Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Clin Cancer Res ; 27(17): 4898-4909, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34168048

RESUMO

PURPOSE: Despite significant benefit for other cancer subtypes, immune checkpoint blockade (ICB) therapy has not yet been shown to significantly improve outcomes for men with castration-resistant prostate cancer (CRPC). Prior data have shown that DNA damage response (DDR) deficiency, via genetic alteration and/or pharmacologic induction using DDR inhibitors (DDRi), may improve ICB response in solid tumors in part due to induction of mitotic catastrophe and innate immune activation. Discerning the underlying mechanisms of this DDRi-ICB interaction in a prostate cancer-specific manner is vital to guide novel clinical trials and provide durable clinical responses for men with CRPC. EXPERIMENTAL DESIGN: We treated prostate cancer cell lines with potent, specific inhibitors of ATR kinase, as well as with PARP inhibitor, olaparib. We performed analyses of cGAS-STING and DDR signaling in treated cells, and treated a syngeneic androgen-indifferent, prostate cancer model with combined ATR inhibition and anti-programmed death ligand 1 (anti-PD-L1), and performed single-cell RNA sequencing analysis in treated tumors. RESULTS: ATR inhibitor (ATRi; BAY1895433) directly repressed ATR-CHK1 signaling, activated CDK1-SPOP axis, leading to destabilization of PD-L1 protein. These effects of ATRi are distinct from those of olaparib, and resulted in a cGAS-STING-initiated, IFN-ß-mediated, autocrine, apoptotic response in CRPC. The combination of ATRi with anti-PD-L1 therapy resulted in robust innate immune activation and a synergistic, T-cell-dependent therapeutic response in our syngeneic mouse model. CONCLUSIONS: This work provides a molecular mechanistic rationale for combining ATR-targeted agents with immune checkpoint blockade for patients with CRPC. Multiple early-phase clinical trials of this combination are underway.


Assuntos
Proteína Quinase CDC2/fisiologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Proteínas Repressoras/fisiologia , Transdução de Sinais , Complexos Ubiquitina-Proteína Ligase/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Masculino , Camundongos
2.
Cells ; 10(6)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064109

RESUMO

Targeting the activities of endoplasmic reticulum (ER)-mitochondrial-dependent metabolic reprogramming is considered one of the most promising strategies for cancer treatment. Here, we present biochemical subcellular fractionation, coimmunoprecipitation, gene manipulation, and pharmacologic evidence that induction of mitochondria-localized phospho (p)-cyclin dependent kinase 1 (CDK1) (Thr 161)-cyclin B1 complexes by apigenin in nasopharyngeal carcinoma (NPC) cells impairs the ER-mitochondrial bioenergetics and redox regulation of calcium (Ca++) homeostasis through suppressing the B cell lymphoma 2 (BCL-2)/BCL-2/B-cell lymphoma-extra large (BCL-xL)-modulated anti-apoptotic and metabolic functions. Using a specific inducer, inhibitor, or short hairpin RNA for acid sphingomyelinase (ASM) demonstrated that enhanced lipid raft-associated ASM activity confers alteration of the lipid composition of lipid raft membranes, which leads to perturbation of protein trafficking, and induces formation of p110α free p85α-unphosphorylated phosphatase and tensin homolog deleted from chromosome 10 complexes in the lipid raft membranes, causing disruption of phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-GTP-ras-related C3 botulinum toxin substrate 1 (Rac1)-mediated signaling, thus triggering the p-CDK1 (Thr 161))-cyclin B1-mediated BCL-2 (Thr 69/Ser 87)/BCL-xL (Ser 62) phosphorylation and accompanying impairment of ER-mitochondria-regulated bioenergetic, redox, and Ca++ homeostasis. Inhibition of apigenin-induced reactive oxygen species (ROS) generation by a ROS scavenger N-acetyl-L-cysteine blocked the lipid raft membrane localization and activation of ASM and formation of ceramide-enriched lipid raft membranes, returned PI3K-Akt-GTP-Rac1-modulated CDK1-cyclin B1 activity, and subsequently restored the BCL-2/BCL-xL-regulated ER-mitochondrial bioenergetic activity. Thus, this study reveals a novel molecular mechanism of the pro-apoptotic activity of ASM controlled by oxidative stress to modulate the ER-mitochondrial bioenergetic metabolism, as well as suggests the disruption of CDK1-cyclin B1-mediated BCL-2/BCL-xL oncogenic activity by triggering oxidative stress-ASM-induced PI3K-Akt-GTP-Rac1 inactivation as a therapeutic approach for NPC.


Assuntos
Proteína Quinase CDC2/fisiologia , Ciclina B1/fisiologia , Retículo Endoplasmático/metabolismo , Mitocôndrias , Carcinoma Nasofaríngeo/metabolismo , Adulto , Linhagem Celular Tumoral , Retículo Endoplasmático/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo
3.
Cell Death Dis ; 12(6): 529, 2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-34023852

RESUMO

At present, colorectal cancer (CRC) has become a serious threat to human health in the world. Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase that may be involved in several physiological processes. However, whether DPP3 affects the development and progression of CRC remains a mystery. This study is the first to demonstrate the role of DPP3 in CRC. Firstly, the results of immunohistochemistry analysis showed the upregulation of DPP3 in CRC tissues compared with normal tissues, which is statistically analyzed to be positively correlated with lymphatic metastasis, pathological stage, positive number of lymph nodes. Moreover, the high expression of DPP3 predicts poor prognosis in CRC patients. In addition, the results of cell dysfunction experiments clarified that the downregulation of DPP3 significantly inhibited cell proliferation, colony formation, cell migration, and promoted apoptosis in vitro. DPP3 depletion could induce cell apoptosis by upregulating the expression of BID, BIM, Caspase3, Caspase8, HSP60, p21, p27, p53, and SMAC. In addition, downregulation of DPP3 can reduce tumorigenicity of CRC cells in vivo. Furthermore, CDK1 is determined to be a downstream target of DPP3-mediated regulation of CRC by RNA-seq, qPCR, and WB. The interaction between DPP3 and CDK1 shows mutual regulation. Specifically, downregulation of DPP3 can accentuate the effects of CDK1 knockdown on the function of CRC cells. Overexpression of CDK1 alleviates the inhibitory effects of DPP3 knockdown in CRC cells. In summary, DPP3 has oncogene-like functions in the development and progression of CRC by targeting CDK1, which may be an effective molecular target for the prognosis and treatment of CRC.


Assuntos
Proteína Quinase CDC2/fisiologia , Neoplasias Colorretais/patologia , Dipeptidil Peptidases e Tripeptidil Peptidases/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteína Quinase CDC2/genética , Estudos de Casos e Controles , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , RNA Interferente Pequeno/farmacologia , Células Tumorais Cultivadas
4.
PLoS Biol ; 19(1): e3001029, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395410

RESUMO

Endosomal trafficking of receptors and associated proteins plays a critical role in signal processing. Until recently, it was thought that trafficking was shut down during cell division. Thus, remarkably, the regulation of trafficking during division remains poorly characterized. Here we delineate the role of mitotic kinases in receptor trafficking during asymmetric division. Targeted perturbations reveal that Cyclin-dependent Kinase 1 (CDK1) and Aurora Kinase promote storage of Fibroblast Growth Factor Receptors (FGFRs) by suppressing endosomal degradation and recycling pathways. As cells progress through metaphase, loss of CDK1 activity permits differential degradation and targeted recycling of stored receptors, leading to asymmetric induction. Mitotic receptor storage, as delineated in this study, may facilitate rapid reestablishment of signaling competence in nascent daughter cells. However, mutations that limit or enhance the release of stored signaling components could alter daughter cell fate or behavior thereby promoting oncogenesis.


Assuntos
Aurora Quinases/fisiologia , Proteína Quinase CDC2/fisiologia , Mitose/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Animais Geneticamente Modificados , Aurora Quinases/genética , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/metabolismo , Ciona intestinalis/embriologia , Ciona intestinalis/genética , Embrião não Mamífero , Mitose/genética , Transporte Proteico/genética , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo , Transdução de Sinais/genética , Distribuição Tecidual/genética
5.
Nat Commun ; 11(1): 2898, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518258

RESUMO

The sequential generation of layer-specific cortical neurons requires radial glia cells (RGCs) to precisely balance self-renewal and lineage commitment. While specific cell-cycle phases have been associated with these decisions, the mechanisms linking the cell-cycle machinery to cell-fate commitment remain obscure. Using single-cell RNA-sequencing, we find that the strongest transcriptional signature defining multipotent RGCs is that of G2/M-phase, and particularly CYCLIN-B1/2, while lineage-committed progenitors are enriched in G1/S-phase genes, including CYCLIN-D1. These data also reveal cell-surface markers that allow us to isolate RGCs and lineage-committed progenitors, and functionally confirm the relationship between cell-cycle phase enrichment and cell fate competence. Finally, we use cortical electroporation to demonstrate that CYCLIN-B1/2 cooperate with CDK1 to maintain uncommitted RGCs by activating the NOTCH pathway, and that CYCLIN-D1 promotes differentiation. Thus, this work establishes that cell-cycle phase-specific regulators act in opposition to coordinate the self-renewal and lineage commitment of RGCs via core stem cell regulatory pathways.


Assuntos
Ciclina B1/fisiologia , Ciclina B2/fisiologia , Ciclina D1/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Animais , Proteína Quinase CDC2/fisiologia , Ciclo Celular , Diferenciação Celular , Linhagem da Célula , Separação Celular , Córtex Cerebral/embriologia , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Células-Tronco/citologia
6.
World J Surg Oncol ; 18(1): 50, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32127012

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignancies of the digestive system, which causes severe financial burden worldwide. However, the specific mechanisms involved in CRC are still unclear. METHODS: To identify the significant genes and pathways involved in the initiation and progression of CRC, the microarray dataset GSE126092 was downloaded from Gene Expression Omnibus (GEO) database, and then, the data was analyzed to identify differentially expressed genes (DEGs). Subsequently, the Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on these DEGs using the DAVID database, and the protein-protein interaction (PPI) network was constructed using the STRING database and analyzed using the Cytoscape software. Finally, hub genes were screened, and the survival analysis was performed on these hub genes using the Kaplan-Meier curves in the cBioPortal database. RESULTS: In total, 937 DEGs were obtained, including 316 upregulated genes and 621 downregulated genes. GO analysis revealed that the DEGs were mostly enriched in terms of nuclear division, organelle fission, cell division, and cell cycle process. KEGG pathway analysis showed that the DEGs were mostly enriched in cell cycle, oocyte meiosis, cytokine-cytokine receptor interaction, and cGMP-PKG signaling pathway. The PPI network comprised 608 nodes and 3100 edges, and 4 significant modules and 10 hub genes with the highest degree were identified using the Cytoscape software. Finally, survival analysis showed that overexpression of CDK1 and CDC20 in patients with CRC were statistically associated with worse overall survival. CONCLUSIONS: This bioinformatics analysis revealed that CDK1 and CDC20 might be candidate targets for diagnosis and treatment of CRC, which provided valuable clues for CRC.


Assuntos
Proteína Quinase CDC2/genética , Proteínas Cdc20/genética , Neoplasias Colorretais/etiologia , Biologia Computacional , Proteína Quinase CDC2/fisiologia , Proteínas Cdc20/fisiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Ontologia Genética , Humanos , Prognóstico , Mapas de Interação de Proteínas
7.
Sci Rep ; 9(1): 18693, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822694

RESUMO

Cell cycle stimulation is a major transforming mechanism of Myc oncoprotein. This is achieved through at least three concomitant mechanisms: upregulation of cyclins and Cdks, downregulation of the Cdk inhibitors p15 and p21 and the degradation of p27. The Myc-p27 antagonism has been shown to be relevant in human cancer. To be degraded, p27 must be phosphorylated at Thr-187 to be recognized by Skp2, a component of the ubiquitination complex. We previously described that Myc induces Skp2 expression. Here we show that not only Cdk2 but Cdk1 phosphorylates p27 at the Thr-187. Moreover, Myc induced p27 degradation in murine fibroblasts through Cdk1 activation, which was achieved by Myc-dependent cyclin A and B induction. In the absence of Cdk2, p27 phosphorylation at Thr-187 was mainly carried out by cyclin A2-Cdk1 and cyclin B1-Cdk1. We also show that Cdk1 inhibition was enough for the synthetic lethal interaction with Myc. This result is relevant because Cdk1 is the only Cdk strictly required for cell cycle and the reported synthetic lethal interaction between Cdk1 and Myc.


Assuntos
Proteína Quinase CDC2/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Proteína Quinase CDC2/fisiologia , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Linhagem Celular , Quinase 2 Dependente de Ciclina , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas c-myc/fisiologia , Transdução de Sinais
8.
Cells ; 8(8)2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382469

RESUMO

Accurate division of cells into two daughters is a process that is vital to propagation of life. Protein phosphorylation and selective degradation have emerged as two important mechanisms safeguarding the delicate choreography of mitosis. Protein phosphatases catalyze dephosphorylation of thousands of sites on proteins, steering the cells through establishment of the mitotic phase and exit from it. A large E3 ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C) becomes active during latter stages of mitosis through G1 and marks hundreds of proteins for destruction. Recent studies have revealed the complex interregulation between these two classes of enzymes. In this review, we highlight the direct and indirect mechanisms by which phosphatases and the APC/C mutually influence each other to ensure accurate spatiotemporal and orderly progression through mitosis, with a particular focus on recent insights and conceptual advances.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/fisiologia , Proteína Quinase CDC2/fisiologia , Mitose/fisiologia , Monoéster Fosfórico Hidrolases/fisiologia , Animais , Linhagem Celular Tumoral , Humanos , Fosforilação/fisiologia , Ubiquitinação/fisiologia
9.
Int J Biol Sci ; 15(6): 1125-1138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223274

RESUMO

Cdk1 has been found to phosphorylate the majority of its substrates in disordered regions, but some substrates maintain precise phosphosite positions over billions of years. Here, we examined the phosphoregulation of the kinesin-5, Cin8, using synthetic Cdk1-sites. We first analyzed the three native Cdk1 sites within the catalytic motor domain. Any single site conferred regulation, but to different extents. Synthetic sites were then systematically generated by single amino-acid substitutions, starting from a phosphodeficient variant of Cin8. Out of 29 synthetic Cdk1 sites, 8 disrupted function; 19 were neutral, similar to the phospho-deficient variant; and only two gave rise to phosphorylation-dependent spindle phenotypes. Of these two, one was immediately adjacent to a native Cdk1 site. Only one novel site position resulted in phospho-regulation. This site was sampled elsewhere in evolution, but the synthetic version was inefficient in S. cerevisiae. This study shows that a single phosphorylation site can modulate complex spindle dynamics, but likely requires further evolution to optimally regulate the precise reaction cycle of a mitotic motor.


Assuntos
Evolução Molecular , Cinesinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/fisiologia , Cinesinas/química , Modelos Moleculares , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Análise de Sequência de Proteína , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
10.
Cell Death Dis ; 10(6): 385, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097686

RESUMO

SE translocation (SET), an inhibitor of protein phosphatase 2A (PP2A), plays important roles in mitosis and possesses oncogenic activity in several types of cancer. However, little is known regarding its regulation. Here we reveal a novel phosphorylation site of SET isoform 1, and we have determined its biological significance in tumorigenesis. We found that the mitotic kinase cyclin-dependent kinase 1 (CDK1) phosphorylates SET isoform 1 in vitro and in vivo at serine 7 during antitubulin drug-induced mitotic arrest and normal mitosis. SET deletion resulted in massive multipolar spindles, chromosome misalignment and missegregation, and centrosome amplification during mitosis. Moreover, mitotic phosphorylation of SET isoform 1 is required for cell migration, invasion, and anchorage-independent growth in vitro and tumorigenesis in xenograft animal models. We further documented that SET phosphorylation affects Akt activity. Collectively, our findings suggest that SET isoform 1 promotes oncogenesis in a mitotic phosphorylation-dependent manner.


Assuntos
Proteína Quinase CDC2/fisiologia , Proteínas de Ligação a DNA/metabolismo , Chaperonas de Histonas/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Deleção de Genes , Células HEK293 , Células HeLa , Xenoenxertos/patologia , Humanos , Mitose/genética , Invasividade Neoplásica , Fosforilação , Isoformas de Proteínas/metabolismo , Serina/metabolismo
11.
J Biol Chem ; 292(17): 7258-7273, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28289096

RESUMO

Macrophage filopodia, finger-like membrane protrusions, were first implicated in phagocytosis more than 100 years ago, but little is still known about the involvement of these actin-dependent structures in particle clearance. Using spinning disk confocal microscopy to image filopodial dynamics in mouse resident Lifeact-EGFP macrophages, we show that filopodia, or filopodia-like structures, support pathogen clearance by multiple means. Filopodia supported the phagocytic uptake of bacterial (Escherichia coli) particles by (i) capturing along the filopodial shaft and surfing toward the cell body, the most common mode of capture; (ii) capturing via the tip followed by retraction; (iii) combinations of surfing and retraction; or (iv) sweeping actions. In addition, filopodia supported the uptake of zymosan (Saccharomyces cerevisiae) particles by (i) providing fixation, (ii) capturing at the tip and filopodia-guided actin anterograde flow with phagocytic cup formation, and (iii) the rapid growth of new protrusions. To explore the role of filopodia-inducing Cdc42, we generated myeloid-restricted Cdc42 knock-out mice. Cdc42-deficient macrophages exhibited rapid phagocytic cup kinetics, but reduced particle clearance, which could be explained by the marked rounded-up morphology of these cells. Macrophages lacking Myo10, thought to act downstream of Cdc42, had normal morphology, motility, and phagocytic cup formation, but displayed markedly reduced filopodia formation. In conclusion, live-cell imaging revealed multiple mechanisms involving macrophage filopodia in particle capture and engulfment. Cdc42 is not critical for filopodia or phagocytic cup formation, but plays a key role in driving macrophage lamellipodial spreading.


Assuntos
Proteína Quinase CDC2/fisiologia , Miosinas/fisiologia , Fagocitose , Pseudópodes/metabolismo , Animais , Proteína Quinase CDC2/genética , Quimiotaxia , Deleção de Genes , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Mutação , Miosinas/genética , Miosinas/metabolismo , Fenótipo , Saccharomyces cerevisiae/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
12.
J Proteomics ; 141: 77-84, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27109354

RESUMO

UNLABELLED: The epidermal growth factor (EGF) receptor (EGFR) pathway is one of the most dysregulated and extensively investigated signaling pathways in human cancers and plays important roles in the regulation of nuclear functions through both cytoplasmic and nuclear EGFR pathways. However, the current understanding of the nuclear phosphorylation responses to activated EGFR pathways remains limited. In the present study, phosphoproteomics analysis revealed the increased phosphorylation of 90 nuclear proteins, primarily involved in RNA processing, pre-mRNA splicing and cell cycle regulation, upon EGF stimulation in MDA-MB-468 cells. Cellular splicing assays of the ß-globin (HBB) minigene confirmed that EGF induced constitutive pre-mRNA splicing. Further analysis of phosphoproteomics data identified multiple CDK1/2 substrates in pre-mRNA splicing-related proteins, and both CDK1/2 inhibitors and CDK1/2 knockdowns reduced EGF-regulated pre-mRNA splicing. In conclusion, the results of the present study provide evidence that CDK1/2 participate in the regulation of constitutive pre-mRNA splicing by EGF stimulation in MDA-MB-468 cells. SIGNIFICANCE: In this study, we successfully carried out a survey of nuclear phosphorylation changes in response to EGF stimulation. The results from the functional category analysis and pre-mRNA splicing assay strongly indicated that EGFR activation increased constitutive pre-mRNA splicing in MDA-MB-468 cells, revealing additional role of EGFR on regulation of mRNA maturation beyond alternative pre-mRNA splicing reported by previous studies. Furthermore, we found that CDK1/2 participated in constitutive pre-mRNA splicing regulation by EGF in MDA-MB-468 cells. Our study provides new knowledge for understanding the regulation of constitutive pre-mRNA splicing by EGF stimulation.


Assuntos
Proteína Quinase CDC2/fisiologia , Quinase 2 Dependente de Ciclina/fisiologia , Fator de Crescimento Epidérmico/fisiologia , Proteínas Nucleares/metabolismo , Splicing de RNA , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Precursores de RNA
13.
Mol Reprod Dev ; 83(1): 79-87, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26632330

RESUMO

Meiotic progression requires the translation of maternal mRNAs in a strict temporal order. In isolated animal oocytes, translation of maternal mRNAs containing a cytoplasmic polyadenylation element (CPE), such as cyclin B, is activated by in vitro stimulation of meiotic resumption which induces phosphorylation of CPEB (CPE-binding protein) and elongation of their polyadenosine (poly(A)) tails; whether or not this model can be applied in vivo to oocytes arrested at metaphase of meiosis I in ovaries is unknown. In this study, we found that active CDK1 (cyclin-dependent kinase 1) phosphorylated CPEB in ovarian oocytes arrested at metphase I in the starfish body cavity, but phosphorylation of CPEB was not sufficient for elongation of cyclin B poly(A) tails. Immediately after spawning, however, mRNA was polyadenylated, suggesting that an increase in intracellular pH (pHi ) upon spawning triggers the elongation of poly(A) tails. Using a cell-free system made from maturing oocytes at metaphase I, we demonstrated that polyadenylation was indeed suppressed at pH below 7.0. These results suggest that a pH-sensitive process, functioning after CPEB phosphorylation, is blocked under physiologically low pHi (<7.0) in metaphase-I-arrested oocytes. The increase in pHi (>7.0) that occurs after spawning triggers polyadenylation of cyclin B mRNA and progression into meiosis II.


Assuntos
Proteína Quinase CDC2/fisiologia , Ciclina B/genética , Metáfase/fisiologia , Oócitos/fisiologia , Poliadenilação , Estrelas-do-Mar , Adenosina/metabolismo , Animais , Ciclina B/metabolismo , Feminino , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Estágios do Ciclo de Vida , Meiose/fisiologia , Oócitos/citologia , Oogênese/fisiologia , Poliadenilação/genética , Polímeros/metabolismo , RNA Mensageiro/metabolismo , Estrelas-do-Mar/fisiologia
14.
J Cell Biol ; 208(6): 661-9, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25753036

RESUMO

The molecular mechanisms governing mitotic entry during animal development are incompletely understood. Here, we show that the mitotic kinase CDK-1 phosphorylates Suppressor of Par-Two 1 (SPAT-1)/Bora to regulate its interaction with PLK-1 and to trigger mitotic entry in early Caenorhabditis elegans embryos. Embryos expressing a SPAT-1 version that is nonphosphorylatable by CDK-1 and that is defective in PLK-1 binding in vitro present delays in mitotic entry, mimicking embryos lacking SPAT-1 or PLK-1 functions. We further show that phospho-SPAT-1 activates PLK-1 by triggering phosphorylation on its activator T loop in vitro by Aurora A. Likewise, we show that phosphorylation of human Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A, suggesting that this mechanism is conserved in humans. Our results suggest that CDK-1 activates PLK-1 via SPAT-1 phosphorylation to promote entry into mitosis. We propose the existence of a positive feedback loop that connects Cdk1 and Plk1 activation to ensure a robust control of mitotic entry and cell division timing.


Assuntos
Proteína Quinase CDC2/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinase A/metabolismo , Caenorhabditis elegans/enzimologia , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Ativação Enzimática , Humanos , Larva/citologia , Larva/enzimologia , Mitose , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Células Sf9 , Spodoptera
16.
Cancer Cell ; 23(5): 618-33, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23623661

RESUMO

Nearly 90% of human melanomas contain inactivated wild-type p53, the underlying mechanisms for which are not fully understood. Here, we identify that cyclin B1/CDK1-phosphorylates iASPP, which leads to the inhibition of iASPP dimerization, promotion of iASPP monomer nuclear entry, and exposure of its p53 binding sites, leading to increased p53 inhibition. Nuclear iASPP is enriched in melanoma metastasis and associates with poor patient survival. Most wild-type p53-expressing melanoma cell lines coexpress high levels of phosphorylated nuclear iASPP, MDM2, and cyclin B1. Inhibition of MDM2 and iASPP phosphorylation with small molecules induced p53-dependent apoptosis and growth suppression. Concurrent p53 reactivation and BRAFV600E inhibition achieved additive suppression in vivo, presenting an alternative for melanoma therapy.


Assuntos
Proteína Quinase CDC2/fisiologia , Ciclina B1/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melanoma/metabolismo , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ciclina B1/genética , Ciclina B1/metabolismo , Dimerização , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/análise , Pontos de Checagem da Fase M do Ciclo Celular , Melanoma/genética , Melanoma/patologia , Camundongos , Metástase Neoplásica , Nocodazol/farmacologia , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/análise , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Repressoras/análise , Sulfonamidas/farmacologia , Triazóis/farmacologia , Vemurafenib , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Carcinogenesis ; 33(12): 2344-50, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22962304

RESUMO

Human SERPINB5, commonly known as maspin, has diverse functions as a tumor suppressor. In this study, we discovered that maspin has a novel role in cell cycle control, and common variants were discovered to be associated with gastric cancer. The genotypes of 836 unrelated Korean participants (including 430 with gastric cancer) were examined for 12 tag single-nucleotide polymorphisms (SNPs) and imputed for 178 SNPs in the maspin gene. Susceptibility to diffuse-type gastric cancer was strongly and significantly associated with several SNPs including rs3744941 (C>T) in the promoter (TT versus CC+CT, odds ratio = 0.56 [0.37-0.83], P = 0.0038) and rs8089104 (C>T) in intron 1 (TT+CT versus CC, odds ratio = 1.7 [1.2-2.5], P = 0.0021). No SNPs were associated with susceptibility to intestinal-type gastric cancer. A haplotype of three highly correlated promoter SNPs associated with higher cancer risk showed 40% of the activity of a non-risk-associated haplotype promoter in the diffuse-type gastric cancer cell line MKN45. Maspin downregulation achieved either by a short hairpin RNA targeting maspin or overexpression of the E2F1-DP1 complex in MKN45 cells dramatically accelerated cell cycle progression and caused an increase of active CDC25C levels and a decrease of inactive CDK1 levels. In contrast, maspin upregulation had the opposite effect, substantially retarding cell proliferation. Therefore, our results suggest that a maspin promoter haplotype that reduces maspin gene expression accelerates cell cycle progression and, consequently, is associated with increased susceptibility to diffuse-type gastric cancer. Furthermore, a novel maspin-related pathway is demonstrated to underlie gastric carcinogenesis.


Assuntos
Ciclo Celular , Serpinas/fisiologia , Neoplasias Gástricas/patologia , Adulto , Idoso , Proteína Quinase CDC2/fisiologia , Fator de Transcrição E2F1/fisiologia , Feminino , Predisposição Genética para Doença , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Neoplasias Gástricas/genética , Fosfatases cdc25/fisiologia
18.
J Invest Dermatol ; 132(7): 1775-84, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22475756

RESUMO

The epidermis is a self-renewing tissue, the homeostasis of which is dependent upon the tight balance between proliferation and differentiation based on appropriate regulation of the cell cycle. The cell cycle regulation is dependent on the interactions among a number of cell cycle regulatory molecules, including the pituitary tumor-transforming gene 1 (PTTG1), also known as securin, a regulator of sister chromatid separation and transition from metaphase to anaphase. This study was conducted to clarify the less-known functions of PTTG1 in the epidermis by the use of keratinocytes cultured under two-dimensional (2D) or three-dimensional (3D) conditions. Forced overexpression of PTTG1 caused upregulation of cyclin B1, cyclin-dependent kinase 1 (CDK1), and c-Myc, resulting in enhanced proliferation and suppression of early differentiation without apparent alterations in terminal differentiation, and the exogenous PTTG1 was downregulated in association with cell cycle exit. In contrast, depletion of PTTG1 caused their downregulation and constrained proliferation with retention of differentiation capacity. These findings suggested that PTTG1 could alter the proliferation status by modulating the expression levels of the other cell cycle regulatory proteins, and excess PTTG1 primarily affects early differentiation of keratinocytes under the stability regulation associated with cell cycle exit.


Assuntos
Diferenciação Celular , Proliferação de Células , Queratinócitos/citologia , Proteínas de Neoplasias/fisiologia , Proteína Quinase CDC2/fisiologia , Ciclo Celular , Células Cultivadas , Ciclina B1/fisiologia , Humanos , Queratinócitos/fisiologia , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Securina
19.
Curr Biol ; 22(3): 225-30, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22264609

RESUMO

During mitosis, equal segregation of chromosomes depends on proper kinetochore-microtubule attachments. Merotelic kinetochore orientation, in which a single kinetochore binds microtubules from both spindle poles [1], is a major cause of chromosome instability [2], which is commonly observed in solid tumors [3, 4]. Using the fission yeast Schizosaccharomyces pombe, we show that a proper force balance between kinesin motors on interpolar spindle microtubules is critical for correcting merotelic attachments. Inhibition of the plus-end-directed spindle elongation motors kinesin-5 (Cut7) and kinesin-6 (Klp9) reduces spindle length, tension at kinetochores, and the frequency of merotelic attachments. In contrast, merotely is increased by deletion of the minus-end-directed kinesin-14 (Klp2) or overexpression of Klp9. Also, Cdk1 regulates spindle elongation forces to promote merotelic correction by phosphorylating and inhibiting Klp9. The role of spindle elongation motors in merotelic correction is conserved, because partial inhibition of the human kinesin-5 homolog Eg5 using the drug monastrol reduces spindle length and lagging chromosome frequency in both normal (RPE-1) and tumor (CaCo-2) cells. These findings reveal unexpected links between spindle forces and correction of merotelic attachments and show that pharmacological manipulation of spindle elongation forces might be used to reduce chromosome instability in cancer cells.


Assuntos
Segregação de Cromossomos/fisiologia , Cinetocoros/metabolismo , Schizosaccharomyces/citologia , Fuso Acromático/metabolismo , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/fisiologia , Proteínas de Ciclo Celular/genética , Linhagem Celular , Instabilidade Cromossômica/efeitos dos fármacos , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/efeitos dos fármacos , Humanos , Cinesinas/antagonistas & inibidores , Cinesinas/metabolismo , Cinesinas/fisiologia , Cinetocoros/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas Nucleares/genética , Fosforilação , Proteínas Tirosina Fosfatases/genética , Pirimidinas/farmacologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/ultraestrutura , Tionas/farmacologia
20.
Biochem Pharmacol ; 83(2): 199-206, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22024133

RESUMO

Mcl-1 is one of the major anti-apoptotic members of the Bcl-2 family of apoptotic regulatory proteins. In this study we investigated the role of Mcl-1 in mitotic arrest-induced apoptosis. Vinblastine treatment of KB-3 cells initially resulted in a phosphatase-sensitive mobility shift in Mcl-1 and then subsequent loss of Mcl-1 protein expression which was prevented by MG132, suggesting that phosphorylation triggered proteosome-mediated degradation. Mcl-1 phosphorylation/degradation was a specific response to microtubule inhibition and did not occur in response to lethal concentrations of DNA damaging agents. Vinblastine treatment caused degradation of Mcl-1 in cells in which apoptosis was blocked by Bcl-xL overexpression, indicating that Mcl-1 degradation was not a consequence of apoptosis. A partial reversible phosphorylation of Mcl-1 was observed in synchronized cells traversing mitosis, whereas more extensive phosphorylation and subsequent degradation of Mcl-1 was observed if synchronized cells were treated with vinblastine. Mcl-1 phosphorylation closely paralleled cyclin B expression, and specific cyclin-dependent kinase (Cdk) inhibitors blocked vinblastine-induced Mcl-1 phosphorylation, its subsequent degradation, and improved cell viability after mitotic arrest. Co-immunoprecipitation studies indicated that Mcl-1 was complexed with Bak, but not Bax or Noxa, in untreated cells, and that Bak became activated in concert with loss of Mcl-1 expression. These results suggest that Cdk1/cyclin B plays a key role in mitotic arrest-induced apoptosis via Mcl-1 phosphorylation, promoting its degradation and subsequently releasing Bak from sequestration.


Assuntos
Apoptose/fisiologia , Proteína Quinase CDC2/fisiologia , Ciclina B/fisiologia , Mitose/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Fosforilação/fisiologia , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA