Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 572
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39133649

RESUMO

Upper tract urothelial carcinoma (UTUC) is a rare form of urothelial cancer with a high incidence of recurrence and a low survival rate. Almost two-thirds of UTUCs are invasive at the time of diagnosis; therefore, improving diagnostic methods is key to increasing survival rates. Histopathological analysis of UTUC is essential for diagnosis and typically requires endoscopy biopsy, tissue sectioning, and labeling. However, endoscopy biopsies are minute, and it is challenging to cut into thin sections for conventional histopathology; this complicates diagnosis. Here, we used volumetric 3-dimensional (3D) imaging to explore the inner landscape of clinical UTUC biopsies, without sectioning, revealing that 3D analysis of phosphorylated ribosomal protein S6 (pS6) could predict tumor grade and prognosis with improved accuracy. By visualizing the tumor vasculature, we discovered that pS6+ cells were localized near blood vessels at significantly higher levels in high-grade tumors than in low-grade tumors. Furthermore, the clustering of pS6+ cells was associated with shorter relapse-free survival. Our results demonstrate that 3D volume imaging of the structural niches of pS6 cells deep inside the UTUC samples improved diagnostic yield, grading, and prognosis prediction.


Assuntos
Imageamento Tridimensional , Humanos , Imageamento Tridimensional/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Proteína S6 Ribossômica/metabolismo , Neoplasias Urológicas/diagnóstico por imagem , Neoplasias Urológicas/patologia , Neoplasias Urológicas/diagnóstico , Prognóstico , Urotélio/patologia , Urotélio/diagnóstico por imagem , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/patologia , Biópsia , Carcinoma de Células de Transição/diagnóstico por imagem , Carcinoma de Células de Transição/patologia , Gradação de Tumores
2.
Sci Signal ; 17(840): eadn8376, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861613

RESUMO

Uveal melanoma (UM) is the deadliest form of eye cancer in adults. Inactivating mutations and/or loss of expression of the gene encoding BRCA1-associated protein 1 (BAP1) in UM tumors are associated with an increased risk of metastasis. To investigate the mechanisms underlying this risk, we explored the functional consequences of BAP1 deficiency. UM cell lines expressing mutant BAP1 grew more slowly than those expressing wild-type BAP1 in culture and in vivo. The ability of BAP1 reconstitution to restore cell proliferation in BAP1-deficient cells required its deubiquitylase activity. Proteomic analysis showed that BAP1-deficient cells had decreased phosphorylation of ribosomal S6 and its upstream regulator, p70S6K1, compared with both wild-type and BAP1 reconstituted cells. In turn, expression of p70S6K1 increased S6 phosphorylation and proliferation of BAP1-deficient UM cells. Consistent with these findings, BAP1 mutant primary UM tumors expressed lower amounts of p70S6K1 target genes, and S6 phosphorylation was decreased in BAP1 mutant patient-derived xenografts (PDXs), which grew more slowly than wild-type PDXs in the liver (the main metastatic site of UM) in mice. BAP1-deficient UM cells were also more resistant to amino acid starvation, which was associated with diminished phosphorylation of S6. These studies demonstrate that BAP1 deficiency slows the proliferation of UM cells through regulation of S6 phosphorylation. These characteristics may be associated with metastasis by ensuring survival during amino acid starvation.


Assuntos
Proliferação de Células , Melanoma , Transdução de Sinais , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Neoplasias Uveais , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Mutação , Fosforilação , Proteína S6 Ribossômica/metabolismo , Proteína S6 Ribossômica/genética , Estresse Fisiológico , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia , Feminino
3.
Eur J Pharmacol ; 974: 176570, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38688398

RESUMO

Mitochondrial dynamics play a crucial role in myocardial ischemia-reperfusion (I/R) injury, where an imbalance between fusion and fission processes occurs. However, effective measures to regulate mitochondrial dynamics in this context are currently lacking. Peptide derived from the 40 S ribosomal protein S6 (PDRPS6), a peptide identified via peptidomics, is associated with hypoxic stress. This study aimed to investigate the function and mechanism of action of PDRPS6 in I/R injury. In vivo, PDRPS6 ameliorated myocardial tissue injury and cardiomyocyte apoptosis and decreased cardiac function induced by I/R injury in rats. PDRPS6 supplementation significantly reduced apoptosis in vitro. Mechanistically, PDRPS6 improved mitochondrial function by decreasing reactive oxygen species (ROS) levels, maintaining mitochondrial membrane potential (MMP), and inhibiting mitochondrial fission. Pull-down assay analyses revealed that phosphoglycerate mutase 5 (PGAM5) may be the target of PDRPS6, which can lead to the dephosphorylation of dynamin-related protein1 (Drp1) at ser616 site. Overexpression of PGAM5 partially eliminated the effect of PDRPS6 on improving mitochondrial function. These findings suggest that PDRPS6 supplementation is a novel method for treating myocardial injuries caused by I/R.


Assuntos
Apoptose , Dinâmica Mitocondrial , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Animais , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ratos , Dinâmica Mitocondrial/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteína S6 Ribossômica/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Dinaminas/metabolismo , Dinaminas/genética , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Fosforilação/efeitos dos fármacos
4.
Curr Eye Res ; 49(5): 505-512, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38251680

RESUMO

PURPOSE: Metformin, a biguanide antihyperglycemic drug, can exert various beneficial effects in addition to its glucose-lowering effect. The effects of metformin are mainly mediated by AMP-activated protein kinase (AMPK)-dependent pathway. AMPK activation interferes with the action of the mammalian target of rapamycin complex 1 (mTORC1), and blockade of mTORC1 pathway suppresses pathological retinal angiogenesis. Therefore, in this study, we examined the effects of metformin on pathological angiogenesis and mTORC1 activity in the retinas of mice with oxygen-induced retinopathy (OIR). METHODS: OIR was induced by exposing the mice to 80% oxygen from postnatal day (P) 7 to P10. The OIR mice were treated with metformin, rapamycin (an inhibitor of mTORC1), or the vehicle from P10 to P12 or P14. The formation of neovascular tufts, revascularization in the central avascular areas, expression of vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) 2, and phosphorylated ribosomal protein S6 (pS6), a downstream indicator of mTORC1 activity, were evaluated at P10, P13, or P15. RESULTS: Neovascular tufts and vascular growth in the central avascular areas were observed in the retinas of P15 OIR mice. The formation of neovascular tufts, but not the revascularization in the central avascular areas, was attenuated by metformin administration from P10 to P14. Metformin had no significant inhibitory effect on the expression of VEGF and VEGFR2, but it reduced the pS6 immunoreactivity in vascular cells at the sites of angiogenesis. Rapamycin completely blocked the phosphorylation of ribosomal protein S6 and markedly reduced the formation of neovascular tufts. CONCLUSIONS: These results suggest that metformin partially suppresses the formation of neovascular tufts on the retinal surface by blocking the mTORC1 signaling pathway. Metformin may exert beneficial effects against the progression of ocular diseases in which abnormal angiogenesis is associated with the pathogenesis.


Assuntos
Metformina , Doenças Retinianas , Neovascularização Retiniana , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína S6 Ribossômica , Metformina/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Angiogênese , Neovascularização Patológica , Doenças Retinianas/complicações , Transdução de Sinais , Oxigênio , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/prevenção & controle , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Mamíferos/metabolismo
5.
J Thromb Haemost ; 21(9): 2528-2544, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37085035

RESUMO

BACKGROUND: Germline mutations in the ETV6 transcription factor gene are responsible for familial thrombocytopenia and leukemia predisposition syndrome. Although previous studies have shown that ETV6 plays an important role in megakaryocyte (MK) maturation and platelet formation, the mechanisms by which ETV6 dysfunction promotes thrombocytopenia remain unclear. OBJECTIVES: To decipher the transcriptional mechanisms and gene regulatory network linking ETV6 germline mutations and thrombocytopenia. METHODS: Presuming that ETV6 mutations result in selective effects at a particular cell stage, we applied single-cell RNA sequencing to understand gene expression changes during megakaryopoiesis in peripheral CD34+ cells from healthy controls and patients with ETV6-related thrombocytopenia. RESULTS: Analysis of gene expression and regulon activity revealed distinct clusters partitioned into 7 major cell stages: hematopoietic stem/progenitor cells, common-myeloid progenitors (CMPs), MK-primed CMPs, granulocyte-monocyte progenitors, MK-erythroid progenitors (MEPs), progenitor MKs/mature MKs, and platelet-like particles. We observed a differentiation trajectory in which MEPs developed directly from hematopoietic stem/progenitor cells and bypassed the CMP stage. ETV6 deficiency led to the development of aberrant cells as early as the MEP stage, which intensified at the progenitor MK/mature MK stage, with a highly deregulated core "ribosome biogenesis" pathway. Indeed, increased translation levels have been documented in patient CD34+-derived MKs with overexpression of ribosomal protein S6 and phosphorylated ribosomal protein S6 in both CD34+-derived MKs and platelets. Treatment of patient MKs with the ribosomal biogenesis inhibitor CX-5461 resulted in an increase in platelet-like particles. CONCLUSION: These findings provide novel insight into both megakaryopoiesis and the link among ETV6, translation, and platelet production.


Assuntos
Megacariócitos , Trombocitopenia , Humanos , Diferenciação Celular , Megacariócitos/metabolismo , Proteína S6 Ribossômica/metabolismo , Análise de Célula Única , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombopoese/genética , Antígenos CD34 , Variante 6 da Proteína do Fator de Translocação ETS
6.
PLoS Genet ; 19(1): e1010595, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656901

RESUMO

Defective ribosome biogenesis (RiBi) underlies a group of clinically diverse human diseases collectively known as the ribosomopathies, core manifestations of which include cytopenias and developmental abnormalities that are believed to stem primarily from an inability to synthesize adequate numbers of ribosomes and concomitant activation of p53. The importance of a correctly functioning RiBi machinery for maintaining tissue homeostasis is illustrated by the observation that, despite having a paucity of certain cell types in early life, ribosomopathy patients have an increased risk for developing cancer later in life. This suggests that hypoproliferative states trigger adaptive responses that can, over time, become maladaptive and inadvertently drive unchecked hyperproliferation and predispose to cancer. Here we describe an experimentally induced ribosomopathy in the mouse and show that a normal level of hepatic ribosomal protein S6 (Rps6) is required for proper bile duct development and preservation of hepatocyte viability and that its insufficiency later promotes overgrowth and predisposes to liver cancer which is accelerated in the absence of the tumor-suppressor PTEN. We also show that the overexpression of c-Myc in the liver ameliorates, while expression of a mutant hyperstable form of p53 partially recapitulates specific aspects of the hepatopathies induced by Rps6 deletion. Surprisingly, co-deletion of p53 in the Rps6-deficient background fails to restore biliary development or significantly improve hepatic function. This study not only reveals a previously unappreciated dependence of the developing liver on adequate levels of Rps6 and exquisitely controlled p53 signaling, but suggests that the increased cancer risk in ribosomopathy patients may, in part, stem from an inability to preserve normal tissue homeostasis in the face of chronic injury and regeneration.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Animais , Camundongos , Proteína S6 Ribossômica/genética , Proteína S6 Ribossômica/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Hepatócitos/metabolismo , Fenótipo , Ductos Biliares/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
7.
J Cell Mol Med ; 26(22): 5713-5727, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36308410

RESUMO

Our previous studies illustrated that 2% H2 inhalation can protect against sepsis-associated encephalopathy (SAE) which is characterized by high mortality and has no effective treatment. To investigate the underlying role of protein phosphorylation in SAE and H2 treatment, a mouse model of sepsis was constructed by caecal ligation and puncture (CLP), then treated with H2 (CLP + H2 ). Brain tissues of the mice were collected to be analysed with tandem mass tag-based quantitative proteomics coupled with IMAC enrichment of phosphopeptides and LC-MS/MS analysis. In proteomics and phosphoproteomics analysis, 268 differentially phosphorylated proteins (DPPs) showed a change in the phosphorylated form in the CLP + H2 group (p < 0.05). Gene ontology analysis revealed that these DPPs were enriched in multiple cellular components, biological processes, and molecular functions. KEGG pathway analysis revealed that they were enriched in glutamatergic synapses, tight junctions, the PI3K-Akt signalling pathway, the HIF-1 signalling pathway, the cGMP-PKG signalling pathway, the Rap1 signalling pathway, and the vascular smooth muscle contraction. The phosphorylated forms of six DPPs, including ribosomal protein S6 (Rps6), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (Ywhag/14-3-3), phosphatase and tensin homologue deleted on chromosome ten (Pten), membrane-associated guanylate kinase 1 (Magi1), mTOR, and protein kinase N2 (Pkn2), were upregulated and participated in the PI3K-Akt signalling pathway. The WB results showed that the phosphorylation levels of Rps6, Ywhag, Pten, Magi1, mTOR, and Pkn2 were increased. The DPPs and phosphorylation-mediated molecular network alterations in H2 -treated CLP mice may elucidate the biological roles of protein phosphorylation in the therapeutic mechanism of H2 treatment against SAE.


Assuntos
Lesões Encefálicas , Encefalopatia Associada a Sepse , Sepse , Camundongos , Animais , Hidrogênio/uso terapêutico , Fosforilação , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Cromatografia Líquida , Espectrometria de Massas em Tandem , Encefalopatia Associada a Sepse/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Proteína S6 Ribossômica , Serina-Treonina Quinases TOR
8.
Beijing Da Xue Xue Bao Yi Xue Ban ; 54(5): 846-852, 2022 Oct 18.
Artigo em Chinês | MEDLINE | ID: mdl-36241227

RESUMO

OBJECTIVE: To investigate the effects and mechanisms of Kindlin-2 on uterus development and reproductive capacity in female mice. METHODS: Cdh16-Cre tool mice and Kindlin-2flox/flox mice were used to construct the mouse model of uterus specific knockout of Kindlin-2, and the effects of Kindlin-2 deletion on uterine development and reproduction capacity of female mice were observed. High expression and knockdown of Kindlin-2 in endometrial cancer cell lines HEC-1 and Ish were used to detect the regulation of mammalian target of rapamycin (mTOR) signaling pathway. In addition, uterine proteins of the female mice with specific knockout of Kindlin-2 and female mice in the control group were extracted to detect the protein levels of key molecules of mTOR signaling pathway and Hippo signaling pathway. RESULTS: The mouse model of uterine specific knockout of Kindlin-2 was successfully constructed. The knockout efficiency of Kindlin-2 in mouse uterus was identified and verified by mouse tail polymerase chain reaction (PCR), Western blot protein identification, immunohistochemical staining (IHC) and other methods. Compared with the control group, the female mice with uterus specific deletion of Kindlin-2 lost weight, seriously impaired reproductive ability, and the number of newborn mice decreased, but the proportion of the female mice and male mice in the newborn mice did not change. Hematoxylin eosin staining (HE) experiment showed that the endometrium of Kindlin-2 knockout group was incomplete and the thickness of uterine wall became thinner. In terms of mechanism, the deletion of Kindlin-2 in endo-metrial cancer cell lines HEC-1 and Ish could downregulate the protein levels of mTOR, phosphorylated mTOR, adenosine monophosphate-activated protein kinase (AMPK), phosphorylated AMPK and phosphorylated ribosomal protein S6 (S6), and the mTOR signal pathway was inhibited. It was found that the specific deletion of Kindlin-2 could upregulate the protein levels of Mps one binding 1 (MOB1) and phosphorylated Yes-associated protein (YAP) in the uterus of the female mice, and the Hippo signal pathway was activated. CONCLUSION: Kindlin-2 inhibits the development of uterus by inhibiting mTOR signal pathway and activating Hippo signal pathway, thereby inhibiting the fertility of female mice.


Assuntos
Proteínas Quinases Ativadas por AMP , Via de Sinalização Hippo , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Caderinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Endométrio/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Feminino , Hematoxilina/metabolismo , Masculino , Mamíferos/metabolismo , Camundongos , Proteínas Musculares , Proteína S6 Ribossômica/metabolismo , Sirolimo/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Sinalização YAP
9.
Biochem Pharmacol ; 205: 115280, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36198355

RESUMO

BACKGROUND: Marfan syndrome (MFS) is a genetic disorder leading to medial aortic degeneration and life-limiting dissections. To date, there is no causal prevention or therapy. Rapamycin is a potent and selective inhibitor of the mechanistic target of rapamycin (mTOR) protein kinase, regulating cell growth and metabolism. The mgR/mgR mice represent an accepted MFS model for studying aortic pathologies to understand the underlying molecular pathomechanisms. This study investigated whether rapamycin inhibits the development of thoracic aortic aneurysms and dissections in mgR/mgR mice. METHODS: Isolated primary aortic smooth muscle cells (mAoSMCs) from mgR/mgR mice were used for in vitro studies. Two mg kg/BW rapamycin was injected intraperitoneally daily for two weeks, beginning at 7-8 weeks of age. Mice were sacrificed 30 days post-treatment. Histopathological and immunofluorescence analyses were performed using adequate tissue specimens and techniques. Animal survival was evaluated accompanied by periodic echocardiographic examinations of the aorta. RESULTS: The protein level of the phosphorylated ribosomal protein S6 (p-RPS6), a downstream target of mTOR, was significantly increased in the aortic tissue of mgR/mgR mice. In mAoSMCs isolated from these animals, expression of mTOR, p-RPS6, tumour necrosis factor α, matrix metalloproteinase-2 and -9 was significantly suppressed by rapamycin, demonstrating its anti-inflammatory capacity. Short-term rapamycin treatment of Marfan mice was associated with delayed aneurysm formation, medial aortic elastolysis and improved survival. CONCLUSIONS: Short-term rapamycin-mediated mTOR inhibition significantly reduces aortic aneurysm formation and thus increases survival in mgR/mgR mice. Our results may offer the first causal treatment option to prevent aortic complications in MFS patients.


Assuntos
Aneurisma Aórtico , Síndrome de Marfan , Camundongos , Animais , Síndrome de Marfan/complicações , Síndrome de Marfan/tratamento farmacológico , Metaloproteinase 2 da Matriz/metabolismo , Fibrilina-1/genética , Fator de Necrose Tumoral alfa , Modelos Animais de Doenças , Longevidade , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Proteína S6 Ribossômica , Camundongos Endogâmicos C57BL , Aneurisma Aórtico/tratamento farmacológico , Aneurisma Aórtico/etiologia , Aneurisma Aórtico/prevenção & controle , Serina-Treonina Quinases TOR
10.
Reproduction ; 164(5): 221-230, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36111643

RESUMO

In brief: Several factors affect the reprogramming efficiency of nuclear transfer embryos. This study shows that inhibiting 18S rRNA m6A methyltransferase METTL5 during nuclear transfer can improve the developmental rate of nuclear transfer embryos. Abstract: N6-methyladenosine (m6A) is one of the most important epigenetic modifications in eukaryotic RNAs, which regulates development and diseases. It is identified by several proteins. Methyltransferase-like 5 (METTL5), an enzyme that methylates 18S rRNA m6A, controls the translation of proteins and regulates pluripotency in embryonic stem cells. However, the functions of METTL5 in embryonic development have not been explored. Here, we found that Mettl5 was upregulated in somatic cell nuclear transfer (SCNT) embryos compared with normal fertilized embryos. Therefore, we hypothesized that METTL5 knockdown during the early stage of SCNT would improve the developmental rate of SCNT embryos. Notably, injection of Mettl5 siRNA (si-Mettl5) into enucleated oocytes during nuclear transfer increased the rate of development and the number of cells in blastocysts. Moreover, inhibition of METTL5 reduced the activity of phosphorylated ribosomal protein S6, decreased the levels of the repressive histone modification H3K27me3 and increased the expression of activating histone modifications H3K27ac and H3K4me3 and mRNA levels of some 2-cell-specific genes. These results expand our understanding of the role of METTL5 in early embryonic development and provide a novel idea for improving the efficiency of nuclear transfer cloning.


Assuntos
Reprogramação Celular , Histonas , Animais , Blastocisto/metabolismo , Desenvolvimento Embrionário , Feminino , Histonas/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Técnicas de Transferência Nuclear , Gravidez , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/metabolismo , RNA Interferente Pequeno/genética , Proteína S6 Ribossômica/genética , Proteína S6 Ribossômica/metabolismo
11.
Cells ; 11(17)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36078128

RESUMO

Prostaglandin E2 (PGE2) is an important metabolite of arachidonic acid which plays a crucial role in vascular physiology and pathophysiology via its four receptors (EP1-4). However, the role of vascular smooth muscle cell (VSMC) EP4 in neointimal hyperplasia is largely unknown. Here we showed that VSMC-specific deletion of EP4 (VSMC-EP4) ameliorated, while VSMC-specific overexpression of human EP4 promoted, neointimal hyperplasia in mice subjected to femoral artery wire injury or carotid artery ligation. In vitro studies revealed that pharmacological activation of EP4 promoted, whereas inhibition of EP4 suppressed, proliferation and migration of primary-cultured VSMCs. Mechanically, EP4 significantly increased the protein expression of tenascin C (TN-C), a pro-proliferative and pro-migratory extracellular matrix protein, at the translational level. Knockdown of TN-C markedly suppressed EP4 agonist-induced VSMC proliferation and migration. Further studies uncovered that EP4 upregulated TN-C protein expression via the PKA/mTORC1/Ribosomal protein S6 (rpS6) pathway. Together, our findings demonstrate that VSMC EP4 increases TN-C protein expression to promote neointimal hyperplasia via the PKA-mTORC1-rpS6 pathway. Therefore, VSMC EP4 may represent a potential therapeutic target for vascular restenosis.


Assuntos
Dinoprostona , Hiperplasia , Receptores de Prostaglandina E Subtipo EP4 , Tenascina , Lesões do Sistema Vascular , Animais , Proliferação de Células , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Proteína S6 Ribossômica/metabolismo , Tenascina/metabolismo
12.
Mod Pathol ; 35(12): 1888-1899, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36115922

RESUMO

Pleural mesothelioma (PM) is an aggressive malignancy with poor prognosis. Although histology and pathologic stage are important prognostic factors, better prognostic biomarkers are needed. The ribosomal protein S6 is a downstream target of the phosphatidylinositol 3-kinase (PI3K) pathway involved in protein synthesis and cell proliferation. In previous studies, low phosphorylated S6 (pS6) immunoreactivity was significantly correlated with longer progression-free survival (PFS) and overall survival (OS) in PM patients. We aimed to correlate pS6 expression to clinical data in a large multi-centre PM cohort as part of the European Thoracic Oncology Platform (ETOP) Mesoscape project. Tissue Micro Arrays (TMAs) of PM were constructed and expression of pS6 was evaluated by a semi-quantitatively aggregate H-score. Expression results were correlated to patient characteristics as well as OS/PFS. pS6 IHC results of 364 patients from 9 centres, diagnosed between 1999 and 2017 were available. The primary histology of included tumours was epithelioid (70.3%), followed by biphasic (24.2%) and sarcomatoid (5.5%). TMAs included both treatment-naïve and tumour tissue taken after induction chemotherapy. High pS6 expression (181 patients with H-score>1.41) was significantly associated with less complete resection. In the overall cohort, OS/PFS were not significantly different between pS6-low and pS6-high patients. In a subgroup analysis non-epithelioid (biphasic and sarcomatoid) patients with high pS6 expression showed a significantly shorter OS (p < 0.001, 10.7 versus 16.9 months) and PFS (p < 0.001, 6.2 versus 10.8 months). In subgroup analysis, in non-epithelioid PM patients high pS6 expression was associated with significantly shorter OS and PFS. These exploratory findings suggest a clinically relevant PI3K pathway activation in non-epithelioid PM which might lay the foundation for future targeted treatment strategies.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Sarcoma , Humanos , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pleurais/patologia , Prognóstico , Proteína S6 Ribossômica
13.
Muscle Nerve ; 66(4): 513-522, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35859452

RESUMO

INTRODUCTION/AIMS: Most mouse models of muscular dystrophy (MD) show mild phenotypes, which limits the translatability of experimental therapies to patients. A growing body of evidence suggests that MD is accompanied by metabolic abnormalities that could potentially exacerbate the primary muscle wasting process. Since thermoneutral (TN) housing of mice (~30°C) has been shown to affect many metabolic parameters, particularly when combined with a Western diet (WD), our aim was to determine whether the combination of TN and WD exacerbates muscle wasting in dysferlin-deficient BLAJ mice, a common model of limb-girdle MD type 2b (LGMD2b). METHODS: The 2-mo-old wild-type (WT) and BLAJ mice were housed at TN or room temperature (RT) and fed a WD or regular chow for 9 mo. Ambulatory function, muscle histology, and protein immunoblots of skeletal muscle were assessed. RESULTS: BLAJ mice at RT and fed a chow diet showed normal ambulation function similar to WT mice, whereas 90% of BLAJ mice under WD and TN combination showed ambulatory dysfunction (p < 0.001), and an up to 4.1-fold increase in quadriceps and gastrocnemius fat infiltration. Western blotting revealed decreased autophagy marker microtubules-associated protein 1 light chain 3-B (LC3BII/LC3BI) ratio and up-regulation of protein kinase B/AKT and ribosomal protein S6 phosphorylation, suggesting inefficient cellular debris and protein clearance in TN BLAJ mice fed a WD. Male and female BLAJ mice under TN and WD combination showed heterogenous fibro-fatty infiltrate composition. DISCUSSION: TN and WD combination exacerbates rodent LGMD2b without affecting WT mice. This improves rodent modeling of human MD and helps elucidate how metabolic abnormalities may play a causal role in muscle wasting.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Animais , Dieta Ocidental/efeitos adversos , Disferlina/genética , Disferlina/metabolismo , Feminino , Habitação , Humanos , Masculino , Camundongos , Músculo Esquelético , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Distrofias Musculares/patologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína S6 Ribossômica/metabolismo
14.
J Cachexia Sarcopenia Muscle ; 13(5): 2525-2536, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35818664

RESUMO

BACKGROUND: Oestrogen deficiency reduces skeletal muscle mass and force generation in postmenopausal women. Muscle mass is maintained by satellite cells, which are regulated by oestrogen. Although oestrogen therapy enhances muscle hypertrophy induced by resistance training in postmenopausal women, the molecular mechanism is unclear. METHODS: Adult female rats (10 weeks old) were divided into six groups: sham sedentary (Sham-Sed), sham climbing training (Sham-CT), ovariectomy sedentary (OVX-Sed), ovariectomy climbing training (OVX-CT), ovariectomy plus oestrogen treatment sedentary (OVX+E-Sed), and ovariectomy plus oestrogen treatment climbing training (OVX+E-CT). At 8 weeks after ovariectomy, rats in the training group were trained (one session every 3 days for 8 weeks) to climb a ladder while bearing a load. Oestrogen treatment involved subcutaneous insertion of a 17ß-oestradiol pellet. After 8 weeks, the flexor hallucis longus muscle was collected and analysed. RESULTS: Following climbing training, the flexor hallucis longus muscle mass and muscle-to-body weight ratios were dramatically increased by training (main effect of training, P < 0.01); the OVX+E-CT group showed the highest values (main effect of group, P < 0.01). The cross-sectional area of all muscle fibre types was increased by training (main effect of training, P < 0.01). Particularly, the cross-sectional area of MHC IIa in the OVX+E-CT group was significantly larger than that in the Sham-CT and OVX-CT groups. Satellite cell numbers were increased in all training groups (main effect of training, P < 0.05), and the myonuclear number was increased by training (main effect of training, P < 0.01), but there was no main group effect. The myonuclear domain size of all muscle fibre types and MHC IIa was increased in all training groups (main effect of training, P < 0.01) and showed a main group effect (P < 0.01). The myonuclear domain sizes of all muscle fibre types and MHC IIa in the OVX+E-CT group were significantly larger than those in the Sham-CT and OVX-CT groups. The total RNA contents revealed main effects of training and the group (P < 0.01); the OVX+E-CT group showed the highest contents (main effect of group, P < 0.01). The mRNA and protein levels of rpS6 were increased in the OVX+E-Sed and CT groups (main effects of group, P < 0.05). Particularly, the 28S ribosomal RNA content in OVX+E-Sed group was significantly higher than that in the OVX-Sed group. CONCLUSIONS: Oestrogen enhanced the resistance training-induced increase in myonuclear domain size but did not affect satellite cells and ribosome biogenesis.


Assuntos
Músculo Esquelético , Condicionamento Físico Animal , Treinamento Resistido , Animais , Feminino , Humanos , Ratos , Estradiol/farmacologia , Estrogênios/farmacologia , Músculo Esquelético/fisiologia , Proteína S6 Ribossômica , RNA Mensageiro , RNA Ribossômico 28S
15.
Mol Cancer Res ; 20(8): 1320-1336, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35503453

RESUMO

Uveal melanoma is a rare form of melanoma that originates in the eye, exerts widespread therapeutic resistance, and displays an inherent propensity for hepatic metastases. Because metastatic disease is characterized by poor survival, there is an unmet clinical need to identify new therapeutic targets in uveal melanoma. Here, we show that the pleiotropic cytokine midkine is expressed in uveal melanoma. Midkine expression in primary uveal melanoma significantly correlates with poor survival and is elevated in patients that develop metastatic disease. Monosomy 3 and histopathologic staging parameters are associated with midkine expression. In addition, we demonstrate that midkine promotes survival, migration across a barrier of hepatic sinusoid endothelial cells and resistance to AKT/mTOR inhibition. Furthermore, midkine is secreted and mediates mTOR activation by maintaining phosphorylation of the mTOR target RPS6 in uveal melanoma cells. Therefore, midkine is identified as a uveal melanoma cell survival factor that drives metastasis and therapeutic resistance, and could be exploited as a biomarker as well as a new therapeutic target. IMPLICATIONS: Midkine is identified as a survival factor that drives liver metastasis and therapeutic resistance in melanoma of the eye.


Assuntos
Neoplasias Hepáticas , Melanoma , Midkina , Proteína S6 Ribossômica , Serina-Treonina Quinases TOR , Neoplasias Uveais , Resistencia a Medicamentos Antineoplásicos , Células Endoteliais/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Midkina/genética , Midkina/metabolismo , Metástase Neoplásica/patologia , Proteína S6 Ribossômica/genética , Proteína S6 Ribossômica/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/genética
16.
Kidney Int ; 102(1): 121-135, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483522

RESUMO

Ribosomal protein S6 (rpS6) phosphorylation mediates the hypertrophic growth of kidney proximal tubule cells. However, the role of rpS6 phosphorylation in podocyte hypertrophy and podocyte loss during the pathogenesis of focal segmental glomerulosclerosis (FSGS) remains undefined. Here, we examined rpS6 phosphorylation levels in kidney biopsy specimens from patients with FSGS and in podocytes from mouse kidneys with Adriamycin-induced FSGS. Using genetic and pharmacologic approaches in the mouse model of FSGS, we investigated the role of rpS6 phosphorylation in podocyte hypertrophy and loss during development and progression of FSGS. Phosphorylated rpS6 was found to be markedly increased in the podocytes of patients with FSGS and Adriamycin-induced FSGS mice. Genetic deletion of the Tuberous sclerosis 1 gene in kidney glomerular podocytes activated mammalian target of rapamycin complex 1 signaling to rpS6 phosphorylation, resulting in podocyte hypertrophy and pathologic features similar to those of patients with FSGS including podocyte loss, leading to segmental glomerulosclerosis. Since protein phosphatase 1 is known to negatively regulate rpS6 phosphorylation, treatment with an inhibitor increased phospho-rpS6 levels, promoted podocyte hypertrophy and exacerbated formation of FSGS lesions. Importantly, blocking rpS6 phosphorylation (either by generating congenic rpS6 knock-in mice expressing non-phosphorylatable rpS6 or by inhibiting ribosomal protein S6 kinase 1-mediated rpS6 phosphorylation with an inhibitor) significantly blunted podocyte hypertrophy, inhibited podocyte loss, and attenuated formation of FSGS lesions. Thus, our study provides genetic and pharmacologic evidence indicating that specifically targeting rpS6 phosphorylation can attenuate the development of FSGS lesions by inhibiting podocyte hypertrophy and associated podocyte depletion.


Assuntos
Glomerulosclerose Segmentar e Focal , Podócitos , Animais , Doxorrubicina , Glomerulosclerose Segmentar e Focal/metabolismo , Humanos , Hipertrofia , Mamíferos/metabolismo , Camundongos , Fosforilação , Podócitos/patologia , Proteínas Serina-Treonina Quinases , Proteína S6 Ribossômica/metabolismo
17.
Mol Plant Pathol ; 23(3): 431-446, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34913556

RESUMO

To identify host factors for tomato spotted wilt orthotospovirus (TSWV), a virus-induced gene silencing (VIGS) screen using tobacco rattle virus (TRV) was performed on Nicotiana benthamiana for TSWV susceptibility. To rule out any negative effect on the plants' performance due to a double viral infection, the method was optimized to allow screening of hundreds of clones in a standardized fashion. To normalize the results obtained in and between experiments, a set of controls was developed to evaluate in a consist manner both VIGS efficacy and the level of TSWV resistance. Using this method, 4532 random clones of an N. benthamiana cDNA library were tested, resulting in five TRV clones that provided nearly complete resistance against TSWV. Here we report on one of these clones, of which the insert targets a small gene family coding for the ribosomal protein S6 (RPS6) that is part of the 40S ribosomal subunit. This RPS6 family is represented by three gene clades in the genome of Solanaceae family members, which were jointly important for TSWV susceptibility. Interestingly, RPS6 is a known host factor implicated in the replication of different plant RNA viruses, including the negative-stranded TSWV and the positive-stranded potato virus X.


Assuntos
Vírus de RNA , Solanum lycopersicum , Tospovirus , Doenças das Plantas , Proteína S6 Ribossômica , Nicotiana/genética
18.
PLoS One ; 16(12): e0262180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972198

RESUMO

Trichoderma atroviride (Ascomycota, Sordariomycetes) is a well-known mycoparasite applied for protecting plants against fungal pathogens. Its mycoparasitic activity involves processes shared with plant and human pathogenic fungi such as the production of cell wall degrading enzymes and secondary metabolites and is tightly regulated by environmental cues. In eukaryotes, the conserved Target of Rapamycin (TOR) kinase serves as a central regulator of cellular growth in response to nutrient availability. Here we describe how alteration of the activity of TOR1, the single and essential TOR kinase of T. atroviride, by treatment with chemical TOR inhibitors or by genetic manipulation of selected TOR pathway components affected various cellular functions. Loss of TSC1 and TSC2, that are negative regulators of TOR complex 1 (TORC1) in mammalian cells, resulted in altered nitrogen source-dependent growth of T. atroviride, reduced mycoparasitic overgrowth and, in the case of Δtsc1, a diminished production of numerous secondary metabolites. Deletion of the gene encoding the GTPase RHE2, whose mammalian orthologue activates mTORC1, led to rapamycin hypersensitivity and altered secondary metabolism, but had an only minor effect on vegetative growth and mycoparasitic overgrowth. The latter also applied to mutants missing the npr1-1 gene that encodes a fungus-specific kinase known as TOR target in yeast. Genome-wide transcriptome analysis confirmed TOR1 as a regulatory hub that governs T. atroviride metabolism and processes associated to ribosome biogenesis, gene expression and translation. In addition, mycoparasitism-relevant genes encoding terpenoid and polyketide synthases, peptidases, glycoside hydrolases, small secreted cysteine-rich proteins, and G protein coupled receptors emerged as TOR1 targets. Our results provide the first in-depth insights into TOR signaling in a fungal mycoparasite and emphasize its importance in the regulation of processes that critically contribute to the antagonistic activity of T. atroviride.


Assuntos
Regulação Fúngica da Expressão Gênica , Hypocreales/metabolismo , Nitrogênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Parede Celular/metabolismo , Bases de Dados Genéticas , Proteínas Fúngicas/genética , Deleção de Genes , Teste de Complementação Genética , Genoma Fúngico , Estudo de Associação Genômica Ampla , Peso Molecular , Mutação , Fenótipo , Fosforilação , Doenças das Plantas/microbiologia , Policetídeo Sintases/metabolismo , Proteína S6 Ribossômica/química , Análise de Sequência de RNA , Transdução de Sinais , Sirolimo/farmacologia , Terpenos/química , Transcriptoma
19.
Cells ; 10(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34831193

RESUMO

Although glioblastoma (GBM) stem-like cells (GSCs), which retain chemo-radio resistance and recurrence, are key prognostic factors in GBM patients, the molecular mechanisms of GSC development are largely unknown. Recently, several studies revealed that extrinsic ribosome incorporation into somatic cells resulted in stem cell properties and served as a key trigger and factor for the cell reprogramming process. In this study, we aimed to investigate the mechanisms underlying GSCs development by focusing on extrinsic ribosome incorporation into GBM cells. Ribosome-induced cancer cell spheroid (RICCS) formation was significantly upregulated by ribosome incorporation. RICCS showed the stem-like cell characters (number of cell spheroid, stem cell markers, and ability for trans differentiation towards adipocytes and osteocytes). In RICCS, the phosphorylation and protein expression of ribosomal protein S6 (RPS6), an intrinsic ribosomal protein, and STAT3 phosphorylation were upregulated, and involved in the regulation of cell spheroid formation. Consistent with those results, glioma-derived extrinsic ribosome also promoted GBM-RICCS formation through intrinsic RPS6 phosphorylation. Moreover, in glioma patients, RPS6 phosphorylation was dominantly observed in high-grade glioma tissues, and predominantly upregulated in GSCs niches, such as the perinecrosis niche and perivascular niche. Those results indicate the potential biological and clinical significance of extrinsic ribosomal proteins in GSC development.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Células-Tronco Neoplásicas/patologia , Ribossomos/metabolismo , Linhagem Celular Tumoral , Humanos , Fosforilação , Células Procarióticas/metabolismo , Proteína S6 Ribossômica/metabolismo , Esferoides Celulares/patologia
20.
Nutrients ; 13(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34836240

RESUMO

The primary objective of this study was to investigate the potential synergy between low doses of L-carnitine tartrate and creatine monohydrate to induce muscle protein synthesis and anabolic pathway activation in primary human myoblasts. In addition, the effects of Lipid multi-particulates (LMP) formulation on creatine stability and bioavailability were assessed in rodents and healthy human subjects. When used individually, L-carnitine tartrate at 50 µM and creatine monohydrate at 0.5 µM did not affect myoblast protein synthesis and signaling. However, when combined, they led to a significant increase in protein synthesis. Increased AKT and RPS6 phosphorylation were observed with 50 µM L-carnitine tartrate 5 µM creatine in combination in primary human myoblasts. When Wistar rats were administered creatine with LMP formulation at either 21 or 51 mg/kg, bioavailability was increased by 27% based on the increase in the area under the curve (AUC) at a 51 mg/kg dose compared to without LMP formulation. Tmax and Cmax were unchanged. Finally, in human subjects, a combination of LMP formulated L-carnitine at 500 mg (from L-carnitine tartrate) with LMP formulated creatine at 100, 200, or 500 mg revealed a significant and dose-dependent increase in plasma creatine concentrations. Serum total L-carnitine levels rose in a similar manner in the three combinations. These results suggest that a combination of low doses of L-carnitine tartrate and creatine monohydrate may lead to a significant and synergistic enhancement of muscle protein synthesis and activation of anabolic signaling. In addition, the LMP formulation of creatine improved its bioavailability. L-carnitine at 500 mg and LMP-formulated creatine at 200 or 500 mg may be useful for future clinical trials to evaluate the effects on muscle protein synthesis.


Assuntos
Carnitina/farmacologia , Creatina/farmacologia , Lipídeos/química , Proteínas Musculares/biossíntese , Mioblastos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Adolescente , Adulto , Animais , Disponibilidade Biológica , Células Cultivadas , Creatina/farmacocinética , Feminino , Humanos , Masculino , Mioblastos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Proteína S6 Ribossômica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA