Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Circulation ; 143(2): 163-177, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33222501

RESUMO

BACKGROUND: Chronic activation of the innate immune system drives inflammation and contributes directly to atherosclerosis. We previously showed that macrophages in the atherogenic plaque undergo RIPK3 (receptor-interacting serine/threonine-protein kinase 3)-MLKL (mixed lineage kinase domain-like protein)-dependent programmed necroptosis in response to sterile ligands such as oxidized low-density lipoprotein and damage-associated molecular patterns and that necroptosis is active in advanced atherosclerotic plaques. Upstream of the RIPK3-MLKL necroptotic machinery lies RIPK1 (receptor-interacting serine/threonine-protein kinase 1), which acts as a master switch that controls whether the cell undergoes NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells)-dependent inflammation, caspase-dependent apoptosis, or necroptosis in response to extracellular stimuli. We therefore set out to investigate the role of RIPK1 in the development of atherosclerosis, which is driven largely by NF-κB-dependent inflammation at early stages. We hypothesize that, unlike RIPK3 and MLKL, RIPK1 primarily drives NF-κB-dependent inflammation in early atherogenic lesions, and knocking down RIPK1 will reduce inflammatory cell activation and protect against the progression of atherosclerosis. METHODS: We examined expression of RIPK1 protein and mRNA in both human and mouse atherosclerotic lesions, and used loss-of-function approaches in vitro in macrophages and endothelial cells to measure inflammatory responses. We administered weekly injections of RIPK1 antisense oligonucleotides to Apoe-/- mice fed a cholesterol-rich (Western) diet for 8 weeks. RESULTS: We find that RIPK1 expression is abundant in early-stage atherosclerotic lesions in both humans and mice. Treatment with RIPK1 antisense oligonucleotides led to a reduction in aortic sinus and en face lesion areas (47.2% or 58.8% decrease relative to control, P<0.01) and plasma inflammatory cytokines (IL-1α [interleukin 1α], IL-17A [interleukin 17A], P<0.05) in comparison with controls. RIPK1 knockdown in macrophages decreased inflammatory genes (NF-κB, TNFα [tumor necrosis factor α], IL-1α) and in vivo lipopolysaccharide- and atherogenic diet-induced NF-κB activation. In endothelial cells, knockdown of RIPK1 prevented NF-κB translocation to the nucleus in response to TNFα, where accordingly there was a reduction in gene expression of IL1B, E-selectin, and monocyte attachment. CONCLUSIONS: We identify RIPK1 as a central driver of inflammation in atherosclerosis by its ability to activate the NF-κB pathway and promote inflammatory cytokine release. Given the high levels of RIPK1 expression in human atherosclerotic lesions, our study suggests RIPK1 as a future therapeutic target to reduce residual inflammation in patients at high risk of coronary artery disease.


Assuntos
Aterosclerose/metabolismo , Inativação Gênica/fisiologia , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Animais , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Colesterol na Dieta/administração & dosagem , Colesterol na Dieta/efeitos adversos , Feminino , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
2.
Eur J Haematol ; 104(2): 125-137, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31758597

RESUMO

INTRODUCTION: Targeting the cell cycle machinery represents a rational therapeutic approach in myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (sAML). Despite substantial response rates, clinical use of the PLK inhibitor volasertib has been hampered by elevated side effects such as neutropenia and infections. OBJECTIVES: The primary objective was to analyse whether a reduced dose of volasertib was able to limit toxic effects on the healthy haematopoiesis while retaining its therapeutic effect. METHODS: Bone marrow mononuclear cells (BMMNCs) of patients with MDS/sAML (n = 73) and healthy controls (n = 28) were treated with volasertib (1 µM to 1 nM) or vehicle control. Short-term viability analysis was performed by flow cytometry after 72 hours. For long-term viability analysis, colony-forming capacity was assessed after 14 days. Protein expression of RIPK3 and MCL-1 was quantified via flow cytometry. RESULTS: Reduced dose levels of volasertib retained high cell death-inducing efficacy in primary human stem and progenitor cells of MDS/sAML patients without affecting healthy haematopoiesis in vitro. Interestingly, volasertib reduced colony-forming capacity and cell survival independent of clinical stage or mutational status. CONCLUSIONS: Volasertib offers a promising therapeutic approach in patients with adverse prognostic profile. RIPK3 and MCL-1 might be potential biomarkers for sensitivity to volasertib treatment.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Hematopoese/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Proteínas de Ciclo Celular/metabolismo , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Pteridinas/efeitos adversos , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Quinase 1 Polo-Like
3.
Eur J Vasc Endovasc Surg ; 59(5): 824-833, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31883799

RESUMO

OBJECTIVES: Necroptosis, a form of regulated necrosis, might be a potential mechanism of delayed paraplegia; therefore, its role in transient spinal cord ischaemia was investigated by immunohistochemical analysis of necroptosis related protein receptor interacting protein kinase (RIP) 1, RIP3, and cellular inhibitor of apoptosis protein (cIAP) 1/2. METHODS: This study used rabbit normothermic (n = 24) and hypothermic (n = 24) transient spinal cord ischaemia models and sham controls (n = 6). Neurological function was assessed according to a modified Tarlov score at 8 h, 1, 2, and 7 days after reperfusion (n = 6 each). Morphological changes in the spinal cord were examined using haematoxylin and eosin staining in the sham, 2, and 7 day groups. Western blot and histochemical analyses of RIP1, RIP3, and cIAP1/2, and double label fluorescent immunocytochemical studies of RIP3 and cIAP1/2 were performed at 8 h, 1, and 2 days after reperfusion (n = 6 each). RESULTS: There were significant differences in neurological function between the normothermic and hypothermic groups (median scores 0 and 5 at 7 days, p = .023). In the normothermic group, most motor neurons were lost seven days after reperfusion (p = .046 compared with sham), but they were preserved in the hypothermic group. Western blot analysis revealed the upregulation of RIP1, RIP3, and cIAP1/2 at 8 h in the normothermic group (RIP1, p = .032; RIP3, p < .001; cIAP1/2, p = .041 compared with sham), and the overexpression of RIP3 was prolonged for two days. In the hypothermic group, the expression of these proteins was not observed. The double label fluorescent immunocytochemical study revealed the induction of RIP3 and cIAP1/2 in the same motor neurons. CONCLUSIONS: These data suggest that transient normothermic ischaemia induces necroptosis, a potential factor in delayed motor neuron death, and that hypothermia may inhibit necroptosis.


Assuntos
Hipotermia Induzida , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Isquemia do Cordão Espinal/metabolismo , Animais , Coelhos
4.
Cell Death Differ ; 26(12): 2520-2534, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30850732

RESUMO

Melanoma cells are highly resistant to conventional genotoxic agents, and BRAFV600/MEK-targeted therapies as well as immunotherapies frequently remain inefficient. Alternative means to treat melanoma, in particular through the induction of programmed cell death modalities such as apoptosis or necroptosis, therefore still need to be explored. Here, we report that melanoma cell lines expressing notable amounts of RIPK1, RIPK3 and MLKL, the key players of necroptosis signal transduction, fail to execute necroptotic cell death. Interestingly, the activity of transforming growth factor ß-activated kinase 1 (TAK1) appears to prevent RIPK1 from contributing to cell death induction, since TAK1 inhibition by (5Z)-7-Oxozeaenol, deletion of MAP3K7 or the expression of inactive TAK1 were sufficient to sensitize melanoma cells to RIPK1-dependent cell death in response to TNFα or TRAIL based combination treatments. However, cell death was executed exclusively by apoptosis, even when RIPK3 expression was high. In addition, TAK1 inhibitor (5Z)-7-Oxozeaenol suppressed intrinsic or treatment-induced pro-survival signaling as well as the secretion of cytokines and soluble factors associated with melanoma disease progression. Correspondingly, elevated expression of TAK1 correlates with reduced disease free survival in patients diagnosed with primary melanoma. Overall, our results therefore demonstrate that TAK1 suppresses the susceptibility to RIPK1-dependent cell death and that high expression of TAK1 indicates an increased risk for disease progression in melanoma.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Melanoma/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Decitabina/farmacologia , Progressão da Doença , Humanos , MAP Quinase Quinase Quinases/biossíntese , MAP Quinase Quinase Quinases/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Transfecção , Zearalenona/análogos & derivados , Zearalenona/farmacologia
5.
Toxicol Lett ; 296: 39-47, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30086328

RESUMO

Dasatinib shows remarkable activity against imatinib-refractory chronic myelogenous leukemia (CML) and Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ALL). However, severe cardiovascular toxicity limits the clinical applications of dasatinib. Since the underlying mechanism of dasatinib-induced cardiotoxicity is still elusive, we aim to clarify this. Recent studies have shown that necroptosis and apoptosis participate in multiple toxicity development. Here, we first report that dasatinib could directly induce cardiomyocytes death, as analyzed by the Sulforhodamine B (SRB) assay. This type of cardiomyocytes death was mediated by the necrosis pathway rather than apoptosis, as determined by using flow cytometry to characterize the mode of dasatinib-induced cell death. Inhibition of receptor-interacting protein kinase 1 (RIP1)activity and knockdown of receptor-interacting protein kinase 3 (RIP3)expression can block dasatinib-evoked cardiotoxicity, which further confirmed the involvement of necroptosis. We next found that the classic substrates of RIP3, mixed lineage kinase domain-like protein (MLKL) and Ca2+-calmodulin-dependent protein kinase II (CaMKII) were not involved in dasatinib-induced cardiomyocytes necroptosis. What's more, unlike the inflammation-associated necroptosis, dasatinib-triggered necroptosis was dependent on intracellular instead of secreted High-mobility group box 1 (HMGB1) protein. Collectively, our study revealed that dasatinib-induced cardiotoxicity acted via leading cardiomyocytes to HMGB1-mediated necroptosis, indicating a viable strategy for prevention of dasatinib-induced cardiotoxicity.


Assuntos
Antineoplásicos/toxicidade , Dasatinibe/toxicidade , Proteína HMGB1/metabolismo , Cardiopatias/induzido quimicamente , Necrose/induzido quimicamente , Apoptose/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiotoxicidade , Morte Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Necrose/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/biossíntese , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Quinases/biossíntese , Proteínas Quinases/genética , RNA Interferente Pequeno/farmacologia , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
6.
Proc Natl Acad Sci U S A ; 115(16): 4182-4187, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29588419

RESUMO

Acute kidney injury (AKI) is characterized by necrotic tubular cell death and inflammation. The TWEAK/Fn14 axis is a mediator of renal injury. Diverse pathways of regulated necrosis have recently been reported to contribute to AKI, but there are ongoing discussions on the timing or molecular regulators involved. We have now explored the cell death pathways induced by TWEAK/Fn14 activation and their relevance during AKI. In cultured tubular cells, the inflammatory cytokine TWEAK induces apoptosis in a proinflammatory environment. The default inhibitor of necroptosis [necrostatin-1 (Nec-1)] was protective, while caspase inhibition switched cell death to necroptosis. Additionally, folic acid-induced AKI in mice resulted in increased expression of Fn14 and necroptosis mediators, such as receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage domain-like protein (MLKL). Targeting necroptosis with Nec-1 or by genetic RIPK3 deficiency and genetic Fn14 ablation failed to be protective at early time points (48 h). However, a persistently high cell death rate and kidney dysfunction (72-96 h) were dependent on an intact TWEAK/Fn14 axis driving necroptosis. This was prevented by Nec-1, or MLKL, or RIPK3 deficiency and by Nec-1 stable (Nec-1s) administered before or after induction of AKI. These data suggest that initial kidney damage and cell death are amplified through recruitment of inflammation-dependent necroptosis, opening a therapeutic window to treat AKI once it is established. This may be relevant for clinical AKI, since using current diagnostic criteria, severe injury had already led to loss of renal function at diagnosis.


Assuntos
Injúria Renal Aguda/patologia , Citocina TWEAK/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Receptor de TWEAK/fisiologia , Injúria Renal Aguda/induzido quimicamente , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Microambiente Celular , Ativação Enzimática , Feminino , Ácido Fólico/toxicidade , Imidazóis/farmacologia , Indóis/farmacologia , Inflamação , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptor de TWEAK/biossíntese , Receptor de TWEAK/genética
7.
Int J Mol Med ; 40(1): 201-208, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28560421

RESUMO

Recently, a novel mechanism known as 'programmed necrosis' or necroptosis has been shown to be another important mechanism of cell death in the heart. In this study, we investigated the role of necroptosis in high glucose (HG)-induced injury and inflammation, as well as the underlying mechanisms. In particular, we focused on the interaction between necroptosis and reactive oxygen species (ROS) in H9c2 cardiac cells. Our results demonstrated that the exposure of H9c2 cardiac cells to 35 mM glucose (HG) markedly enhanced the expression level of receptor-interacting protein 3 (RIP3), a kinase which promotes necroptosis. Importantly, co-treatment of the cells with 100 µM necrostatin-1 (a specific inhibitor of necroptosis) and HG for 24 h attenuated not only the increased expression level of RIP3, but also the HG-induced injury and inflammation, as evidenced by an increase in cell viability, a decrease in ROS generation, the attenuation of the dissipation of mitochondrial membrane potential and a decrese in the secretion levels of inflammatory cytokines, i.e., interleukin (IL)-1ß and tumor necrosis factor (TNF)-α. Furthermore, treatment of the cells with 1 mM N-acetyl­L­cysteine (a scavenger of ROS) for 60 min prior to exposure to HG significantly reduced the HG-induced increase in the RIP3 expression level, as well as the injury and inflammatory response described above. Taken together, the findings of this study clearly demonstrate a novel damage mechanism involving the positive interaction between necroptosis and ROS attributing to HG-induced injury and inflammation in H9c2 cardiac cells.


Assuntos
Glucose/farmacologia , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Miócitos Cardíacos/patologia , Ratos , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Fator de Necrose Tumoral alfa/metabolismo
8.
Assay Drug Dev Technol ; 15(1): 30-43, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28092460

RESUMO

The lymphatic system is a series of vessels that transport cells and excess fluid from tissues to the blood vascular system. Normally quiescent, the lymphatics can grow or remodel in response to developmental, immunological, or cells pathological stimuli. Lymphatic vessels comprise lymphatic endothelial cells (LECs) that can respond to external growth factors by undergoing proliferation, migration, adhesion, and tube and lumen formation into new vessel structures, a process known as lymphangiogenesis. To understand the key gene and signaling pathways necessary for lymphangiogenesis and lymphatic vessel remodeling, we have developed a three-dimensional LEC tube formation assay to explore the role of kinase signaling in these processes. The collagen-overlay-based assay was used with primary human adult dermal LECs to investigate a library of 60 tyrosine kinase (TK) and TK-like genes by siRNA knockdown. Nine candidate genes were identified and characterized for their ability to modify key parameters of lymphatic tube formation, including tube length, area, thickness, branching, and number of blind-ended sacs. Four genes-ZAP70, IRAK4, RIPK1, and RIPK2-were identified as high-confidence hits after tertiary deconvolution screens and demonstrate the utility of the assay to define LEC genes critical for the formation of tube structures. This assay facilitates the identification of potential molecular targets for novel drugs designed to modulate the remodeling of lymphatics that is important for the metastatic spread of cancer and other pathologies.


Assuntos
Células Endoteliais/fisiologia , Linfangiogênese/fisiologia , Vasos Linfáticos/citologia , Vasos Linfáticos/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Técnicas de Cultura de Células , Células Endoteliais/química , Células Endoteliais da Veia Umbilical Humana/química , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Vasos Linfáticos/química , RNA Interferente Pequeno/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/análise
9.
Pharmacol Rep ; 67(6): 1090-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26481526

RESUMO

BACKGROUND: In earlier studies, the supplementation of the natural compound Naringenin (NGEN), improved the liver oxidative and inflammatory status, which indicates its direct effect via inhibition of the nuclear factor κB pathway on high cholesterol-induced hepatic damages. In this regard, the present study highlights the mechanisms associated with the protective efficacy of NGEN in the heart tissue of hypercholesterolemic diet rats. RESULTS: The animals exposed to a high cholesterol diet (HCD) for 90 days exhibited a significant increase in the levels of serum lactate dehydrogenase (LDH) and creatine kinase (CK) activities, nitric oxide (NO) levels, protein and lipid oxidative markers and cardiac lipids profile. Moreover, hypercholesterolemia decreased the levels of enzymatic and non enzymatic antioxidants associated with mitochondrial dysfunctions as proved by the decrease in the mitochondrial complexes in comparison to controls. Importantly, cholesterol-feeding significantly increased myocardial reactive oxygen species (ROS) and nuclear DNA damage and led to the activation of gene expression of the tumor necrosis factor-α (TNF-α) and receptor-interacting protein kinase 3 (RIP3) mRNA that contributed to the elucidation of cholesterol-induced necroptosis, a recently described type of programmed necrosis, in the cardiac tissue. CONCLUSIONS: Our results show that the co-administration of NGEN (50 mg/kg/bw) in HCD rats improved all the altered parameters and provided insight into a possible molecular mechanism underlying NGEN suppression of necroptosis pathway in the heart.


Assuntos
Apoptose/efeitos dos fármacos , Flavanonas/farmacologia , Hipercolesterolemia/metabolismo , Miocárdio/metabolismo , Necrose/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Dano ao DNA/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiopatologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Necrose/induzido quimicamente , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Fator de Necrose Tumoral alfa/biossíntese
10.
Int Immunopharmacol ; 29(2): 552-559, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26454701

RESUMO

Ulcerative colitis (UC) is a chronic intestinal inflammatory disease. Necroptosis plays an important role in the pathogenesis of UC. Celastrol, a triterpene from the root bark of the Chinese medicinal plant Tripterygium wilfordii, has been reported to have anti-oxidant and anti-inflammatory activities in colitis. It is not known, however, how celastrol exerts its beneficial effects. The aim of this study is to investigate the effects and possible mechanism of celastrol in UC. Colitis was induced in mice by administration of 5% dextran sulfate sodium (DSS) in drinking water for 4days. Celastrol was administered intraperitoneally (1mg/kg) for 7days after colitis was induced. Our results showed that celastrol treatment ameliorated the severity of colitis, decreased the level of interleukin (IL)-1ß, IL-6 and myeloperoxidase (MPO) and upregulated the level of E-cadherin in colitis mice. Moreover, the TUNEL staining and cleaved caspase-3 immunohistochemistry staining proved decreased necrotic cell death after celastrol treatment. On the mechanism, decreased level of necroptosis factors RIP3 and MLKL, and increased level of active caspase-8 were detected after celastrol treatment. Taken together, our results demonstrated that celastrol exerted beneficial effects in colitis treatment via suppressing the RIP3/MLKL necroptosis pathway.


Assuntos
Antiulcerosos/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Necrose/tratamento farmacológico , Triterpenos/uso terapêutico , Animais , Antiulcerosos/administração & dosagem , Caspase 8/metabolismo , Morte Celular , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Sulfato de Dextrana , Feminino , Injeções Intraperitoneais , Interleucina-6/biossíntese , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos C57BL , Necrose/patologia , Triterpenos Pentacíclicos , Proteínas Quinases/biossíntese , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Tripterygium/química , Triterpenos/administração & dosagem , Fator de Necrose Tumoral alfa/antagonistas & inibidores
11.
Oncotarget ; 6(11): 8635-47, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25888634

RESUMO

Previous studies have shown that cervical cancer cells only release low levels of pro-inflammatory cytokines owing to infection with human papillomaviruses. This results in low immunogenicity of the cancer cells. The viral dsRNA analog PolyIC has been suggested as a promising adjuvant for cervical cancer immunotherapy. However, little is known about the molecular requirements resulting in successful immune activation. Here, we demonstrate that stimulation of cervical cancer cells with PolyIC induced necroptotic cell death, which was strictly dependent on the expression of the receptor-interacting protein kinase RIPK3. Necroptotic cancer cells released interleukin-1α (IL-1α), which was required for powerful activation of dendritic cells (DC) to produce IL-12, a cytokine critical for anti-tumor responses. Again both, IL-1α release and DC activation, were strictly dependent on RIPK3 expression in the tumor cells. Of note, our in situ analyses revealed heterogeneous RIPK3 expression patterns in cervical squamous cell carcinomas and adenocarcinomas. In summary, our study identified a novel RIPK3-dependent mechanism that explains how PolyIC-treatment of cervical cancer cells leads to potent DC activation. Our findings suggest that the RIPK3 expression status in cervical cancer cells might critically influence the outcome of PolyIC-based immunotherapeutic approaches and should therefore be assessed prior to immunotherapy.


Assuntos
Adenocarcinoma/patologia , Carcinoma de Células Escamosas/patologia , Indutores de Interferon/farmacologia , Interleucina-1alfa/metabolismo , Proteínas de Neoplasias/fisiologia , Comunicação Parácrina/efeitos dos fármacos , Poli I-C/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Neoplasias do Colo do Útero/patologia , Adenocarcinoma/imunologia , Adenocarcinoma/metabolismo , Adenocarcinoma/virologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/virologia , Caspase 3/fisiologia , Células Dendríticas/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Proteína HMGB1/metabolismo , Células HeLa , Humanos , Interleucina-12/biossíntese , Interleucina-12/genética , Necrose , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Papillomaviridae/efeitos dos fármacos , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Neoplasias do Colo do Útero/imunologia
12.
Pharmacol Res ; 95-96: 2-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25749008

RESUMO

Glioblastoma is characterized by constitutive apoptosis resistance and survival signaling expression, but paradoxically is a necrosis-prone neoplasm. Incubation of human U118 glioblastoma cells with the antitumor alkylphospholipid analog edelfosine induced a potent necrotic cell death, whereas apoptosis was scarce. Preincubation of U118 cells with the selective MEK1/2 inhibitor U0126, which inhibits MEK1/2-mediated activation of ERK1/2, led to a switch from necrosis to caspase-dependent apoptosis following edelfosine treatment. Combined treatment of U0126 and edelfosine totally inhibited ERK1/2 phosphorylation, and led to RIPK1 and RelA/NF-κB degradation, together with a strong activation of caspase-3 and -8. This apoptotic response was accompanied by the activation of the intrinsic apoptotic pathway with mitochondrial transmembrane potential loss, Bcl-xL degradation and caspase-9 activation. Inhibition of ERK phosphorylation also led to a dramatic increase in edelfosine-induced apoptosis when the alkylphospholipid analog was used at a low micromolar range, suggesting that ERK phosphorylation acts as a potent regulator of apoptotic cell death in edelfosine-treated U118 cells. These data show that inhibition of MEK1/2-ERK1/2 signaling pathway highly potentiates edelfosine-induced apoptosis in glioblastoma U118 cells and switches the type of edelfosine-induced cell death from necrosis to apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Éteres Fosfolipídicos/farmacologia , Western Blotting , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Butadienos/farmacologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Glioblastoma/tratamento farmacológico , Glioblastoma/enzimologia , Humanos , Microscopia de Fluorescência , Necrose , Nitrilas/farmacologia , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese
13.
J Neurosci ; 33(44): 17458-68, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24174679

RESUMO

Interphotoreceptor retinoid-binding protein (IRBP) secreted by photoreceptors plays a pivotal role in photoreceptor survival with an unknown mechanism. A mutation in the human IRBP has been linked to retinitis pigmentosa, a progressive retinal degenerative disease. Mice lacking IRBP display severe early and progressive photoreceptor degeneration. However, the signaling pathway(s) leading to photoreceptor death in IRBP-deficient mice remains poorly understood. Here, we show that amounts of tumor necrosis factor-α (TNF-α) in the interphotoreceptor matrix and retinas of Irbp(-/-) mice were increased more than 10-fold and fivefold, respectively, compared with those in wild-type mice. Moreover, TNF-α receptor 1, an important membrane death receptor that mediates both programmed apoptosis and necrosis, was also significantly increased in Irbp(-/-) retina, and was colocalized with peanut agglutinin to the Irbp(-/-) cone outer segments. Although these death signaling proteins were increased, the caspase-dependent and independent apoptotic pathways were mildly activated in the Irbp(-/-) retinas, suggesting that other cell death mechanism(s) also contributes to the extensive photoreceptor degeneration in Irbp(-/-) retina. We found that receptor interacting protein 1 and 3 (RIP1 and RIP3) kinases, the intracellular key mediators of TNF-induced cellular necrosis, were elevated at least threefold in the Irbp(-/-) retinas. Moreover, pharmacological inhibition of RIP1 kinase significantly prevented cone and rod photoreceptor degeneration in Irbp(-/-) mice. These results reveal that RIP kinase-mediated necrosis strongly contributes to cone and rod degeneration in Irbp(-/-) mice, implicating the TNF-RIP pathway as a potential therapeutic target to prevent or delay photoreceptor degeneration in patients with retinitis pigmentosa caused by IRBP mutation.


Assuntos
Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/metabolismo , Proteínas de Ligação ao Retinol/deficiência , Animais , Proteínas do Olho/genética , Feminino , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Necrose/genética , Necrose/metabolismo , Necrose/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Retina/metabolismo , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Proteínas de Ligação ao Retinol/genética , Regulação para Cima/genética
14.
J Virol ; 86(20): 10961-78, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22837196

RESUMO

AIDS-related human cytomegalovirus (HCMV) retinitis remains a major ophthalmologic problem worldwide. Although this sight-threatening disease is well characterized clinically, many pathogenic issues remain unresolved, among them a basic understanding of the relative roles of cell death pathways during development of retinal tissue destruction. Using an established model of experimental murine cytomegalovirus (MCMV) retinitis in mice with retrovirus-induced immunosuppression (MAIDS), we initially investigated MCMV-infected eyes for evidence of apoptosis-associated molecules in mice with MAIDS of 4 weeks' (MAIDS-4) and 10 weeks' (MAIDS-10) duration, which were resistant and susceptible to retinal disease, respectively, but which harbored equivalent amounts of infectious MCMV. Whereas MCMV-infected eyes of MAIDS-4 mice showed little evidence of apoptosis-associated molecules, MCMV-infected eyes of MAIDS-10 mice showed significant amounts of tumor necrosis factor alpha (TNF-α), TNF receptors 1 and 2, active caspase 8, active caspase 3, TNF-related apoptosis-inducing ligand (TRAIL), TRAIL-R(DR5), Fas, and Fas ligand mRNAs and/or proteins, all detected at peak amounts prior to development of most severe retinal disease. Immunohistochemical staining showed macrophages, granulocytes (neutrophils), Müller cells, and microglial cells as TNF-α sources. Remarkably, quantification of apoptosis by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay suggested that apoptosis contributed minimally to retinal disease in MCMV-infected eyes of MAIDS-10 mice. Subsequent studies demonstrated that MCMV-infected eyes of MAIDS-10 mice, but not MAIDS-4 mice, showed evidence of significant increases in molecules associated with two additional cell death pathways, necroptosis (receptor-interacting protein 1 [RIP1] and RIP3 mRNAs) and pyroptosis (caspase 1, interleukin 1ß [IL-1ß], and IL-18 mRNAs). We conclude that apoptosis, necroptosis, and pyroptosis participate simultaneously during MAIDS-related MCMV retinitis, and all may play a role during AIDS-related HCMV retinitis.


Assuntos
Apoptose , Retinite por Citomegalovirus/patologia , Síndrome de Imunodeficiência Adquirida Murina/patologia , Animais , Caspase 1/biossíntese , Caspase 3/biossíntese , Caspase 8/biossíntese , Retinite por Citomegalovirus/complicações , Retinite por Citomegalovirus/imunologia , Proteína Ligante Fas/biossíntese , Proteína Ligante Fas/genética , Feminino , Granulócitos/metabolismo , Interleucina-18/biossíntese , Interleucina-18/genética , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Síndrome de Imunodeficiência Adquirida Murina/complicações , Síndrome de Imunodeficiência Adquirida Murina/virologia , Muromegalovirus , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Receptores do Fator de Necrose Tumoral/biossíntese , Retina/patologia , Retina/virologia , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Fator de Necrose Tumoral alfa/biossíntese
15.
Cancer Res ; 69(7): 2809-16, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19339267

RESUMO

Nuclear factor-kappaB (NF-kappaB) activation may play an important role in the pathogenesis of cancer and also in resistance to treatment. Inactivation of the p53 tumor suppressor is a key component of the multistep evolution of most cancers. Links between the NF-kappaB and p53 pathways are under intense investigation. In this study, we show that the receptor interacting protein 1 (RIP1), a central component of the NF-kappaB signaling network, negatively regulates p53 tumor suppressor signaling. Loss of RIP1 from cells results in augmented induction of p53 in response to DNA damage, whereas increased RIP1 level leads to a complete shutdown of DNA damage-induced p53 induction by enhancing levels of cellular mdm2. The key signal generated by RIP1 to up-regulate mdm2 and inhibit p53 is activation of NF-kappaB. The clinical implication of this finding is shown in glioblastoma, the most common primary malignant brain tumor in adults. We show that RIP1 is commonly overexpressed in glioblastoma, but not in grades II and III glioma, and increased expression of RIP1 confers a worse prognosis in glioblastoma. Importantly, RIP1 levels correlate strongly with mdm2 levels in glioblastoma. Our results show a key interaction between the NF-kappaB and p53 pathways that may have implications for the targeted treatment of glioblastoma.


Assuntos
Glioblastoma/metabolismo , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Animais , Linhagem Celular Tumoral , Dano ao DNA , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Prognóstico , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Interferente Pequeno , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Supressora de Tumor p53/antagonistas & inibidores , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA