Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Medicine (Baltimore) ; 100(32): e26474, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34397869

RESUMO

ABSTRACT: This study is to identify potential biomarkers and therapeutic targets for lung adenocarcinoma (LUAD).GSE6044 and GSE118370 raw data from the Gene Expression Omnibus database were normalized with Robust Multichip Average. After merging these two datasets, the combat function of sva packages was used to eliminate batch effects. Then, limma packages were used to filtrate differentially expressed genes. We constructed protein-protein interaction relationships using STRING database and hub genes were identified based on connectivity degrees. The cBioportal database was used to explore the alterations of the hub genes. The promoter methylation of cyclin dependent kinase 1 (CDK1) and polo-like Kinase 1 (PLK1) and their association with tumor immune infiltration in patients with LUAD were investigated using DiseaseMeth version 2.0 and TIMER databases. The Cancer Genome Atlas-LUAD dataset was used to perform gene set enrichment analysis.We identified 10 hub genes, which were upregulated in LUAD, among which 8 were successfully verified in the Cancer Genome Atlas and Oncomine databases. Kaplan-Meier analysis indicated that the expressions of CDK1 and PLK1 in LUAD patients were associated with overall survival and disease-free survival. The methylation levels in the promoter regions of these 2 genes in LUAD patients were lower than those in normal lung tissues. Their expressions in LUAD were associated with tumor stages and relative abundance of tumor infiltrating immune cells, such as B cells, CD4+ T cells, and macrophages. Moreover, cell cycle, DNA replication, homologous recombination, mismatch repair, P53 signaling pathway, and small cell lung cancer signaling were significantly enriched in CDK1 and PLK1 high expression phenotype.CDK1 and PLK1 may be used as potential biomarkers and therapeutic targets for LUAD.


Assuntos
Adenocarcinoma de Pulmão/genética , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Proteína Quinase CDC2/biossíntese , Proteínas de Ciclo Celular/biossíntese , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Prognóstico , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , RNA Neoplásico/genética , Transdução de Sinais , Quinase 1 Polo-Like
2.
Biomolecules ; 11(6)2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067359

RESUMO

DNMT3A mutations are frequently identified in acute myeloid leukemia (AML) and indicate poor prognosis. Previously, we found that the hotspot mutation DNMT3A R882H could upregulate CDK1 and induce AML in conditional knock-in mice. However, the mechanism by which CDK1 is involved in leukemogenesis of DNMT3A mutation-related AML, and whether CDK1 could be a therapeutic target, remains unclear. In this study, using fluorescence resonance energy transfer and immunoprecipitation analysis, we discovered that increased CDK1 could compete with EZH2 to bind to the PHD-like motif of DNMT3A, which may disturb the protein interaction between EZH2 and DNMT3A. Knockdown of CDK1 in OCI-AML3 cells with DNMT3A mutation markedly inhibited proliferation and induced apoptosis. CDK1 selective inhibitor CGP74514A (CGP) and the pan-CDK inhibitor flavopiridol (FLA) arrested OCI-AML3 cells in the G2/M phase, and induced cell apoptosis. CGP significantly increased CD163-positive cells. Moreover, the combined application of CDK1 inhibitor and traditional chemotherapy drugs synergistically inhibited proliferation and induced apoptosis of OCI-AML3 cells. In conclusion, this study highlights CDK1 overexpression as a pathogenic factor and a potential therapeutic target for DNMT3A mutation-related AML.


Assuntos
Proteína Quinase CDC2/biossíntese , Carcinogênese/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/metabolismo , Mutação , Proteínas de Neoplasias/metabolismo , Animais , Proteína Quinase CDC2/genética , Carcinogênese/genética , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Células NIH 3T3 , Proteínas de Neoplasias/genética
3.
Int J Biol Sci ; 17(7): 1613-1628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994848

RESUMO

The treatment of advanced prostate cancer, castration-resistant prostate cancer, remains challenging. The mechanisms of action of ATP binding cassette subfamily C member 5 (ABCC5) in prostate cancer and its relationship with drug resistance are still unclear. Expression and prognostic analyses of ABCC5 were performed through bioinformatic methods and immunohistochemistry analyses in multiple public databases as well as in our own prostate cancer cohort. The biological function of ABCC5 in prostate cancer cells was evaluated by in vitro and in vivo cell proliferation and migration and invasion assays. The regulation of CDK1 by ABCC5 was determined via RT-qPCR, western blots, and immunofluorescence. ABCC5 was significantly overexpressed in prostate cancer and positively associated with unfavorable clinicopathological features and prognosis. Upregulation of ABCC5 could enhance the cell proliferation, migration, and invasion of prostate cancer in vitro and in vivo. Mechanistically, ABCC5 exerts a protumor effect by binding to and inhibiting the protein degradation of CDK1, which promotes the phosphorylation of AR at Ser81 by CDK1 and activates the transcriptional activity of AR on target genes. Moreover, the addition of a CDK1 inhibitor or knockdown of CDK1 significantly improved the efficacy of enzalutamide on prostate cancer cells. The ABCC5-CDK1-AR regulatory pathway could be a potential therapeutic target for advanced prostate cancer, especially castration-resistant prostate cancer (CRPC), to enhance the therapeutic effect of enzalutamide.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Apoptose , Benzamidas/farmacologia , Proteína Quinase CDC2/genética , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/biossíntese , Proteína Quinase CDC2/biossíntese , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Fosforilação , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , RNA Neoplásico/genética , Transdução de Sinais , Regulação para Cima
4.
Int Ophthalmol ; 40(2): 343-350, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31571090

RESUMO

PURPOSE: To investigate the overexpression of genes in sebaceous gland carcinoma (SGC) of the eyelid compared to sebaceous adenoma of the eyelid in order to elucidate the molecular mechanism underlying pathogenesis. METHODS: We performed histopathological examination of eyelid tissues surgically removed from four patients diagnosed with SGC (cases 1-3) and sebaceous adenoma (case 4) of the eyelid. Next, we performed global gene expression analysis of surgical tissue samples using a GeneChip® system and the Ingenuity Pathways Knowledge Base. The results of the GeneChip® analysis were explored with quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS: In the SGC samples, we found that 211, 199, and 199 genes, respectively, showed ≥ 2.0-fold higher expression than those in the sebaceous adenoma sample (case 4); 194 genes were common to all three SGC samples. For the 194 genes with upregulated expression, functional category analysis showed that SGC of the eyelid employed a unique gene network, including cyclin-dependent kinase inhibitor 2A (CDKN2A), cyclin-dependent kinase 1 (CDK1), and cyclin E1 (CCNE1), which are related to cell cycle progression, incidence of tumor, and cell viability. Furthermore, qRT-PCR analysis showed that the expression levels of CDKN2A, CDK1, and CCNE1 were significantly upregulated in all SGC cases compared to those in the sebaceous adenoma case. These data were similar to the results of microarray analysis. CONCLUSION: Overexpression of cell cycle-related genes CDKN2A, CDK1, CCNE1, and their gene network may help elucidate the pathogenic pathway of SGC of the eyelid at the molecular level.


Assuntos
Adenocarcinoma Sebáceo/genética , Proteína Quinase CDC2/genética , Ciclina E/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias Palpebrais/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Oncogênicas/genética , Neoplasias das Glândulas Sebáceas/genética , Adenocarcinoma Sebáceo/metabolismo , Adenocarcinoma Sebáceo/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Proteína Quinase CDC2/biossíntese , Ciclina E/biossíntese , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Neoplasias Palpebrais/metabolismo , Neoplasias Palpebrais/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Proteínas Oncogênicas/biossíntese , RNA Neoplásico/genética , Neoplasias das Glândulas Sebáceas/metabolismo , Neoplasias das Glândulas Sebáceas/patologia , Glândulas Sebáceas/metabolismo , Glândulas Sebáceas/patologia
5.
Cell Cycle ; 18(21): 2986-2997, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31530151

RESUMO

Calcium (Ca2+)/calmodulin-dependent protein kinase II (CaMKII) had been reported to play a role in the process of fertilization. However, the role of CaMKII in the release of diplotene-arrested oocytes is poorly understood. In this study, we explored the potential effect of CaMKII on Akt1 and the relationship among CaMKII, Akt1 and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) during the meiotic resumption of mouse oocytes. We found that inhibition of CaMKII aggravated diplotene arrest. We detected the expression and distribution of pCaMKII (Thr286), pAkt1 (Ser473), Cdc25B and pCdc2 (Tyr15) when oocytes were treated with KN-93, SH-6, LY294002 or PIP3, respectively. Our data showed that down-regulated CaMKII by KN-93 decreased the levels of pAkt1 (Ser473) and rearranged the distribution of pAkt1 (Ser473). Meanwhile, down-regulated pAkt1 (Ser473) by SH-6 also decreased the levels of pCaMKII (Thr286), Cdc25B and pCdc2 (Tyr15) significantly and rearranged the distributions of pCaMKII (Thr286). Furthermore, our data showed that exogenous PIP3 up-regulated GVBD rates significantly and increased the levels of pCaMKII (Thr286) and pAkt1 (Ser473). On the contrary, down-regulation of PIP3 by LY294002 decreased GVBD rates and the levels of pCaMKII (Thr286) and pAkt1 (Ser473), respectively. Our results showed that Akt1 and CaMKII regulated each other, and PIP3 may be involved in these regulations during the release of mouse oocytes from diplotene arrest.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Prófase Meiótica I/fisiologia , Oócitos/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Proteína Quinase CDC2/biossíntese , Feminino , Camundongos , Oócitos/crescimento & desenvolvimento , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogênicas c-akt/biossíntese , Fosfatases cdc25/biossíntese
6.
Eur Rev Med Pharmacol Sci ; 23(15): 6539-6547, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31378894

RESUMO

OBJECTIVE: To elucidate whether long non-coding RNA cancer susceptibility candidate 11 (lncRNA CASC11) could participate in the development of lung cancer through targeting microRNA-302/CDK1 axis. PATIENTS AND METHODS: Expression levels of CASC11, microRNA-302 and CDK1 in lung cancer tissues and paracancerous tissues were determined by quantitative real-time polymerase chain reaction (qRT-PCR). CASC11 expression in lung cancer cell lines was also determined. The regulatory effect of CASC11 on proliferative potential of lung cancer cells was accessed by cell counting kit-8 (CCK-8) and colony formation assay. The binding condition between microRNA-302 to CASC11 and CDK1 was evaluated by dual-luciferase reporter gene assay. CDK1 expression in lung cancer cells with CASC11 or microRNA-302 knockdown was detected by Western blot. The proliferation of lung cancer cells was determined after transfection of microRNA-302 inhibitor or co-transfection of microRNA-302 inhibitor and si-CASC11. RESULTS: CASC11 and CDK1 were highly expressed, whereas microRNA-302 was lowly expressed in lung cancer tissues. Identically, CASC11 was highly expressed in lung cancer cell lines (A547, H157 and SPC-A-1) than controls as well. CASC11 knockdown attenuated proliferative capacity of lung cancer cells. The opposite trend was observed by microRNA-302 knockdown. Dual-luciferase reporter gene assay verified that CASC11 could bind to microRNA-302 and microRNA-302 could bind to CDK1. CDK1 expression in lung cancer cells was negatively regulated by CASC11. MicroRNA-302 knockdown reversed the inhibitory effect of CASC11 on CDK1 expression. The proliferation of lung cancer cells co-transfected with microRNA-302 inhibitor and si-CASC11 decreased compared with those transfected with microRNA-302 inhibitor. CONCLUSIONS: High expression of CASC11 promotes the development of lung cancer through upregulating CDK1 expression by binding to microRNA-302.


Assuntos
Proteína Quinase CDC2/biossíntese , Progressão da Doença , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/biossíntese , RNA Longo não Codificante/biossíntese , Células A549 , Proteína Quinase CDC2/genética , Humanos , Neoplasias Pulmonares/genética , MicroRNAs/genética , RNA Longo não Codificante/genética
7.
Gene ; 701: 15-22, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30898709

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer-related death. Increasing evidence suggests that cell cycle dysregulation is one of the hallmarks of cancer. In this study, by using the GEO database, we predicted the cell cycle-related protein CDK1 and BUB1 to be significantly overexpressed in PDAC tissues. Thus, this study aimed to investigate the clinical pathological significance of CDK1 and BUB1 in PDAC. METHODS: To explore the role of CDK1 and BUB1 in PDAC progression and evaluate their prognostic value, we investigated the expression patterns of CDK1 and BUB1 by using immunohistochemical staining in 99 PDAC and 71 normal pancreatic tissues with complete pathological parameters and survival data. RESULTS: CDK1 and BUB1 were significantly overexpressed in PDAC tissues. The expression of CDK1 was correlated with tumor size and histological grade, and the expression of BUB1 was correlated with the tumor size of PDAC. With regard to survival, a high expression of either CDK1 or BUB1 was correlated with a short survival of PDAC patients. Additionally, PDAC patients with a concurrent high expression of CDK1 and BUB1 showed the shortest survival. CONCLUSIONS: Our study demonstrated that CDK1 and BUB1 may play a role in PDAC progression and could be prognostic biomarkers for PDAC patients.


Assuntos
Biomarcadores Tumorais/biossíntese , Proteína Quinase CDC2/biossíntese , Carcinoma Ductal Pancreático , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neoplasias Pancreáticas , Proteínas Serina-Treonina Quinases/biossíntese , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Valor Preditivo dos Testes , Taxa de Sobrevida
8.
Biomed Pharmacother ; 111: 517-526, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30597305

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) accounts for more than 90% of cancers in the kidney. RCC is often asymptomatic, as a result people with RCC generally have advanced disease by the time it is discovered and has a poor prognosis compared to other cancers. Therefore, it is necessary to explore its pathogenesis and identify some reliable prognostic biomarker of RCC. miRNAs are emerging as important players in the development and progression of RCC. miR-31-5p has been reported to act as a tumor suppressor in hepatocellular carcinoma (HCC). The aim of this study is to determine the detailed molecular mechanism of miR-31-5p in the progression of RCC and to investigate its potential clinical value. METHODS: In this study, RT-qPCR, EdU assay, CCK-8 assay, wound scratch assay, transwell assay, flow cytometry assay and cell cycle assay were performed to detect miR-31-5p expression and its functions in RCC. Moreover, 42 formalin-fixed paraffin-embedded (FFPE) RCC samples were used to analyze the relationship between miR-31-5p expression and patients' overall survival. Finally, luciferase reporter assay, RT-qPCR assay and western blot were used to explore the association between miR-31-5p and its potential targets. RESULTS: miR-31-5p was significantly down-regulated in RCC tissues and RCC cell lines compared with paired adjacent normal tissues and normal cell lines. miR-31-5p downregulation was associated with poor prognosis in RCC patients. Overexpression of miR-31-5p inhibited RCC cell proliferation, migration and invasion and cell cycle. Conversely, down-regulation of miR-31-5p promoted cell proliferation, migration and invasion. Furthermore, cyclin-dependent kinasec1 (CDK1), a key player in cell cycle regulation, was identified as a functional target of miR-31-5p. CONCLUSIONS: Our results suggest that miR-31-5p serves as a tumor suppressor in RCC and is expected to be a molecular biomarker for poor prognosis of RCC.


Assuntos
Proteína Quinase CDC2/biossíntese , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , MicroRNAs/biossíntese , Proteínas Supressoras de Tumor/biossíntese , Idoso , Proteína Quinase CDC2/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/prevenção & controle , Feminino , Células HEK293 , Humanos , Neoplasias Renais/genética , Neoplasias Renais/prevenção & controle , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas Supressoras de Tumor/genética
9.
Med Sci Monit ; 24: 8553-8564, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30476929

RESUMO

BACKGROUND Differentially expressed genes (DEGs) of IBC were selected from the Gene Expression Omnibus (GEO) chip data: GSE21422 and GSE21974. Network analysis of the DEGs and IBC-related genes was performed in STRING database to find the core gene. Thus, this study aimed to determine the role of NUSAP1 in invasive breast cancer (IBC) and to investigate its effect on drug susceptibility to epirubicin (E-ADM). MATERIAL AND METHODS The mRNA expression of NUSAP1 was determined by quantitative polymerase chain reaction (q-PCR). The protein expression was detected by Western blotting. Cell growth and growth cycle were detected by MTT assay and flow cytometry, respectively. Cell migration and invasion were tested by Transwell assay. RESULTS Through use of gene network analysis, we found that NUSAP1 interacts with IBC-related genes. NUSAP1 presented high expression in IBC tissue samples and MCF-7 cells. NUSAP1 overexpression promoted the growth, migration, and invasion of MCF-7 cells. While NUSAP1 gene silencing downregulated the expression of genes associated with cell cycle progression in G2/M phase, cyclin D kinase (CDK1) and DLGAP5 arrested cells in G2/M phase and significantly inhibited the growth, migration, and invasion of MCF-7 cells. si-NUSAP1 increased the susceptibility of MCF-7 cells to E-ADM-induced apoptosis. CONCLUSIONS Our study provides evidence that downregulation of NUSAP1 can inhibit the proliferation, migration, and invasion of IBC cells by regulating CDK1 and DLGAP5 expression and enhances the drug susceptibility to E-ADM.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteína Quinase CDC2/biossíntese , Epirubicina/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/biossíntese , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Ciclina D/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/genética , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma
10.
Tumour Biol ; 40(4): 1010428318770957, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29663854

RESUMO

OBJECTIVES: Preoperative chemoradiation is currently the standard of care in locally advanced rectal carcinoma, even though a subset of rectal tumors does not achieve major clinically meaningful responses upon neoadjuvant chemoradiation. At present, no molecular biomarkers are available to predict response to neoadjuvant chemoradiation and select resistant tumors willing more intense therapeutic strategies. Thus, BRAF mutational status was investigated for its role in favoring resistance to radiation in colorectal carcinoma cell lines and cyclin-dependent kinase 1 as a target to improve radiosensitivity in BRAF V600E colorectal tumor cells. METHODS: Colony-forming assay and apoptotic rates were evaluated to compare the sensitivity of different colon carcinoma cell lines to ionizing radiation and their radiosensitivity upon exposure to BRAF and/or cyclin-dependent kinase 1 inhibitory/silencing strategies. Cyclin-dependent kinase 1 expression/subcellular distribution was studied by immunoblot analysis. RESULTS: Colon carcinoma BRAF V600E HT29 cells exhibited poor response to radiation compared to BRAF wild-type COLO320 and HCT116 cells. Interestingly, neither radiosensitizing doses of 5-fluoruracil nor BRAF inhibition/silencing significantly improved radiosensitivity in HT29 cells. Of note, poor response to radiation correlated with upregulation/relocation of cyclin-dependent kinase 1 in mitochondria. Consistently, cyclin-dependent kinase 1 inhibition/silencing as well as its targeting, through inhibition of HSP90 quality control pathway, significantly inhibited the clonogenic ability and increased apoptotic rates in HT29 cells upon exposure to radiation. CONCLUSION: These data suggest that BRAF V600E colorectal carcinoma cells are poorly responsive to radiation, and cyclin-dependent kinase 1 represents a target to improve radiosensitivity in BRAF V600E colorectal tumor cells.


Assuntos
Proteína Quinase CDC2/genética , Neoplasias Colorretais/radioterapia , Proteínas Proto-Oncogênicas B-raf/genética , Tolerância a Radiação/genética , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/biossíntese , Linhagem Celular Tumoral , Quimiorradioterapia/métodos , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Células HCT116 , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Células HT29 , Humanos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Tolerância a Radiação/efeitos dos fármacos , Radiação Ionizante , Radiossensibilizantes/farmacologia
11.
Dev Biol ; 434(1): 196-205, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29274320

RESUMO

Mammalian oocytes are arrested in meiotic prophase from around the time of birth until just before ovulation. Following an extended period of growth, they are stimulated to mature to the metaphase II stage by a preovulatory luteinizing hormone (LH) surge that occurs with each reproductive cycle. Small, growing oocytes are not competent to mature into fertilizable eggs because they do not possess adequate amounts of cell cycle regulatory proteins, particularly cyclin-dependent kinase 1 (CDK1). As oocytes grow, they synthesize CDK1 and acquire the ability to mature. After oocytes achieve meiotic competence, meiotic arrest at the prophase stage is dependent on high levels of cAMP that are generated in the oocyte under the control of the constitutively active Gs-coupled receptor, GPR3. In this study, we examined the switch between GPR3-independent and GPR3-dependent meiotic arrest. We found that the ability of oocytes to mature, as well as oocyte CDK1 levels, were dependent on follicle size, but CDK1 expression in oocytes from preantral follicles was not acutely altered by the activity of follicle stimulating hormone (FSH). Gpr3 was expressed and active in incompetent oocytes within early stage follicles, well before cAMP is required to maintain meiotic arrest. Oocytes from Gpr3-/- mice were less competent to mature than oocytes from Gpr3+/+ mice, as assessed by the time course of germinal vesicle breakdown. Correspondingly, Gpr3-/- oocytes contained significantly lower CDK1 levels than their Gpr3+/+ counterparts that were at the same stage of follicle development. These results demonstrate that GPR3 potentiates meiotic competence, most likely by raising cAMP.


Assuntos
Proteína Quinase CDC2/biossíntese , Pontos de Checagem do Ciclo Celular/fisiologia , AMP Cíclico/metabolismo , Regulação da Expressão Gênica/fisiologia , Prófase Meiótica I/fisiologia , Oócitos/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Sistemas do Segundo Mensageiro/fisiologia , Animais , Proteína Quinase CDC2/genética , AMP Cíclico/genética , Feminino , Camundongos , Camundongos Knockout , Oócitos/citologia , Receptores Acoplados a Proteínas G/genética
12.
J Clin Neurosci ; 33: 187-193, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27460513

RESUMO

E2F transcription factors have been studied extensively in a broad range of organisms as major regulators of cell cycle, apoptosis, and differentiation. The E2F family includes the atypical member E2F7, which has been rarely studied in gliomas. The aim of this study is to determine the expression status of E2F7 in gliomas, its relationship to clinicopathological features, and patients' outcome. The mRNA levels of E2F7 in the human brain and different grades of gliomas were analysed using datasets from the publically available Oncomine database. One of the most significant co-expression factors, CDK1, together with E2F7, was further validated by immunohistochemistry in 90 different grades of gliomas. Furthermore, univariate and multivariate analyses were performed to identify prognostic variables relative to patient and tumour characteristics and treatment modalities. E2F7 mRNA expression was found to be elevated in gliomas by Oncomine-database analysis. Immunohistochemistry showed an increase in E2F7 labelling index in high- versus low-grade gliomas (62.1±11.8% vs. 18.9±10.2%, p<0.0001). There was a positive correlation between E2F7 and CDK1 immunoreactivity (Spearman r=0.446, p=0.037). Clinicopathological evaluation suggested that E2F7 expression was associated with tumour grade (p<0.0001) and recurrence (p=0.025). In Cox multivariate analysis, pathological classification and recurrence were independent prognostic factors of gliomas, and E2F7 was significantly related to progression-free survival (p=0.011), but not overall survival (p=0.062). Our findings suggested that E2F7 might act as an independent prognostic factor of gliomas and might constitute a potential therapeutic target for this disease.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Fator de Transcrição E2F7/biossíntese , Glioma/diagnóstico , Glioma/genética , Adulto , Idoso , Proteína Quinase CDC2/biossíntese , Proteína Quinase CDC2/genética , Bases de Dados Factuais , Intervalo Livre de Doença , Fator de Transcrição E2F7/genética , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva Local de Neoplasia , Valor Preditivo dos Testes , Prognóstico , Análise de Sobrevida
13.
Mol Med Rep ; 13(2): 1336-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26677104

RESUMO

The aim of the present study was to investigate the effect of chelidonine on mitotic slippage and apoptotic-like death in SGC-7901 human gastric cancer cells. The MTT assay was performed to detect the antiproliferative effect of chelidonine. Following treatment with chelidonine (10 µmol/l), the ultrastructure changes in SGC-7901, MCF-7 and HepG2 cells were observed by transmission electron microscopy. The effects of chelidonine on G2/M phase arrest and apoptosis of SGC-7901 cells were determined by flow cytometry. Indirect immunofluorescence assay and laser scanning confocal microscopy (LSCM) were used to detect the phosphorylation level of histone H3 (Ser10) and microtubule formation was detected using LSCM following immunofluorescent labeling. Subsequent to treatment with chelidonine (10 µmol/l), expression levels of mitotic slippage-associated proteins, including BUB1 mitotic checkpoint serine/threonine kinase B (BubR1), cyclin-dependent kinase 1 (Cdk1) and cyclin B1, and apoptosis-associated protein, caspase-3 were examined by western blotting at 24, 48 and 72 h. The half maximal inhibitory concentration of chelidonine was 23.13 µmol/l over 48 h and chelidonine induced G2/M phase arrest of cells. The phosphorylation of histone H3 at Ser10 was significantly increased following treatment with chelidonine for 24 h, indicating that chelidonine arrested the SGC-7901 cells in the M phase. Chelidonine inhibited microtubule polymerization, destroyed microtubule structures and induced cell cycle arrest in the M phase. Giant cells were observed with multiple micronuclei of varying sizes, which indicated that following a prolonged arrest in the M phase, the cells underwent mitotic catastrophe. Western blotting demonstrated that the protein expression levels of BubR1, cyclin B1 and Cdk1 decreased significantly between 48 and 72 h. Low expression levels of BubR1 and inactivation of the cyclin B1-Cdk1 complex results in the cells being arrested at mitosis and leads to mitotic slippage. In addition, apoptotic morphological changes in multinucleated cells were observed, the apoptosis rates increased gradually with administration of chelidonine in a time-dependent manner and the protein levels of caspase-3 increased significantly between 24 and 72 h. Thus, chelidonine induces mitotic slippage, and apoptotic-like death occurs in SGC-7901 cells undergoing mitotic catastrophe. Gastric cancer is a common malignancy, and ranks second in overall cancer-associated mortalities worldwide. The present study demonstrated that chelidonine induces M phase arrest and mitotic slippage of SGC-7901 human gastric carcinoma cells via downregulating the expression of BubR1, Cdk1 and cyclin B1 proteins. With the prolongation of chelidonine treatment, the giant cells with multiple micronuclei underwent mitotic slippage and were maintained in the G1 phase and did not survive. A number of multinucleated cells underwent apoptosis via a caspase-dependent signaling pathway. The current study proposes that chelidonine induces mitotic slippage and apoptotic-like death of SGC-7901 cells.


Assuntos
Apoptose/efeitos dos fármacos , Benzofenantridinas/administração & dosagem , Carcinoma/tratamento farmacológico , Neoplasias Gástricas/tratamento farmacológico , Proteína Quinase CDC2/biossíntese , Carcinoma/patologia , Carcinoma/ultraestrutura , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclina B1/biossíntese , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mitose/efeitos dos fármacos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/ultraestrutura
14.
Dev Biol ; 401(2): 276-86, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25732775

RESUMO

The heterochronic pathway controls temporal patterning during Caenorhabditis elegans larval development. The highly conserved let-7 microRNA (miRNA) plays a key role in this pathway, directing the larval-to-adult (L/A) transition. Hence, knowledge of the genetic interactome of let-7 has the potential to provide insight into both control of temporal cell fates and mechanisms of regulation and function of miRNAs. Here, we report the results of a genome-wide, RNAi-based screen for suppressors of let-7 mutant vulval bursting. The 201 genetic interaction partners of let-7 thus identified include genes that promote target silencing activity of let-7, seam cell differentiation, or both. We illustrate the suitability of our approach by uncovering the mitotic cyclin-dependent kinase CDK-1 as a downstream effector of let-7 that affects both seam cell proliferation and differentiation, and by identifying a core set of candidate modulators of let-7 activity, which includes all subunits of the condensin II complex. We propose that the genes identified in our screen thus constitute a valuable resource for studies of the heterochronic pathway and miRNAs.


Assuntos
Padronização Corporal/genética , Proteína Quinase CDC2/genética , Caenorhabditis elegans/embriologia , MicroRNAs/genética , Adenosina Trifosfatases/genética , Animais , Proteína Quinase CDC2/biossíntese , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Complexos Multiproteicos/genética , Interferência de RNA , Fatores de Transcrição/genética
15.
Med Oral Patol Oral Cir Bucal ; 20(1): e7-12, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25129248

RESUMO

OBJECTIVES: To evaluate the clinical significance of cyclin-dependent kinase 1 (CDK1) in 77 oral squamous cell carcinomas (OSCC) using immunohistochemical methods. STUDY DESIGN: Immunohistochemical expression of CDK1 was compared with various clinicopathological features in 77 OSCC and 60 controlled epithelia adjacent to the tumours. In addition, correlation of CDK1 expression and prognostic and the 5-year accumulative survival rate of OSCC were investigated. RESULTS: The CDK1 protein was expressed in 52 cases of 77 tumor tissues (67.5%), compared with 21 cases of 60 controlled (35.0%). The expression of CDK1 was significantly correlated with the histological grade of OSCC (P<0.05). The CDK1 protein was over-expressed in recurrent tumors or in those with lymph node metastasis. Statistical analysis showed a significant reduction in the 5-year accumulative survival rate in CDK1 positive cases compared with CDK1 negative cases (P<0.05). Namely, the CDK1 positive patients had poor prognosis. CONCLUSIONS: The expression of CDK1 might serve as malignant degree and prognostic markers for the survival of OSCC.


Assuntos
Proteína Quinase CDC2/biossíntese , Carcinoma de Células Escamosas/enzimologia , Neoplasias Bucais/enzimologia , Proteína Quinase CDC2/análise , Carcinoma de Células Escamosas/química , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/química , Taxa de Sobrevida
16.
Int J Cancer ; 135(5): 1060-71, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24531984

RESUMO

Amino acids, especially leucine and glutamine, are important for tumor cell growth, survival and metabolism. A range of different transporters deliver each specific amino acid into cells, some of which are increased in cancer. These amino acids consequently activate the mTORC1 pathway and drive cell cycle progression. The leucine transporter LAT1/4F2hc heterodimer assembles as part of a large complex with the glutamine transporter ASCT2 to transport amino acids. In this study, we show that the expression of LAT1 and ASCT2 is significantly increased in human melanoma samples and is present in both BRAF(WT) (C8161 and WM852) and BRAF(V600E) mutant (1205Lu and 451Lu) melanoma cell lines. While inhibition of LAT1 by BCH did not suppress melanoma cell growth, the ASCT2 inhibitor BenSer significantly reduced both leucine and glutamine transport in melanoma cells, leading to inhibition of mTORC1 signaling. Cell proliferation and cell cycle progression were significantly reduced in the presence of BenSer in melanoma cells in 2D and 3D cell culture. This included reduced expression of the cell cycle regulators CDK1 and UBE2C. The importance of ASCT2 expression in melanoma was confirmed by shRNA knockdown, which inhibited glutamine uptake, mTORC1 signaling and cell proliferation. Taken together, our study demonstrates that ASCT2-mediated glutamine transport is a potential therapeutic target for both BRAF(WT) and BRAF(V600E) melanoma.


Assuntos
Sistema ASC de Transporte de Aminoácidos/biossíntese , Glutamina/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/biossíntese , Melanoma/patologia , Complexos Multiproteicos/antagonistas & inibidores , Neoplasias Cutâneas/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/genética , Aminoácidos Cíclicos/farmacologia , Compostos de Benzil/farmacologia , Transporte Biológico , Proteína Quinase CDC2/biossíntese , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Humanos , Leucina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Melanoma/metabolismo , Antígenos de Histocompatibilidade Menor , Complexos Multiproteicos/genética , Proteínas Proto-Oncogênicas B-raf/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Serina/análogos & derivados , Serina/farmacologia , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Esferoides Celulares , Serina-Treonina Quinases TOR/genética , Células Tumorais Cultivadas , Enzimas de Conjugação de Ubiquitina/biossíntese
17.
Int J Oncol ; 44(3): 735-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24378347

RESUMO

Breast cancer is one of the most common malignancies in women. Approximately 15% of the patients belong to the triple-negative breast cancer (TNBC) group, and have the disadvantage of not benefiting from currently available receptor-targeted systemic therapies. Some cancers in the TNBC group harbor defects in DNA double-strand break repair by homologous recombination (HR), such as BRCA1 dysfunction, and are hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibition. However, only a small fraction of the tumors are BRCA-deficient, and this restricts the therapeutic utility of the PARP inhibitor monotherapy. Cyclin-dependent kinase 1 (CDK1) is necessary not only for BRCA1-mediated S phase checkpoint activation, but also for HR, because it phosphorylates BRCA1 for the efficient formation of BRCA1 foci. In this study, we showed that the combined inhibition of CDK1 and PARP in BRCA-proficient MDA-MB-231 breast cancer cells resulted in dramatically reduced cell growth compared to PARP inhibition alone. Mechanistic investigations revealed that this sensitivity appears to be mediated by sustained DNA damage and inefficient DNA repair triggering mitochondrial-mediated apoptosis as well as autophagy. Our results suggest that CDK1 inhibition represents a plausible strategy for expanding the utility of PARP inhibitors to BRCA­proficient breast cancers.


Assuntos
Proteína BRCA1/genética , Proteína Quinase CDC2/biossíntese , Poli(ADP-Ribose) Polimerases/genética , Neoplasias de Mama Triplo Negativas/genética , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/genética , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Recombinação Homóloga/efeitos dos fármacos , Humanos , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Quinolinas/farmacologia , Tiazóis/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
18.
Oncol Rep ; 31(1): 305-13, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24173574

RESUMO

Ginsenosides, extracted from the traditional Chinese herb ginseng, are a series of novel natural anticancer products known for their favorable safety and efficacy profiles. The present study aimed to investigate the cytotoxicity of ginsenoside Rf to human osteosarcoma cells and to explore the anticancer molecular mechanisms of ginsenoside Rf. Five human osteosarcoma cell lines (MG-63, OS732, U-2OS, HOS and SAOS-2) were employed to investigate the cytotoxicity of ginsenoside Rf by MTT and colony forming assays. After treatment with ginsenoside Rf, MG-63 cells which were the most sensitive to ginsenoside Rf, were subjected to flow cytometry to detect cell cycle distribution and apoptosis, and nuclear morphological changes were visualized by Hoechst 33258 staining. Caspase-3, -8 and -9 activities were also evaluated. The expression of cell cycle markers including cyclin B1 and Cdk1 was detected by RT-PCR and western blotting. The expression of apoptotic genes Bcl-2 and Bax and the release of cytochrome c were also examined by western blotting. Change in the mitochondrial membrane potential was observed by JC-1 staining in situ. Our results demonstrated that the cytotoxicity of ginsenoside Rf to these human osteosarcoma cell lines was dose-dependent, and the MG-63 cells were the most sensitive to exposure to ginsenoside Rf. Additionally, ginsenoside Rf induced G2/M phase cell cycle arrest and apoptosis in MG-63 cells. Furthermore, we observed upregulation of Bax and downregulation of Bcl-2, Cdk1 and cyclin B1, the activation of caspase-3 and -9 and the release of cytochrome c in MG-63 cells following treatment with ginsenoside Rf. Our findings demonstrated that ginsenoside Rf induces G2/M phase cell cycle arrest and apoptosis in human osteosarcoma MG-63 cells through the mitochondrial pathway, suggesting that ginsenoside Rf, as an effective natural product, may have a therapeutic effect on human osteosarcoma.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Ginsenosídeos/farmacologia , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Proteína Quinase CDC2/biossíntese , Caspase 3/biossíntese , Caspase 8/biossíntese , Caspase 9/biossíntese , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina B1/biossíntese , Citocromos c/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Panax/metabolismo , Preparações de Plantas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Ensaio Tumoral de Célula-Tronco , Proteína X Associada a bcl-2/biossíntese
19.
Cancer Invest ; 31(8): 555-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24044460

RESUMO

This study showed that silencing BMP4 expression significantly activated caspase-2, 3, and 9, while decreasing Matrigel colony formation in Cytarabine (Ara-C)-treated leukemia HL-60 cells. In contrast, Ara-C significantly upregulated Atg5 and Beclin-1 expression, the ratio of LC3-II/LC3-I, and CDK1 and cyclin B1 expression in leukemia cells expressing BMP4. BafA significantly sensitized the apoptotic effect of Ara-C in leukemia cells. Injection of Ara-C significantly inhibited tumor growth in mice inoculated with leukemia cells with BMP4 silenced. In conclusion, BMP4 plays a crucial role in the chemoresistance of leukemia cells through the activation of autophagy and subsequent inhibition of apoptosis.


Assuntos
Apoptose , Autofagia , Proteína Morfogenética Óssea 4/metabolismo , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/fisiopatologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/biossíntese , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Proteína Morfogenética Óssea 4/genética , Proteína Quinase CDC2/biossíntese , Caspase 2/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ciclina B1/biossíntese , Citarabina/farmacologia , Ativação Enzimática , Feminino , Humanos , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Nus , Proteínas Associadas aos Microtúbulos/biossíntese , Transplante de Neoplasias , Interferência de RNA , RNA Interferente Pequeno , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cell Prolif ; 46(3): 272-82, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23692086

RESUMO

OBJECTIVES: Lycoris is aurea agglutinin (LAA) has attracted rising attention due to its remarkable bioactivities. Here, we aimed at investigating its anti-tumor activities. MATERIAL AND METHODS: In vitro methods including MTT, cellular morphology observation, FCM and immunoblotting were performed. In vivo methods like detection of tumor volume, body weight and survival ratio, as well as TUNEL staining were performed. RESULTS AND CONCLUSION: LAA triggers G2 /M phase cell cycle arrest via up-regulating p21expression as well as down-regulating cdk-1cyclinA singling pathway, and induces apoptotic cell death through inhibiting PI3K-Akt survival pathway in human lung adenocarcinoma A549 cells. While LAA has no significant cytotoxic effect toward normal human embryonic lung fibroblast HELF cells, and moreover, LAA could amplify the antineoplastic effects of cisplatin toward A549 cells. Lastly LAA also bears anti-cancer and apoptosis-inducing effects in vivo, and it could decrease the volume and weight of subcutaneous tumor mass obviously as well as expand lifespan of mice. These findings may provide a new perspective for elucidating the complicated molecular mechanisms of LAA-induced cancer cell growth-inhibition and death, providing a new opportunity of LAA as a potential candidate anti-neoplastic drug for future cancer therapeutics.


Assuntos
Adenocarcinoma/metabolismo , Apoptose/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Lycoris/metabolismo , Adenocarcinoma de Pulmão , Aglutininas/farmacologia , Antineoplásicos/farmacologia , Proteína Quinase CDC2/biossíntese , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Ciclina A/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Inibidores de Fosfoinositídeo-3 Quinase , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA