Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Genome Biol Evol ; 16(7)2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38752399

RESUMO

Alternative splicing is the process of generating different mRNAs from the same primary transcript, which contributes to increase the transcriptome and proteome diversity. Abnormal splicing has been associated with the development of several diseases including cancer. Given that mutations and abnormal levels of the RIPK2 transcript and RIP-2 protein are frequent in tumors, and that RIP-2 modulates immune and inflammatory responses, we investigated alternative splicing events that result in partial deletions of the kinase domain at the N-terminus of RIP-2. We also investigated the structure and expression of the RIPK2 truncated variants and isoforms in different environments. In addition, we searched data throughout Supraprimates evolution that could support the biological importance of RIPK2 alternatively spliced products. We observed that human variants and isoforms were differentially regulated following temperature stress, and that the truncated transcript was more expressed than the long transcript in tumor samples. The inverse was found for the longer protein isoform. The truncated variant was also detected in chimpanzee, gorilla, hare, pika, mouse, rat, and tree shrew. The fact that the same variant has been preserved in mammals with divergence times up to 70 million years raises the hypothesis that it may have a functional significance.


Assuntos
Processamento Alternativo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Animais , Humanos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Evolução Molecular , Isoformas de Proteínas/genética , Camundongos , Neoplasias/genética , Ratos
2.
FEBS J ; 290(22): 5295-5312, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37488967

RESUMO

The human Nod-like receptor protein NOD1 is a well-described pattern-recognition receptor (PRR) with diverse functions. NOD1 associates with F-actin and its protein levels are upregulated in metastatic cancer cells. A hallmark of cancer cells is their ability to migrate, which involves actin remodelling. Using chemotaxis and wound healing assays, we show that NOD1 expression correlated with the migration rate and chemotactic index in the cervical carcinoma cell line HeLa. The effect of NOD1 in cell migration was independent of the downstream kinase RIPK2 and NF-ĸB activity. Additionally, NOD1 negatively regulated the phosphorylation status of cofilin, which inhibits actin turnover. Co-immunoprecipitation assays identified HCLS1-associated protein X-1 (HAX-1) as a previously unknown interaction partner of NOD1. Silencing of HAX-1 expression reduced the migration behaviour to similar levels as NOD1 knockdown, and simultaneous knockdown of NOD1 and HAX-1 showed no additive effect, suggesting that both proteins act in the same pathway. In conclusion, our data revealed an important role of the PRR NOD1 in regulating cell migration as well as chemotaxis in human cervical cancer cells and identified HAX-1 as a protein that interacts with NOD1 and is involved in this signalling pathway.


Assuntos
Actinas , NF-kappa B , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Actinas/metabolismo , Transdução de Sinais , Movimento Celular , Células HeLa , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo
3.
Exp Cell Res ; 429(1): 113644, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211186

RESUMO

Colon cancer is a cancer with high morbidity and mortality worldwide. Receptor interacting serine/threonine kinase 2 (RIPK2) has been identified as a proto-oncogene, but its role in colon cancer is largely unknown. Herein, we found that RIPK2 interference could inhibit the proliferation and invasion of colon cancer cells, and promote apoptosis. Baculoviral IAP repeat containing 3 (BIRC3) is an E3 ubiquitin ligase, which was found highly expressed in colon cancer cells. Co-immunoprecipitation (Co-IP) experiments showed that RIPK2 could directly bind with BIRC3. Then, we demonstrated that RIPK2 overexpression promoted the expression of BIRC3, BIRC3 interference could eliminate RIPK2-dependent cell proliferation and invasion, and BIRC3 overexpression rescued the suppressive effect of RIPK2 interference on cell proliferation and invasion. We further identified IKBKG, an inhibitor of nuclear factor kappa B, as a ubiquitination substrate targeted by BIRC3. IKBKG interference could eliminate the inhibitory effect of BIRC3 interference on cell invasion. RIPK2 could promote BIRC3-mediated ubiquitination of IKBKG, inhibit the expression of IKBKG protein, and promote the expression of NF-κB subunits p50 and p65 proteins. In addition, DLD-1 cells transfected with sh-RIPK2 or/and sh-BIRC3 were injected into mice to establish a tumor xenograft model, and we found that administration of sh-RIPK2 or sh-BIRC3 impeded the growth of xenograft tumors in vivo, and co-administration displayed a better inhibitory effect. In general, RIPK2 promotes the progression of colon cancer by promoting BIRC3-mediated ubiquitination of IKBKG and activating the NF-κB signaling pathway.


Assuntos
Neoplasias do Colo , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Ubiquitinação , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias do Colo/genética , Proteína 3 com Repetições IAP de Baculovírus/genética , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo
4.
Mol Med ; 29(1): 47, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016317

RESUMO

BACKGROUND: Protein kinases play a pivotal role in the malignant evolution of pancreatic cancer (PC) through mediating phosphorylation. Many kinase inhibitors have been developed and translated into clinical use, while the complex pathology of PC confounds their clinical efficacy and warrants the discovery of more effective therapeutic targets. METHODS: Here, we used the Gene Expression Omnibus (GEO) database and protein kinase datasets to map the PC-related protein kinase-encoding genes. Then, applying Gene Expression and Profiling Interactive Analysis (GEPIA), GEO and Human Protein Atlas, we evaluated gene correlation, gene expression at protein and mRNA levels, as well as survival significance. In addition, we performed protein kinase RIPK2 knockout and overexpression to observe effects of its expression on PC cell proliferation, migration and invasion in vitro, as well as cell apoptosis, reactive oxygen species (ROS) production and autophagy. We established PC subcutaneous xenograft and liver metastasis models to investigate the effects of RIPK2 knockout on PC growth and metastasis. Co-immunoprecipitation and immunofluorescence were utilized to explore the interaction between protein kinases RIPK2 and PRKCI. Polymerase chain reaction and immunoblotting were used to evaluate gene expression and protein phosphorylation level. RESULTS: We found fourteen kinases aberrantly expressed in human PC and nine kinases with prognosis significance. Among them, RIPK2 with both serine/threonine and tyrosine activities were validated to promote PC cells proliferation, migration and invasion. RIPK2 knockout could inhibit subcutaneous tumor growth and liver metastasis of PC. In addition, RIPK2 knockout suppressed autophagosome formation, increased ROS production and PC cell apoptosis. Importantly, another oncogenic kinase PRKCI could interact with RIPK2 to enhance the phosphorylation of downstream NF-κB, JNK and ERK. CONCLUSION: Paired protein kinases PRKCI-RIPK2 with multiple phosphorylation activities represent a new pathological mechanism in PC and could provide potential targets for PC therapy.


Assuntos
Neoplasias Hepáticas , Neoplasias Pancreáticas , Proteína Quinase C , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Humanos , Linhagem Celular Tumoral , Neoplasias Hepáticas/secundário , NF-kappa B/metabolismo , Neoplasias Pancreáticas/patologia , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Quinase C/genética , Animais , Neoplasias Pancreáticas
5.
CNS Neurosci Ther ; 28(12): 2319-2330, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36184801

RESUMO

AIMS: We aimed to investigate the role of receptor-interacting protein 2 (RIP2) in regulation of stemness of glioma cells and chemotherapy resistance. METHODS: Plasmid transfection was used to overexpress RIP2. Chemical inhibitors were used to inhibit RIP2 or NF-κB activity. Cancer stemness of glioma cells was investigated by sphere formation assays, clone formation assays, and xenograft tumor formation assays. The expression of RIP2, p-NF-κB, IκBα, CD133, or SOX-2 was detected by Western blotting and immunofluorescence. Apoptosis was detected by flow cytometry. Immunohistochemical staining was used to detect the expression of RIP2, CD133, and SOX-2 in xenograft tumor tissue. The effect of the RIP2/NF-κB pathway on temozolomide (TMZ) resistance was evaluated by xenograft tumor assay. RESULTS: Transfection with RIP2 plasmid enhanced the sphere formation capability of U251 cells, clone formation capability, and xenograft tumor formation capability. RIP2 could mediate TMZ resistance by upregulating the expression of CD133 and SOX-2 by activating the NF-κB pathway. Both RIP2 inhibitor GSK583 and the NF-κB inhibitor SC75741 could reverse the resistance of U251 cells to TMZ. CONCLUSION: RIP2 mediates TMZ resistance by regulating the maintenance of stemness in glioma cells through NF-κB. Interventions targeting the RIP2/NF-κB pathway may be a new strategy for TMZ-resistant gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Células-Tronco Neoplásicas , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Humanos , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Glioma/metabolismo , NF-kappa B/metabolismo , Temozolomida/uso terapêutico , Animais , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética
6.
Mol Med ; 28(1): 47, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508972

RESUMO

BACKGROUND: Receptor-interacting protein kinase 2 (RIPK2, also known as RIP2) was reported to be associated with bacterial infections as well as inflammatory responses. However, the role of RIPK2 in prognosis and immunotherapy response is yet to be elucidated in human pan-cancer. METHODS: In this study, we investigated the expression, gene alteration landscape and prognostic value of RIPK2 in 33 cancers through various databases including Ualcan, cBioportal and Gene Expression Profiling Interactive Analysis 2 (GEPIA2). Then, the correlation between RIPK2 and immune infiltration, immune score, stromal score, and ESTIMATE score was investigated in the Cancer Genome Atlas (TCGA) and tumor immune estimation resource (TIMER) databases. Independent cohorts were utilized to explore the role of RIPK2 in tumor immunotherapy response. Furthermore, Gene set enrichment analysis (GSEA) was conducted to explore the mechanisms by which RIPK2 regulates immune therapy resistance. Single-cell RNA-seq datasets were used to analyze the expression level of RIPK2 on different immune cells. Moreover, CellMiner database was used to explore the relationship between RIPK2 expression with drug response. RESULT: Compared with normal tissue, tumor tissue had a higher expression level of RIPK2 in various cancers. Survival analysis showed that high expression of RIPK2 associated with poor prognosis in numerous cancers. RIPK2 was found to promote a series of immune cell infiltration and B cells, macrophages, and neutrophils were significantly positively correlated with the expression of RIPK2. Moreover, RIPK2 affected immune score, stromal score and ESTIMATE score for a wide range of cancers. In the vast majority of 33 cancers, gene co-expression analysis showed that RIPK2 was positively correlated with the expression of immune checkpoint markers, such as PDCD1 (PD-1), CD274 (PD-L1), CTLA4 and TIGIT. RIPK2 aggravated cytotoxic T lymphocyte (CTL) dysfunction and related to the poor efficacy of immune checkpoint blockade in skin cutaneous melanoma (SKCM) and kidney renal clear cell carcinoma (KIRC). High expression of RIPK2 promoted innate immunotherapy resistance and adaptive immunotherapy resistance through IL-6/JAK/STAT3 signaling, interferon-gamma response, and interferon-alpha response pathway. CONCLUSIONS: These results confirmed that RIPK2 could serve as a prognostic biomarker and promoted immune therapy resistance via triggering cytotoxic T lymphocytes dysfunction.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Melanoma , Neoplasias Cutâneas , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Feminino , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/patologia , Melanoma Maligno Cutâneo
7.
BMC Med Genomics ; 15(1): 97, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473583

RESUMO

BACKGROUND: To explore the expression and carcinogenic mechanism of RIPK2 in human tumours, and to provide the theoretical basis for the further study of RIPK2. METHODS: We used the TCGA, CPTAC, HPA databases to analyse the expression, mutation, and prognosis of RIPK2 in human tumours. Through the Cbioportal, Ualcan, TIMER2.0, and STRING websites, We understand the genetic variation, immune infiltration and enrichment analysis of RIPK2 related genes. RESULTS: RIPK2 was highly expressed in most tumours (such as BRCA, COAD and LUSC, etc.), and the high expression of RIPK2 was correlated with tumour stage and prognosis. In addition, Amplification was the main type of RIPK2 in tumour mutation state, and the amplification rate was about 8.5%. In addition, RIPK2 was positively associated with tumour-infiltrating immune cells (such as CD8+ T, Tregs, and cancer-associated fibroblasts). According to the KEGG analysis, RIPK2 may play a role in tumour mainly through NOD-like signaling pathway and NF-kappaB signaling pathway. GO enrichment analysis showed that the RIPK2 is mainly related to I-kappaB kinase/NF-kappaB signaling, Ribonucleoprotein granule and Ubiquitin-like protein ligase binding. CONCLUSION: RIPK2 plays an important role in the occurrence, development and prognosis of malignant tumours. Our pancancer study provided a relatively comprehensive description of the carcinogenic effects of RIPK2 in different tumours, and provided useful information for further study of RIPK2.


Assuntos
Carcinógenos , Neoplasias , Carcinogênese , Humanos , NF-kappa B/genética , Neoplasias/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Serina , Treonina
8.
J Ovarian Res ; 15(1): 48, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477477

RESUMO

BACKGROUND: Taxol resistance in serous ovarian cancer is responsible for its poor prognosis, yet the underlying mechanism is still poorly understood. Thus, we probed the mechanism of Taxol resistance in serous ovarian cancer with multiple bioinformatic methods to provide novel insights into potential therapies. METHODS: The differentially expressed genes (DEGs) in Taxol-sensitive and Taxol-resistant cell lines and their relationship with the overall survival (OS) and progression-free interval (PFI) of ovarian cancer patients were analyzed using gene expression datasets from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The role of receptor interacting serine/threonine kinase 2 (RIPK2) was validated via identification of its coexpressed genes, functional analysis and generation of a protein-protein interaction (PPI) network. The single sample gene set enrichment analysis (ssGSEA) was used to explore immune infiltration, and genomic alterations of RIPK2 were also analyzed via cBio Cancer Genomics Portal (cBioProtal). RESULTS: RIPK2 was highly expressed in Taxol resistant ovarian cancer cell lines, and its high expression was also linked with shorter OS and PFI in serous ovarian cancer patients. The PPI network analysis and pathway analysis demonstrated that RIPK2 might participate in the positive regulation of NF-κB transcription factor activity. RIPK2 expression was related to tumor microenvironment alterations, which might participate in the formation of Taxol resistance. CONCLUSIONS: Our studies suggested that high expression of RIPK2 is related to Taxol resistance in serous ovarian cancer, and that RIPK2 induces Taxol resistance through NOD1/RIPK2/NF-κB inflammatory pathway activation and tumor microenvironment changes.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Feminino , Humanos , NF-kappa B/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Microambiente Tumoral/genética
9.
Nat Commun ; 13(1): 669, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115556

RESUMO

Despite progress in prostate cancer (PC) therapeutics, distant metastasis remains a major cause of morbidity and mortality from PC. Thus, there is growing recognition that preventing or delaying PC metastasis holds great potential for substantially improving patient outcomes. Here we show receptor-interacting protein kinase 2 (RIPK2) is a clinically actionable target for inhibiting PC metastasis. RIPK2 is amplified/gained in ~65% of lethal metastatic castration-resistant PC. Its overexpression is associated with disease progression and poor prognosis, and its genetic knockout substantially reduces PC metastasis. Multi-level proteomics analyses reveal that RIPK2 strongly regulates the stability and activity of c-Myc (a driver of metastasis), largely via binding to and activating mitogen-activated protein kinase kinase 7 (MKK7), which we identify as a direct c-Myc-S62 kinase. RIPK2 inhibition by preclinical and clinical drugs inactivates the noncanonical RIPK2/MKK7/c-Myc pathway and effectively impairs PC metastatic outgrowth. These results support targeting RIPK2 signaling to extend metastasis-free and overall survival.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Imidazóis/farmacologia , Estimativa de Kaplan-Meier , Masculino , Camundongos SCID , Metástase Neoplásica , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridazinas/farmacologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
10.
Am J Hypertens ; 35(5): 454-461, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35099539

RESUMO

BACKGROUND: RIP2 is an adaptor protein contributing to the activation of nuclear factor-κB induced by TNF receptor-associated factor (TRAF) and nucleotide oligomerization domain (NOD)-dependent signaling implicated in innate and adaptive immune response. Beyond regulation of immunity, we aimed to elucidate the role of RIP2 in vascular smooth muscle cell (VSMC) phenotypic modulation. METHODS AND RESULTS: In the current study, we observed that RIP2 showed an increased expression in VSMCs with PDGF-BB stimulation in a dose-dependent manner. Knockdown of RIP2 expression mediated by adenovirus dramatically accelerated the expression of VSMC-specific differentiation genes induced by PDGF-BB. Silencing of RIP2 inhibited proliferative and migratory ability of VSMCs. Additionally, we demonstrated that RIP2 knockdown can promoted myocardin expression. Furthermore, RIP2 inhibition also can attenuate the formation of intimal hyperplasia. CONCLUSIONS: These findings suggested that RIP2 played an important role in regulation of VSMCs differentiation, migration, and proliferation that may due to affect myocardin expression. Our results indicated that RIP2 may be a novel therapeutic target for intimal hyperplasia.


Assuntos
Miócitos de Músculo Liso , Proteínas Nucleares , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Transativadores , Becaplermina/metabolismo , Becaplermina/farmacologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Transativadores/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 321(5): G500-G512, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494462

RESUMO

Mouse and human data implicate the NOD1 and NOD2 sensors of the intestinal microbiome and the associated signal transduction via the receptor interacting protein kinase 2 (RIPK2) as a potential key signaling node for the development of inflammatory bowel disease (IBD) and an attractive target for pharmacological intervention. The TRUC mouse model of IBD was strongly indicated for evaluating RIPK2 antagonism for its effect on intestinal inflammation based on previous knockout studies with NOD1, NOD2, and RIPK2. We identified and profiled the BI 706039 molecule as a potent and specific functional inhibitor of both human and mouse RIPK2 and with favorable pharmacokinetic properties. We dosed BI 706039 in the spontaneous TRUC mouse model from age 28 to 56 days. Oral, daily administration of BI 706039 caused dose-responsive and significant improvement in colonic histopathological inflammation, colon weight, and terminal levels of protein-normalized fecal lipocalin (all P values <0.001). These observations correlated with dose responsively increasing systemic levels of the BI 706039 compound, splenic molecular target engagement of RIPK2, and modulation of inflammatory genes in the colon. This demonstrates that a relatively low oral dose of a potent and selective RIPK2 inhibitor can modulate signaling in the intestinal immune system and significantly improve disease associated intestinal inflammation.NEW & NOTEWORTHY The RIPK2 kinase at the apex of microbiome immunosensing is an attractive target for pharmacological intervention. A low oral dose of a RIPK2 inhibitor leads to significantly improved intestinal inflammation in the murine TRUC model of colitis. A selective and potent inhibitor of the RIPK2 kinase may represent a new class of therapeutics that target microbiome-driven signaling for the treatment of IBD.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Colo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Animais , Disponibilidade Biológica , Células Cultivadas , Colite Ulcerativa/enzimologia , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Colo/enzimologia , Colo/patologia , Doença de Crohn/enzimologia , Doença de Crohn/patologia , Citocinas/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Fezes/química , Humanos , Mediadores da Inflamação/metabolismo , Lipocalinas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Knockout , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Proteínas com Domínio T/genética
12.
Medicina (Kaunas) ; 57(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34356990

RESUMO

Background and objectives: Receptor-interacting serine/threonine-protein kinase-2 (RIPK2) is an important mediator in different pathways in the immune and inflammatory response system. RIPK2 was also shown to play different roles in different cancer types; however, in colorectal cancer (CRC), its role is not well established. This study aims at identifying the role of RIPK2 in CRC progression and survival. Materials and methods: Data of patients and mRNA protein expression level of genes associated with CRC (RIPK2, tumor necrosis factor (TNF), TRAF1, TRAF7, KLF6, interlukin-6 (Il6), interlukin-8 (Il8), vascular-endothelial growth factor A (VEGFA), MKI67, TP53, nuclear factor-kappa B (NFKB), NFKB2, BCL2, XIAP, and RELA) were downloaded from the PrognoScan online public database. Patients were divided between low and high RIPK2 expression and different CRC characteristics were studied between the two groups. Survival curves were evaluated using a Kaplan-Meier estimator. The Pearson correlation was used to study the correlation between RIPK2 and the other factors. Statistical analysis was carried out using SPSS version 25.0. The Human Protein Atlas was also used for the relationship between RIPK2 expression in CRC tissues and survival. Differences were considered statistically significant at p < 0.05. Results: A total of 520 patients were downloaded from the PrognoScan database, and RIPK2 was found to correlate with MKI67, TRAF1, KLF6, TNF, Il6, Il8, VEGFA, NFKB2, BCL2, and RELA. High expression of RIPK2 was associated with high expression of VEGFA (p < 0.01) and increased mortality (p < 0.01). Conclusions: In this study, RIPK2 is shown to be a potential prognostic factor in CRC; however, more studies are needed to assess and verify its potential role as a prognostic marker and in targeted therapy.


Assuntos
Neoplasias Colorretais , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Neoplasias Colorretais/genética , Humanos , Prognóstico , Fator A de Crescimento do Endotélio Vascular
13.
Nat Commun ; 12(1): 2419, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893298

RESUMO

Chronic inflammation can drive tumor development. Here, we have identified microRNA-146a (miR-146a) as a major negative regulator of colonic inflammation and associated tumorigenesis by modulating IL-17 responses. MiR-146a-deficient mice are susceptible to both colitis-associated and sporadic colorectal cancer (CRC), presenting with enhanced tumorigenic IL-17 signaling. Within myeloid cells, miR-146a targets RIPK2, a NOD2 signaling intermediate, to limit myeloid cell-derived IL-17-inducing cytokines and restrict colonic IL-17. Accordingly, myeloid-specific miR-146a deletion promotes CRC. Moreover, within intestinal epithelial cells (IECs), miR-146a targets TRAF6, an IL-17R signaling intermediate, to restrict IEC responsiveness to IL-17. MiR-146a within IECs further suppresses CRC by targeting PTGES2, a PGE2 synthesis enzyme. IEC-specific miR-146a deletion therefore promotes CRC. Importantly, preclinical administration of miR-146a mimic, or small molecule inhibition of the miR-146a targets, TRAF6 and RIPK2, ameliorates colonic inflammation and CRC. MiR-146a overexpression or miR-146a target inhibition represent therapeutic approaches that limit pathways converging on tumorigenic IL-17 signaling in CRC.


Assuntos
Carcinogênese/genética , Neoplasias Colorretais/genética , Inflamação/genética , MicroRNAs/genética , Animais , Células Cultivadas , Colite/genética , Colite/metabolismo , Colite/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Transdução de Sinais/genética , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo
14.
Am J Reprod Immunol ; 86(1): e13403, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33580557

RESUMO

PROBLEM: Chorioamnionitis is caused by a bacterial infection that ascends from the vagina and can cause adverse pregnancy outcomes (APOs). Fusobacterium nucleatum (F. nucleatum) is a periodontal pathogen associated with the occurrence of APOs. In this study, we evaluated whether receptor-interacting protein kinase 2 (Ripk2), an adaptor protein of the cytosolic receptors nucleotide-binding oligomerization domain (NOD)1 and NOD2, in macrophages and human decidual stromal cells (hDSCs) contributes to immune responses against F. nucleatum. METHOD OF STUDY: Bone marrow-derived macrophages (BMDMs) isolated from wild-type (WT) and Ripk2-deficient mice and hDSCs were cultured with F. nucleatum (MOI 1, 10, 100). BMDMs and hDSCs were assessed using enzyme-linked immunosorbent assay, Western blot analysis, real-time PCR, and nitrite assay. RESULTS: Fusobacterium nucleatum-induced production of IL-6, but not of TNF-α and IL-10, was lower in Ripk2-deficient BMDMs than in WT cells. Western blotting revealed a decrease in F. nucleatum-induced p65 phosphorylation in Ripk2-deficient macrophages, whereas mitogen-activated protein kinases activation was comparable between WT and Ripk2-deficient cells. The production of nitric oxide (NO) in response to F. nucleatum and the gene and protein expression of inducible NO synthase was impaired in Ripk2-deficient BMDMs. In hDSCs, F. nucleatum upregulated the gene and protein expression of NOD1, NOD2, and Ripk2 in a time-dependent manner. F. nucleatum also increased the production of IL-6, CXCL8, and CCL2, whereas this production was decreased by the Ripk2 inhibitors SB203580 and PP2. CONCLUSIONS: In conclusion, Ripk2 signaling appears to contribute to the F. nucleatum-induced immune response and can be a preventive and therapeutic target against APOs.


Assuntos
Decídua/patologia , Infecções por Fusobacterium/imunologia , Fusobacterium nucleatum/fisiologia , Macrófagos/imunologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Células Estromais/imunologia , Receptor 4 Toll-Like/metabolismo , Animais , Células Cultivadas , Feminino , Interações Hospedeiro-Patógeno , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Receptor 4 Toll-Like/genética
15.
CNS Neurosci Ther ; 27(5): 552-563, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33460245

RESUMO

BACKGROUND: Temozolomide (TMZ) is a first-line chemotherapy drug for the treatment of malignant glioma and resistance to it poses a major challenge. Receptor-interacting protein 2 (RIP2) is associated with the malignant character of cancer cells. However, it remains unclear whether RIP2 is involved in TMZ resistance in glioma. METHODS: RIP2 expression was inhibited in TMZ-resistant glioma cells and normal glioma cells by using small interfering RNA (siRNA) against RIP2. Plasmid transfection method was used to overexpress RIP2. Cell counting kit-8 assays were performed to evaluate cell viability. Western blotting or immunofluorescence was performed to determine RIP2, NF-κB, and MGMT expression in cells. Flow cytometry was used to investigate cell apoptosis. TMZ-resistant glioma xenograft models were established to evaluate the role of the RIP2/NF-κB/MGMT signaling pathway in drug resistance. RESULTS: We observed that RIP2 expression was upregulated in TMZ-resistant glioma cells, whereas silencing of RIP2 expression enhanced cellular sensitivity to TMZ. Similarly, upon the induction of RIP2 overexpression, glioma cells developed resistance to TMZ. The molecular mechanism underlying the process indicated that RIP2 can activate the NF-κB signaling pathway and upregulate the expression of O6-methylguanine-DNA methyltransferase (MGMT), following which the glioma cells develop drug resistance. In the TMZ-resistant glioma xenograft model, treatment with JSH-23 (an NF-κB inhibitor) and lomeguatrib (an MGMT inhibitor) could enhance the sensitivity of the transplanted tumor to TMZ. CONCLUSION: We report that the RIP2/NF-κB/MGMT signaling pathway is involved in the regulation of TMZ resistance. Interference with NF-κB or MGMT activity could constitute a novel strategy for the treatment of RIP2-positive TMZ-resistant glioma.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Metilases de Modificação do DNA/efeitos dos fármacos , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glioma/tratamento farmacológico , NF-kappa B/efeitos dos fármacos , NF-kappa B/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/efeitos dos fármacos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Transdução de Sinais/efeitos dos fármacos , Temozolomida/farmacologia , Proteínas Supressoras de Tumor/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Crohns Colitis ; 15(8): 1291-1304, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-33460440

RESUMO

BACKGROUND AND AIMS: Mutations in XIAP can lead to the development of treatment-refractory severe paediatric Crohn's disease [CD], for which haematopoietic stem cell transplantation is the primary therapeutic option. The interpretation of variants of uncertain significance [VUSs] in XIAP needs to be scrutinized. METHODS: Targeted next-generation sequencing was performed for 33 male paediatric patients with refractory CD admitted at a tertiary referral hospital. To obtain functional data, biomolecular cell assays and supercomputing molecular dynamics simulations were performed. RESULTS: Nine unrelated male patients harboured hemizygous XIAP variants. Four known pathogenic variants and one novel pathogenic variant [p.Lys168Serfs*12] were identified in five patients, and two novel VUSs [p.Gly205del and p.Pro260Ser] and one known VUS [p.Glu350del] were identified in the remaining four. Among children with VUSs, only the subject with p.Gly205del exhibited defective NOD2 signalling. Using molecular dynamics simulation, we determined that the altered backbone torsional energy of C203 in XIAP of p.G205del was ~2 kcal/mol, suggesting loss of zinc binding in the mutant XIAP protein and poor coordination between the mutant XIAP and RIP2 proteins. Elevated auto-ubiquitination of zinc-depleted p.G205del XIAP protein resulted in XIAP protein deficiency. CONCLUSION: A high prevalence of XIAP deficiency was noted among children with refractory CD. Advanced functional studies decreased the subjectivity in the case-level interpretation of XIAP VUSs and directed consideration of haematopoietic stem cell transplantation.


Assuntos
Doença de Crohn/genética , Mutação , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Povo Asiático , Criança , Hemizigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , República da Coreia , Transdução de Sinais , Falha de Tratamento
17.
J Hematol Oncol ; 14(1): 9, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413510

RESUMO

BACKGROUND: Key hepatic molecules linking gut dysbiosis and hepatocarcinogenesis remain largely unknown. Gut-derived gut microbiota contains pathogen-associated molecular patterns (PAMPs) that may circulate into the liver and, consequently, be recognized by hepatic pattern recognition receptors (PRRs). NOD2, a general intracellular PRR, recognizes muramyl dipeptide (MDP), present in both gram (+) and gram (-) bacteria. Here, we investigated the role of NOD2 as a molecular sensor translating gut dysbiosis signaling into hepatocarcinogenesis. METHODS: NOD2 expression was measured in clinical hepatocellular carcinoma (HCC) samples using qPCR (80 pairs), western blotting (30 pairs) and immunostaining (141 pairs). The role of NOD2 in hepatocarcinogenesis was examined in the hepatocyte-specific Nod2-knockout (Nod2△hep), Rip2-knockout (Rip2△hep), Lamin A/C-knockout (Lamn△hep) and Rip2/Lamin A/C double-knockout (Rip2/Lamn△hep) mice models of diethylnitrosamine (DEN)/CCl4-induced HCC. RESULTS: NOD2 was upregulated and activated in HCC samples, and high NOD2 expression correlated with poor prognosis in HCC patients. Hepatic NOD2 deletion in vivo decreased DEN/CCl4-induced HCC by reducing the inflammatory response, DNA damage and genomic instability. NOD2 activation increased liver inflammation via RIP2-dependent activation of the MAPK, NF-κB and STAT3 pathways. Notably, a novel RIP2-independent mechanism was discovered, whereby NOD2 activation induces the nuclear autophagy pathway. We showed that NOD2 undergoes nuclear transport and directly binds to a component of nuclear laminae, lamin A/C, to promote its protein degradation, leading to impaired DNA damage repair and increased genomic instability. CONCLUSIONS: We reveal a novel bridge, bacterial sensor NOD2, linking gut-derived microbial metabolites to hepatocarcinogenesis via induction of the inflammatory response and nuclear autophagy. Thus, we propose hepatic NOD2 as a promising therapeutic target against HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Animais , Autofagia , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética
18.
Genomics ; 113(1 Pt 2): 767-777, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069830

RESUMO

Treatment for lower-grade gliomas (LGG) has been challenging. Though emerging approaches such as immunotherapy is promising, it is still faced with immune tolerance, an obstacle that may be overcome by targeting autophagy-related (ATG) genes. After identifying three differentially expressed ATG genes (RIPK2, MUL1 and CXCR4), we constructed an ATG gene risk signature by Kaplan-Meier, univariate Cox regression, least absolute shrinkage and selection operator regression and multivariate Cox regression, followed by internal and external validation using K-M and ROC analysis. Since gene set enrichment analysis (GSEA) suggested that the signature was strongly associated with immune cell functions, CIBERSORT, LM22 matrix and Pearson correlation were further performed, showing that the risk signature was significantly correlated with immune cell infiltration and immune checkpoint genes. In conclusion, we identified and independently validated an ATG gene risk signature for LGG patients, as well as discovering its significant association with LGG immune microenvironment.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Glioma/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Receptores CXCR4/genética , Microambiente Tumoral/imunologia , Ubiquitina-Proteína Ligases/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Autofagia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Feminino , Glioma/metabolismo , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Receptores CXCR4/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
19.
Biomed Res Int ; 2020: 8537381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204717

RESUMO

Pancreatic ductal adenocarcinoma is a common malignant tumor with a poor prognosis. Autophagy activity changes in both cancer cells and microenvironment and affects the progression of pancreatic ductal adenocarcinoma. The purpose of this study was to predict the prognostic autophagy regulatory genes and their role in the regulation of autophagy in pancreatic ductal adenocarcinoma. We draw conclusions based on gene expression data from different platforms: GSE62165 and GSE85916 from the array platform, TCGA from the bulk RNA-seq platform, and GSE111672 from the single-cell RNA-seq platform. At first, we detected differentially expressed genes in pancreatic ductal adenocarcinoma compared with normal pancreatic tissue based on GSE62165. Then, we screened prognostic genes based on GSE85916 and TCGA. Furthermore, we constructed a risk signature composed of the prognostic differentially expressed genes. Finally, we predicted the probable role of these genes in regulating autophagy and the types of cell expressing these genes. According to our screening criteria, there were only two genes: MET and RIPK2, selected into the development of the risk signature. However, evaluated by log-rank tests, receiver operating characteristic curves, and calibration curves, the risk signature was worth considering its clinical application because of good sensitivity, specificity, and stability. Besides, we predicted that both MET and RIPK2 promote autophagy in pancreatic ductal adenocarcinoma by gene set enrichment analysis. Analysis of single-cell RNA-seq data from GSE111672 revealed that both MET and RIPK2 were expressed in cancer cells while RIPK2 was also expressed in monocytes and neutrophils. After comprehensive analysis, we found that both MET and RIPK2 are related to the prognosis of pancreatic ductal adenocarcinoma and provided some associated clues for clinical application and basic experiment research.


Assuntos
Autofagia/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Reprodutibilidade dos Testes
20.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32295905

RESUMO

We demonstrate that female C57BL/6J mice are susceptible to a transient lower genital tract infection with MmuPV1 mouse papillomavirus and display focal histopathological abnormalities resembling those of human papillomavirus (HPV) infection. We took advantage of strains of genetically deficient mice to study in vivo the role of innate immune signaling in the control of papillomavirus. At 4 months, we sacrificed MmuPV1-infected mice and measured viral 757/3139 spliced transcripts by TaqMan reverse transcription-PCR (RT-PCR), localization of infection by RNAscope in situ hybridization, and histopathological abnormities by hematoxylin and eosin (H&E) staining. Among mice deficient in receptors for pathogen-associated molecular patterns, MyD88-/- and STING-/- mice had 1,350 and 80 copies of spliced transcripts/µg RNA, respectively, while no viral expression was detected in MAVS-/- and Ripk2-/- mice. Mice deficient in an adaptor molecule, STAT1-/-, for interferon signaling had 46,000 copies/µg RNA. Among mice with targeted deficiencies in the inflammatory response, interleukin-1 receptor knockout (IL-1R-/-) and caspase-1-/- mice had 350 and 30 copies/µg RNA, respectively. Among mice deficient in chemokine receptors, CCR6-/- mice had 120 copies/µg RNA, while CXCR2-/- and CXCR3-/- mice were negative. RNAscope confirmed focal infection in MyD88-/-, STAT1-/-, and CCR6-/- mice but was negative for other gene-deficient mice. Histological abnormalities were seen only in the latter mice. Our findings and the literature support a working model of innate immunity to papillomaviruses involving the activation of a MyD88-dependent pathway and IL-1 receptor signaling, control of viral replication by interferon-stimulated genes, and clearance of virus-transformed dysplastic cells by the action of the CCR6/CCL20 axis.IMPORTANCE Papillomaviruses infect stratified squamous epithelia, and the viral life cycle is linked to epithelial differentiation. Additionally, changes occur in viral and host gene expression, and immune cells are activated to modulate the infectious process. In vitro studies with keratinocytes cannot fully model the complex viral and host responses and do not reflect the contribution of local and migrating immune cells. We show that female C57BL/6J mice are susceptible to a transient papillomavirus cervicovaginal infection, and mice deficient in select genes involved in innate immune responses are susceptible to persistent infection with variable manifestations of histopathological abnormalities. The results of our studies support a working model of innate immunity to papillomaviruses, and the model provides a framework for more in-depth studies. A better understanding of mechanisms of early viral clearance and the development of approaches to induce clearance will be important for cancer prevention and the treatment of HPV-related diseases.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Papillomaviridae/imunologia , Infecções por Papillomavirus/imunologia , RNA Mensageiro/imunologia , RNA Viral/imunologia , Receptores Tipo I de Interleucina-1/imunologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Processamento Alternativo , Animais , Caspase 1/deficiência , Caspase 1/genética , Caspase 1/imunologia , Colo do Útero/imunologia , Colo do Útero/virologia , Feminino , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade Inata , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Papillomaviridae/crescimento & desenvolvimento , Papillomaviridae/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , RNA Mensageiro/genética , RNA Viral/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/deficiência , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/imunologia , Receptores CCR6/deficiência , Receptores CCR6/genética , Receptores CCR6/imunologia , Receptores CXCR3/deficiência , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Receptores Tipo I de Interleucina-1/deficiência , Receptores Tipo I de Interleucina-1/genética , Receptores de Interleucina-8B/deficiência , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/imunologia , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Transdução de Sinais , Vagina/imunologia , Vagina/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA