populations to analyze the effect of MAPK7 gene on the colorectal cancer risk.


Assuntos
Neoplasias Colorretais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Alelos , Genótipo , Frequência do Gene , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Proteína Quinase 7 Ativada por Mitógeno
11.
Cells ; 12(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36980305

RESUMO

Extracellular-signal-regulated kinase 5 (ERK5) is critical for normal cardiovascular development. Previous studies have defined a canonical pathway for ERK5 activation, showing that ligand stimulation leads to MEK5 activation resulting in dual phosphorylation of ERK5 on Thr218/Tyr220 residues within the activation loop. ERK5 then undergoes a conformational change, facilitating phosphorylation on residues in the C-terminal domain and translocation to the nucleus where it regulates MEF2 transcriptional activity. Our previous research into the importance of ERK5 in endothelial cells highlighted its role in VEGF-mediated tubular morphogenesis and cell survival, suggesting that ERK5 played a unique role in endothelial cells. Our current data show that in contrast to EGF-stimulated HeLa cells, VEGF-mediated ERK5 activation in human dermal microvascular endothelial cells (HDMECs) does not result in C-terminal phosphorylation of ERK5 and translocation to the nucleus, but instead to a more plasma membrane/cytoplasmic localisation. Furthermore, the use of small-molecule inhibitors to MEK5 and ERK5 shows that instead of regulating MEF2 activity, VEGF-mediated ERK5 is important for regulating AKT activity. Our data define a novel pathway for ERK5 activation in endothelial cells leading to cell survival.


Assuntos
Proteína Quinase 7 Ativada por Mitógeno , Proteínas Proto-Oncogênicas c-akt , Fator A de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais/metabolismo , Células HeLa , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Cell Death Dis ; 14(1): 32, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650140

RESUMO

YES-associated protein (YAP) is a transcriptional cofactor with a key role in the regulation of several physio-pathological cellular processes, by integrating multiple cell autonomous and microenvironmental cues. YAP is the main downstream effector of the Hippo pathway, a tumor-suppressive signaling able to transduce several extracellular signals. The Hippo pathway acts restraining YAP activity, since its activation induces YAP phosphorylation and cytoplasmic sequestration. However, recent observations indicate that YAP activity can be also modulated by Hippo independent/integrating pathways, still largely unexplored. In this study, we demonstrated the role of the extracellular signal-regulated kinase 5 (ERK5)/mitogen-activated protein kinase in the regulation of YAP activity. By means of ERK5 inhibition/silencing and overexpression experiments, and by using as model liver stem cells, hepatocytes, and hepatocellular carcinoma (HCC) cell lines, we provided evidence that ERK5 is required for YAP-dependent gene expression. Mechanistically, ERK5 controls the recruitment of YAP on promoters of target genes and its physical interaction with the transcriptional partner TEAD; moreover, it mediates the YAP activation occurring in cell adhesion, migration, and TGFß-induced EMT of liver cells. Furthermore, we demonstrated that ERK5 signaling modulates YAP activity in a LATS1/2-independent manner. Therefore, our observations identify ERK5 as a novel upstream Hippo-independent regulator of YAP activity, thus unveiling a new target for therapeutic approaches aimed at interfering with its function.


Assuntos
Hepatócitos , Proteína Quinase 7 Ativada por Mitógeno , Proteínas de Sinalização YAP , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Neoplasias Hepáticas/patologia , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , Hepatócitos/metabolismo , Células-Tronco
13.
Cell Chem Biol ; 29(11): 1630-1638.e7, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36220104

RESUMO

Recent interest in the role that extracellular signal-regulated kinase 5 (ERK5) plays in various diseases, particularly cancer and inflammation, has grown. Phenotypes observed from genetic knockdown or deletion of ERK5 suggested that targeting ERK5 could have therapeutic potential in various disease settings, motivating the development ATP-competitive ERK5 inhibitors. However, these inhibitors were unable to recapitulate the effects of genetic loss of ERK5, suggesting that ERK5 may have key kinase-independent roles. To investigate potential non-catalytic functions of ERK5, we report the development of INY-06-061, a potent and selective heterobifunctional degrader of ERK5. In contrast to results reported through genetic knockdown of ERK5, INY-06-061-induced ERK5 degradation did not induce anti-proliferative effects in multiple cancer cell lines or suppress inflammatory responses in primary endothelial cells. Thus, we developed and characterized a chemical tool useful for validating phenotypes reported to be associated with genetic ERK5 ablation and for guiding future ERK5-directed drug discovery efforts.


Assuntos
Células Endoteliais , Proteína Quinase 7 Ativada por Mitógeno , Humanos , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Células Endoteliais/metabolismo , Imunidade Celular , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proliferação de Células
14.
Nat Commun ; 13(1): 5124, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045118

RESUMO

The Pattern Of Invasion (POI) of tumor cells into adjacent normal tissues clinically predicts postoperative tumor metastasis/recurrence of early oral squamous cell carcinoma (OSCC), but the mechanisms underlying the development of these subtypes remain unclear. Focusing on the highest score of POIs (Worst POI, WPOI) present within each tumor, we observe a disease progression-driven shift of WPOI towards the high-risk type 4/5, associated with a mesenchymal phenotype in advanced OSCC. WPOI 4-5-derived cancer-associated fibroblasts (CAFsWPOI4-5), characterized by high oxytocin receptor expression (OXTRHigh), contribute to local-regional metastasis. OXTRHigh CAFs induce a desmoplastic stroma and CCL26 is required for the invasive phenotype of CCR3+ tumors. Mechanistically, OXTR activates nuclear ERK5 transcription signaling via Gαq and CDC37 to maintain high levels of OXTR and CCL26. ERK5 ablation reprograms the pro-invasive phenotype of OXTRHigh CAFs. Therefore, targeting ERK5 signaling in OXTRHigh CAFs is a potential therapeutic strategy for OSCC patients with WPOI 4-5.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteína Quinase 7 Ativada por Mitógeno , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Neoplasias Bucais/patologia , Invasividade Neoplásica/patologia , Receptores de Ocitocina/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
15.
FEBS Open Bio ; 12(8): 1498-1508, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35778889

RESUMO

Acute lung injury (ALI) is a pneumonic response characterized by neutrophil infiltration. Macrophage efferocytosis is the process whereby macrophages remove apoptotic cells, and is required for ALI inflammation to subside. The glycoprotein ulinastatin (UTI) has an anti-inflammatory effect during the acute stages of ALI, but its effect on efferocytosis and the subinflammatory stage of ALI is unclear. Extracellular signal-regulated kinase 5 (ERK5) is a key protein in efferocytosis, and we thus hypothesized that it may be activated by UTI to regulate efferocytosis and the resolution of pneumonia. To test this hypothesis, here we monitored phagocytosis of macrophages through in vivo and in vitro experiments. Pulmonary edema, neutrophil infiltration, protein exudation, and inflammatory factor regression were observed on days 1, 3, 5, and 7 in vivo. RAW264.7 cells were pretreated with different concentrations of UTI and ERK5 inhibitors, and the expression of tyrosine-protein kinase Mer (Mer) protein on macrophage membrane was detected. UTI increased the phagocytosis of apoptotic neutrophils by macrophages in vitro and in vivo, and promoted the resolution of pneumonia. The protein expression of ERK5 and Mer increased with UTI concentration, while the expression of Mer was down-regulated by ERK5 inhibitors. Therefore, our results suggest that UTI enhances efferocytosis and reduces lung inflammation and injury through the ERK5/Mer signaling pathway, which may be one of the targets of UTI in the treatment of lung injury.


Assuntos
Lesão Pulmonar Aguda , Pneumonia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Apoptose , Glicoproteínas/metabolismo , Glicoproteínas/farmacologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fagocitose/fisiologia , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Transdução de Sinais , c-Mer Tirosina Quinase/metabolismo
16.
FEBS Open Bio ; 12(10): 1747-1760, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35748027

RESUMO

Tumor necrosis factor receptor-associated factor 4 (TRAF4) is overexpressed in a variety of carcinomas of different origins, but its role in tumorigenesis remains incompletely understood. Previous studies suggest that TRAF4 promotes epidermal growth factor receptor (EGFR) activation in non-small cell lung cancer (NSCLC). However, the downstream signaling pathway of TRAF4-mediated EGFR activation, as well as its effects on tumor cells, have not been fully elucidated. Here we report that TRAF4 overexpression is associated with increased activity of extracellular signal-regulated kinase 5 (ERK5) in NSCLC tissues. Activation of ERK5 was dependent on TRAF4-mediated EGFR activation, since inhibition of either TRAF4 or EGFR dramatically abolished phosphorylation of ERK5. Mechanistically, EGFR recruited mitogen-activated protein kinase kinase kinase 3 (MEKK3), an upstream kinase of ERK5, in a TRAF4-dependent manner. Thus, our data suggest that an EGFR-TRAF4-MEKK3-ERK5 axis promotes the proliferation of tumor cells, and this may be a potential target for therapeutic intervention of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , MAP Quinase Quinase Quinase 3/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fosforilação , Fator 4 Associado a Receptor de TNF/genética , Fator 4 Associado a Receptor de TNF/metabolismo
17.
Diabetes Obes Metab ; 24(9): 1721-1733, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35546452

RESUMO

AIM: To show that depletion of pancreatic macrophages impairs gestational beta cell proliferation and leads to glucose intolerance. MATERIALS AND METHODS: Genetic animal models were applied to study the effects of depletion of pancreatic macrophges on gestational beta-cell proliferaiton and glucose response. The crosstalk between macrophages and beta-cells was studied in vivo using beta-cell-specific extracellular-signal-regulated kinase 5 (ERK5) knockout and epidermal growth receptor (EGFR) knockout mice, and in vitro using a co-culture system. RESULTS: Beta cell-derived placental growth factor (PlGF) recruited naïve macrophages and polarized them towards an M2-like phenotype. These macrophages then secreted epidermal growth factor (EGF), which activated extracellular signal-regulated kinase 5 (ERK5) signalling in beta cells to promote gestational beta cell proliferation. On the other hand, activation of ERK5 signalling in beta cells likely, in turn, enhanced the production and secretion of PlGF by beta cells. CONCLUSIONS: Our study shows a regulatory loop between macrophages and beta cells through PlGF/EGF/ERK5 signalling cascades to regulate gestational beta cell growth.


Assuntos
Fator de Crescimento Epidérmico , Proteína Quinase 7 Ativada por Mitógeno , Animais , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Feminino , Macrófagos/metabolismo , Camundongos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fator de Crescimento Placentário/metabolismo
18.
J Med Chem ; 65(9): 6513-6540, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35468293

RESUMO

The nonclassical extracellular signal-related kinase 5 (ERK5) mitogen-activated protein kinase pathway has been implicated in increased cellular proliferation, migration, survival, and angiogenesis; hence, ERK5 inhibition may be an attractive approach for cancer treatment. However, the development of selective ERK5 inhibitors has been challenging. Previously, we described the development of a pyrrole carboxamide high-throughput screening hit into a selective, submicromolar inhibitor of ERK5 kinase activity. Improvement in the ERK5 potency was necessary for the identification of a tool ERK5 inhibitor for target validation studies. Herein, we describe the optimization of this series to identify nanomolar pyrrole carboxamide inhibitors of ERK5 incorporating a basic center, which suffered from poor oral bioavailability. Parallel optimization of potency and in vitro pharmacokinetic parameters led to the identification of a nonbasic pyrazole analogue with an optimal balance of ERK5 inhibition and oral exposure.


Assuntos
Proteína Quinase 7 Ativada por Mitógeno , Pirróis , Proliferação de Células , Pirróis/farmacologia
19.
Stem Cells ; 40(4): 411-422, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35304894

RESUMO

Extracellular signal-regulated kinase 5 (Erk5) belongs to the mitogen-activated protein kinase (MAPK) family. Previously, we demonstrated that Erk5 directly phosphorylates Smad-specific E3 ubiquitin protein ligase 2 (Smurf2) at Thr249 (Smurf2Thr249) to activate its E3 ubiquitin ligase activity. Although we have clarified the importance of Erk5 in embryonic mesenchymal stem cells (MSCs) on skeletogenesis, its role in adult bone marrow (BM)-MSCs on bone homeostasis remains unknown. Leptin receptor-positive (LepR+) BM-MSCs represent a major source of bone in adult bone marrow and are critical regulators of postnatal bone homeostasis. Here, we identified Erk5 in BM-MSCs as an important regulator of bone homeostasis in adulthood. Bone marrow tissue was progressively osteosclerotic in mice lacking Erk5 in LepR+ BM-MSCs with age, accompanied by increased bone formation and normal bone resorption in vivo. Erk5 deficiency increased the osteogenic differentiation of BM-MSCs along with a higher expression of Runx2 and Osterix, essential transcription factors for osteogenic differentiation, without affecting their stemness in vitro. Erk5 deficiency decreased Smurf2Thr249 phosphorylation and subsequently increased Smad1/5/8-dependent signaling in BM-MSCs. The genetic introduction of the Smurf2T249E mutant (a phosphomimetic mutant) suppressed the osteosclerotic phenotype in Erk5-deficient mice. These findings suggest that the Erk5-Smurf2Thr249 axis in BM-MSCs plays a critical role in the maintenance of proper bone homeostasis by preventing excessive osteogenesis in adult bone marrow.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Homeostase , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Osteogênese/genética
20.
Lasers Med Sci ; 37(4): 2259-2268, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35022873

RESUMO

This Querystudy aimed to investigate the effects of low-energy red light-emitting diode (LED) irradiation on the proliferation of stem cells from apical papilla (SCAPs) and preliminarily elucidated the underlying molecular mechanisms. SCAPs were isolated and identified in vitro. The light source was a 10 W red LED with continuous output and a wavelength of 600-700 nm. SCAPs were irradiated with 0 (control group), 0.5 J/cm2, 1 J/cm2, 3 J/cm2, or 5 J/cm2. Cell Counting Kit-8 (CCK-8) assays were used to analyze cell proliferation rates and determine the most effective concentration of extracellular signal-regulated kinase 5 (ERK5) blocker, BIX02189. A real-time polymerase chain reaction (RT-PCR) was carried out to determine the involvement of the ERK5 signalling pathway and proliferation-associated genes (C-Jun, Jun B, and Cyclin D1). 5-Ethynyl-2'-deoxyuridine (EDU) was used to analyze cell cycle kinetic parameters. CCK-8 assay results suggested that SCAPs in red LED groups exhibited a higher proliferation rate than those in the control group, and 10 µmol/L BIX02189 was the most effective blocker. The RT-PCR results demonstrate that red LEDs upregulated the expression of the ERK5, C-Jun, Jun B, and Cyclin D1 genes, and BIX02189 successfully blocked the ERK5 signalling pathway. The results of EdU staining indicated that red LED promoted DNA synthesis activity and that BIX02189 suppressed cells into S phase. Red LEDs irradiation enhances the proliferation of SCAPs via the ERK5 signalling pathway by upregulating the expression of C-Jun, Jun B, and Cyclin D1.


Assuntos
Ciclina D1 , Osteogênese , Diferenciação Celular , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Osteogênese/genética , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA