Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 6(13)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34143756

RESUMO

We explored the potential link between chronic inflammatory arthritis and COVID-19 pathogenic and resolving macrophage pathways and their role in COVID-19 pathogenesis. We found that bronchoalveolar lavage fluid (BALF) macrophage clusters FCN1+ and FCN1+SPP1+ predominant in severe COVID-19 were transcriptionally related to synovial tissue macrophage (STM) clusters CD48hiS100A12+ and CD48+SPP1+ that drive rheumatoid arthritis (RA) synovitis. BALF macrophage cluster FABP4+ predominant in healthy lung was transcriptionally related to STM cluster TREM2+ that governs resolution of synovitis in RA remission. Plasma concentrations of SPP1 and S100A12 (key products of macrophage clusters shared with active RA) were high in severe COVID-19 and predicted the need for Intensive Care Unit transfer, and they remained high in the post-COVID-19 stage. High plasma levels of SPP1 were unique to severe COVID-19 when compared with other causes of severe pneumonia, and IHC localized SPP1+ macrophages in the alveoli of COVID-19 lung. Investigation into SPP1 mechanisms of action revealed that it drives proinflammatory activation of CD14+ monocytes and development of PD-L1+ neutrophils, both hallmarks of severe COVID-19. In summary, COVID-19 pneumonitis appears driven by similar pathogenic myeloid cell pathways as those in RA, and their mediators such as SPP1 might be an upstream activator of the aberrant innate response in severe COVID-19 and predictive of disease trajectory including post-COVID-19 pathology.


Assuntos
Artrite Reumatoide/imunologia , COVID-19/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Osteopontina/imunologia , Artrite Reumatoide/metabolismo , Antígeno B7-H1/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Antígeno CD48/imunologia , COVID-19/induzido quimicamente , COVID-19/metabolismo , Proteínas de Ligação a Ácido Graxo/imunologia , Humanos , Lectinas/imunologia , Receptores de Lipopolissacarídeos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/imunologia , Monócitos/metabolismo , Neutrófilos/metabolismo , Osteopontina/sangue , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Imunológicos/imunologia , Proteína S100A12/imunologia , Proteína S100A12/metabolismo , Membrana Sinovial/imunologia , Tomografia Computadorizada por Raios X , Ficolinas
2.
Front Immunol ; 11: 86, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082330

RESUMO

S100A12 is a calcium-binding protein of the S100 subfamily of myeloid-related proteins that acts as an alarmin to induce a pro-inflammatory innate immune response. It has been linked to several chronic inflammatory diseases, however its role in the common oral immunopathology periodontitis is largely unknown. Previous in vitro monoculture experiments indicate that S100A12 production decreases during monocyte differentiation stages, while the regulation within tissue is poorly defined. This study evaluated S100A12 expression in monocyte subsets, during monocyte-to-macrophage differentiation and following polarization, both in monoculture and in a tissue context, utilizing a three-dimensional co-culture oral tissue model. Further, we explored the involvement of S100A12 in periodontitis by analyzing its expression in peripheral circulation and gingival tissue, as well as in saliva. We found that S100A12 expression was higher in classical than in non-classical monocytes. S100A12 expression and protein secretion declined significantly during monocyte-to-macrophage differentiation, while polarization of monocyte-derived macrophages had no effect on either. Peripheral monocytes from periodontitis patients had higher S100A12 expression than monocytes from controls, a difference particularly observed in the intermediate and non-classical monocyte subsets. Further, monocytes from periodontitis patients displayed an increased secretion of S100A12 compared with monocytes from controls. In oral tissue cultures, monocyte differentiation resulted in increased S100A12 secretion over time, which further increased after inflammatory stimuli. Likewise, S100A12 expression was higher in gingival tissue from periodontitis patients where monocyte-derived cells exhibited higher expression of S100A12 in comparison to non-periodontitis tissue. In line with our findings, patients with severe periodontitis had significantly higher levels of S100A12 in saliva compared to non-periodontitis patients, and the levels correlated to clinical periodontal parameters. Taken together, S100A12 is predominantly secreted by monocytes rather than by monocyte-derived cells. Moreover, S100A12 is increased in inflamed tissue cultures, potentially as a result of enhanced production by monocyte-derived cells. This study implicates the involvement of S100A12 in periodontitis pathogenesis, as evidenced by increased S100A12 expression in inflamed gingival tissue, which may be due to altered circulatory monocytes in periodontitis.


Assuntos
Diferenciação Celular/imunologia , Macrófagos/metabolismo , Monócitos/metabolismo , Periodontite/imunologia , Proteína S100A12/biossíntese , Adulto , Feminino , Humanos , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Periodontite/patologia , Proteína S100A12/imunologia , Saliva/imunologia , Saliva/metabolismo
3.
Biochem Biophys Res Commun ; 503(2): 657-664, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29906464

RESUMO

Danger-associated molecular patterns (DAMPs) play a proinflammatory role in the pathogenesis of airway obstructive diseases such as severe asthma and chronic obstructive pulmonary disease. The NLRP3 inflammasome is a cytosolic multiprotein platform that activates the caspase-1 pathway in response to inflammatory stimuli such as DAMPs. ATP and S100 proteins are newly identified DAMPs that accumulate in inflamed airways. We previously demonstrated that S100A8, S100A9, and S100A12 induce production and secretion of MUC5AC, a major mucin in the conducting airway mucosa. The purpose of this study was to determine the involvement of NLRP3 inflammasome in, and the contribution of ATP to, S100 protein-induced MUC5AC production by NCI-H292 mucoepidermoid carcinoma cells. Stimulation with either S100A12 or ATP led to MUC5AC production at comparable levels. Simultaneous treatment with both stimuli resulted in additive increases in NLRP3, active caspase-1, IL-1ß, NLRP3/caspase-1 colocalization, and MUC5AC. NLRP3 siRNA or inhibitors of NF-κB, NLRP3 inflammasome oligomerization, or caspase-1 nearly completely inhibited ATP- and S100A12-mediated MUC5AC production. Furthermore, S100A12-as well as ATP-mediated MUC5AC production was almost equally blunted by both nonspecific and specific antagonists of the purinergic receptor P2X7, a principal receptor mediating NLRP3 inflammasome activation by ATP. Thus, these two danger signals contribute to MUC5AC production in airway epithelial cells through overlapping signaling pathways for NLRP3 inflammasome activation.


Assuntos
Trifosfato de Adenosina/imunologia , Inflamassomos/imunologia , Mediadores da Inflamação/imunologia , Mucina-5AC/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Mucosa Respiratória/imunologia , Proteína S100A12/imunologia , Linhagem Celular Tumoral , Humanos , Pulmão/citologia , Pulmão/imunologia , Mucosa Respiratória/citologia
4.
Ann Allergy Asthma Immunol ; 120(6): 631-640.e11, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29567358

RESUMO

BACKGROUND: Liver X receptors (LXRs) are involved in maintaining epidermal barrier and suppressing inflammatory responses in model systems. The LXR agonist VTP-38543 showed promising results in improving barrier function and inflammatory responses in model systems. OBJECTIVE: To assess the safety, tolerability, cellular and molecular changes, and clinical efficacy of the topical VTP-38543 in adults with mild to moderate atopic dermatitis (AD). METHODS: A total of 104 ambulatory patients with mild to moderate AD were enrolled in this randomized, double-blind, vehicle-controlled trial between December 2015 and September 2016. VTP-38543 cream in 3 concentrations (0.05%, 0.15%, and 1.0%) or placebo was applied twice daily for 28 days. Pretreatment and posttreatment skin biopsy specimens were obtained from a subset of 33 patients. Changes in SCORing of Atopic Dermatitis, Eczema Area and Severity Index, Investigator's Global Assessment, and tissue biomarkers (by real-time polymerase chain reaction and immunostaining) were evaluated. RESULTS: Topical VTP-38543 was safe and well tolerated. VTP-38543 significantly increased messenger RNA (mRNA) expression of epidermal barrier differentiation (loricrin and filaggrin, P = .02) and lipid (adenosine triphosphate-binding cassette subfamily G member 1 and sterol regulatory element binding protein 1c, P < .01) measures and reduced epidermal hyperplasia markers (thickness, keratin 16 mRNA). VTP-38543 nonsignificantly suppressed cellular infiltrates and down-regulated mRNA expression of several TH17/TH22-related (phosphatidylinositol 3, S100 calcium-binding protein A12) and innate immunity (interleukin 6) markers. CONCLUSION: Topical VTP-38543 is safe and well tolerated. Its application led to improvement in barrier differentiation and lipids. Longer-term studies are needed to clarify whether a barrier-based approach can induce meaningful suppression of immune abnormalities. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT02655679.


Assuntos
Anti-Inflamatórios/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Epiderme/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Receptores X do Fígado/agonistas , RNA Mensageiro/agonistas , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/imunologia , Administração Cutânea , Adulto , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/imunologia , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Método Duplo-Cego , Epiderme/imunologia , Epiderme/patologia , Feminino , Proteínas Filagrinas , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/imunologia , Queratina-16/genética , Queratina-16/imunologia , Receptores X do Fígado/genética , Receptores X do Fígado/imunologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Proteína S100A12/genética , Proteína S100A12/imunologia , Índice de Gravidade de Doença , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/imunologia , Resultado do Tratamento
5.
Arthritis Rheumatol ; 69(7): 1480-1494, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28296284

RESUMO

OBJECTIVE: Systemic-onset juvenile idiopathic arthritis (JIA) is speculated to follow a biphasic course, with an initial systemic disease phase driven by innate immune mechanisms and interleukin-1ß (IL-1ß) as a key cytokine and a second chronic arthritic phase that may be dominated by adaptive immunity and cytokines such as IL-17A. Although a recent mouse model points to a critical role of IL-17-expressing γ/δ T cells in disease pathology, in humans, both the prevalence of IL-17 and the role of IL-17-producing cells are still unclear. METHODS: Serum samples from systemic JIA patients and healthy pediatric controls were analyzed for the levels of IL-17A and related cytokines. Whole blood samples were studied for cellular expression of IL-17 and interferon-γ (IFNγ). CD4+ and γ/δ T cells isolated from the patients and controls were assayed for cytokine secretion in different culture systems. RESULTS: IL-17A was prevalent in sera from patients with active systemic JIA, while both ex vivo and in vitro experiments revealed that γ/δ T cells overexpressed this cytokine. This was not seen with CD4+ T cells, which expressed strikingly low levels of IFNγ. Therapeutic IL-1 blockade was associated with partial normalization of both cytokine expression phenotypes. Furthermore, culturing healthy donor γ/δ T cells in serum from systemic JIA patients or in medium spiked with IL-1ß, IL-18, and S100A12 induced IL-17 overexpression at levels similar to those observed in the patients' cells. CONCLUSION: A systemic JIA cytokine environment may prime γ/δ T cells in particular for IL-17A overexpression. Thus, our observations in systemic JIA patients strongly support a pathophysiologic role of these cells, as proposed by the recent murine model.


Assuntos
Artrite Juvenil/imunologia , Interleucina-17/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa/imunologia , Adolescente , Adulto , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Antirreumáticos/uso terapêutico , Artrite Juvenil/tratamento farmacológico , Linfócitos T CD4-Positivos/imunologia , Estudos de Casos e Controles , Quimiocina CXCL10/imunologia , Quimiocina CXCL9/imunologia , Criança , Pré-Escolar , Citocinas/imunologia , Feminino , Humanos , Imunidade Inata/imunologia , Interferon gama/imunologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-18/imunologia , Interleucina-18/farmacologia , Interleucina-1beta/imunologia , Interleucina-1beta/farmacologia , Subunidade p19 da Interleucina-23/imunologia , Interleucina-6/imunologia , Masculino , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Proteína S100A12/imunologia , Proteína S100A12/farmacologia , Linfócitos T/metabolismo , Adulto Jovem
6.
Cytokine ; 92: 80-82, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28110121

RESUMO

In humans, S100A12 (also named Calgranulin C and EN-RAGE) is mainly expressed and secreted by neutrophil granulocytes. Extracellular S100A12 is involved in innate immune responses against microorganisms and parasites. S100A12 is a ligand for the receptor for advanced glycation end products (RAGE), which is a cell surface receptor on macrophages, endothelium, and lymphocytes. In a recent study, Realegeno et al. showed that S100A12 exerts antimicrobial activity against Mycobacterium leprae in infected human macrophages. Recently, some interesting data on the antimicrobial activity of S100A12 have been reported. Proinflammatory role of S100A12 is supported by another newly found receptor, Toll-like receptor 4 (TLR4). These observations emphasize the importance of S100A12 for the development of potential therapeutic approaches to increase protective immunity or reduce immunopathogenesis.


Assuntos
Proteína S100A12/imunologia , Tuberculose Pulmonar/imunologia , Animais , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Mycobacterium leprae/imunologia , Receptor para Produtos Finais de Glicação Avançada/imunologia , Receptor 4 Toll-Like/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
7.
PLoS Pathog ; 12(6): e1005705, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27355424

RESUMO

Triggering antimicrobial mechanisms in macrophages infected with intracellular pathogens, such as mycobacteria, is critical to host defense against the infection. To uncover the unique and shared antimicrobial networks induced by the innate and adaptive immune systems, gene expression profiles generated by RNA sequencing (RNAseq) from human monocyte-derived macrophages (MDMs) activated with TLR2/1 ligand (TLR2/1L) or IFN-γ were analyzed. Weighed gene correlation network analysis identified modules of genes strongly correlated with TLR2/1L or IFN-γ that were linked by the "defense response" gene ontology term. The common TLR2/1L and IFN-γ inducible human macrophage host defense network contained 16 antimicrobial response genes, including S100A12, which was one of the most highly induced genes by TLR2/1L. There is limited information on the role of S100A12 in infectious disease, leading us to test the hypothesis that S100A12 contributes to host defense against mycobacterial infection in humans. We show that S100A12 is sufficient to directly kill Mycobacterium tuberculosis and Mycobacterium leprae. We also demonstrate that S100A12 is required for TLR2/1L and IFN-γ induced antimicrobial activity against M. leprae in infected macrophages. At the site of disease in leprosy, we found that S100A12 was more strongly expressed in skin lesions from tuberculoid leprosy (T-lep), the self-limiting form of the disease, compared to lepromatous leprosy (L-lep), the progressive form of the disease. These data suggest that S100A12 is part of an innate and adaptive inducible antimicrobial network that contributes to host defense against mycobacteria in infected macrophages.


Assuntos
Hanseníase/imunologia , Macrófagos/imunologia , Proteína S100A12/imunologia , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Macrófagos/microbiologia , Infecções por Mycobacterium/imunologia , Mycobacterium leprae/imunologia , Mycobacterium tuberculosis/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA