Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Biol Direct ; 18(1): 81, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38017487

RESUMO

The human bone marrow mesenchymal stem cells (hBMSCs) undergo intense osteogenic differentiation, a crucial bone formation mechanism. Evidence from prior studies suggested an association between long noncoding RNAs (lncRNAs) and the osteogenic differentiation of hBMSCs. However, precise roles and molecular mechanisms are still largely unknown. In this work, we report for the first time that lncRNA KCNMA1 antisense RNA 1 (KCNMA1-AS1) plays a vital role in regulating hBMSCs' osteogenic differentiation. Here, it was observed that the KCNMA1-AS1 expression levels were significantly upregulated during osteogenic differentiation. In addition, KCNMA1-AS1 overexpression enhanced in vitro osteogenic differentiation of hBMSCs and in vivo bone formation, whereas knockdown of KCNMA1-AS1 resulted in the opposite result. Additionally, the interaction between KCNMA1-AS1 and mothers against decapentaplegic homolog 9 (SMAD9) was confirmed by an RNA pull-down experiment, mass spectrometry, and RIP assay. This interaction regulated the activation of the SMAD9 signaling pathway. Moreover, rescue assays demonstrated that the inhibitor of the SMAD9 signaling pathway reversed the stimulative effects on osteogenic differentiation of hBMSCs by KCNMA1-AS1 overexpression. Altogether, our results stipulate that KCNMA1-AS1 promotes osteogenic differentiation of hBMSCs via activating the SMAD9 signaling pathway and can serve as a biomarker and therapeutic target in treating bone defects.


Assuntos
Células-Tronco Mesenquimais , RNA Longo não Codificante , Humanos , Osteogênese/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , Transdução de Sinais/genética , Células-Tronco Mesenquimais/metabolismo , Proteína Smad8/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo
2.
J Exp Clin Cancer Res ; 41(1): 352, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539767

RESUMO

BACKGROUND: Neuroblastoma (NB) is the most common extracranial solid tumor occurring during childhood and high-risk NB patients have a poor prognosis. The amplified MYCN gene serves as an important determinant of a high risk of NB. METHODS: We performed an integrative screen using public NB tissue and cell line data, and identified that SMAD9 played an important role in high-risk NB. An investigation of the super-enhancers database (SEdb) and chromatin immunoprecipitation sequencing (ChIP-seq) dataset along with biological experiments of incorporating gene knockdown and CRISPR interference (CRISPRi) were performed to identify upstream regulatory mechanism of SMAD9. Gene knockdown and rescue, quantitative real-time PCR (Q-RT-PCR), cell titer Glo assays, colony formation assays, a subcutaneous xenograft model and immunohistochemistry were used to determine the functional role of SMAD9 in NB. An integrative analysis of ChIP-seq data with the validation of CRISPRi and dual-luciferase reporter assays and RNA sequencing (RNA-seq) data with Q-RT-PCR validation was conducted to analyze the downstream regulatory mechanism of SMAD9. RESULTS: High expression of SMAD9 was specifically induced by the transcription factors including MYCN, PHOX2B, GATA3 and HAND2 at the enhancer region. Genetic suppression of SMAD9 inhibited MYCN-amplified NB cell proliferation and tumorigenicity both in vitro and in vivo. Further studies revealed that SMAD9 bound to the MYCN promoter and transcriptionally regulate MYCN expression, with MYCN reciprocally binding to the SMAD9 enhancer and transactivating SMAD9, thus forming a positive feedback loop along with the MYCN-associated cancer cell cycle. CONCLUSION: This study delineates that SMAD9 forms a positive transcriptional feedback loop with MYCN and represents a unique tumor-dependency for MYCN-amplified neuroblastoma.


Assuntos
Neuroblastoma , Fatores de Transcrição , Humanos , Linhagem Celular Tumoral , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Retroalimentação , Fatores de Transcrição/metabolismo , Neuroblastoma/patologia , Regulação Neoplásica da Expressão Gênica , Proteína Smad8/genética , Proteína Smad8/metabolismo
3.
J Biol Chem ; 298(12): 102684, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370851

RESUMO

The bone morphogenetic protein (BMP) signaling pathway plays pivotal roles in various biological processes during embryogenesis and adult homeostasis. Transmembrane anterior posterior transformation 1 (TAPT1) is an evolutionarily conserved protein involved in murine axial skeletal patterning. Genetic defects in TAPT1 result in complex lethal osteochondrodysplasia. However, the specific cellular activity of TAPT1 is not clear. Herein, we report that TAPT1 inhibits BMP signaling and destabilizes the SMAD1/5 protein by facilitating its interaction with SMURF1 E3 ubiquitin ligase, which leads to SMAD1/5 proteasomal degradation. In addition, we found that the activation of BMP signaling facilitates the redistribution of TAPT1 and promotes its association with SMAD1. TAPT1-deficient murine C2C12 myoblasts or C3H/10T1/2 mesenchymal stem cells exhibit elevated SMAD1/5/9 protein levels, which amplifies BMP activation, in turn leading to a boost in the transdifferentiation or differentiation processing of these distinct TAPT1-deficient cell lines changing into mature osteoblasts. Furthermore, the enhancing effect of TAPT1 deficiency on osteogenic differentiation of C3H/10T1/2 cells was observed in an in vivo ectopic bone formation model. Importantly, a subset of TAPT1 mutations identified in humans with lethal skeletal dysplasia exhibited gain-of-function activity on SMAD1 protein levels. Thus, this finding elucidates the role of TAPT1 in the regulation of SMAD1/5 protein stability for controlling BMP signaling.


Assuntos
Transdução de Sinais , Proteína Smad1 , Proteína Smad5 , Animais , Humanos , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Linhagem Celular , Proteínas de Membrana , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/genética , Estabilidade Proteica , Transdução de Sinais/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Proteína Smad8/genética , Proteína Smad8/metabolismo
4.
Biochem Cell Biol ; 99(5): 578-586, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33646885

RESUMO

Duloxetine, a selective serotonin-norepinephrine reuptake inhibitor, is currently recommended for the treatment of chronic painful disorders such as fibromyalgia, chronic musculoskeletal pain, and diabetic peripheral neuropathy. We previously demonstrated that bone morphogenetic protein-4 (BMP-4) stimulates osteoprotegerin (OPG) production in osteoblast-like MC3T3-E1 cells, and that p70 S6 kinase positively regulates OPG synthesis. The present study aimed to investigate the effect of duloxetine on BMP-4-stimulated OPG synthesis in these cells. Duloxetine dose-dependently suppressed OPG release stimulated by BMP-4. Fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), reduced BMP-4-stimulated OPG release, whereas a selective and specific norepinephrine reuptake inhibitor, reboxetine, failed to affect OPG release. In addition, another SSRI sertraline also inhibited BMP-4-stimulated OPG release. On the other hand, siRNA of SMAD1 reduced the OPG release stimulated by BMP-4, indicating the involvement of the SMAD1/5/8 pathway in OPG release. Rapamycin inhibited BMP-4-stimulated p70 S6 kinase phosphorylation, and compound C suppressed the SMAD1/5/8 phosphorylation stimulated by BMP-4. Duloxetine did not affect BMP-4-induced phosphorylation of p70 S6 kinase but suppressed SMAD1/5/8 phosphorylation. Both fluvoxamine and sertraline also inhibited BMP-4-elicited phosphorylation of SMAD1/5/8. These results strongly suggest that duloxetine suppresses BMP-4-stimulated OPG release via inhibition of the Smad1/5/8 signaling pathway in osteoblasts.


Assuntos
Proteína Morfogenética Óssea 4/antagonistas & inibidores , Cloridrato de Duloxetina/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoprotegerina/antagonistas & inibidores , Células 3T3 , Animais , Proteína Morfogenética Óssea 4/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Osteoblastos/metabolismo , Osteoprotegerina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad1/antagonistas & inibidores , Proteína Smad1/metabolismo , Proteína Smad5/antagonistas & inibidores , Proteína Smad5/metabolismo , Proteína Smad8/antagonistas & inibidores , Proteína Smad8/metabolismo
5.
J Transl Med ; 19(1): 37, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472665

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is a common type of lung cancer. Extracellular vehicles (EVs) are nano-sized particles containing proteins, lipids, and miRNAs secreted by various cells, which play important roles in the development of lung cancer by regulating a wide range of signaling pathways. This study focused on elucidating a potential mechanism by which EVs promote the development of NSCLC. METHODS: Expression levels of miR-744, SUV39H1, Smad9, and BMP4 in clinical tissue samples of NSCLC patients and cell lines were quantified by RT-qPCR and/or western blot analysis. The interaction between SUV39H1 and miR-744 was identified by dual-luciferase reporter assay. miR-744, SUV39H1, and BMP4 expression levels were modulated in A549 and H460 cells, in order to evaluate their effects on cell proliferation, colony formation and cell cycle. A NSCLC xenograft mouse model was used to verify the in vitro findings. NSCLC cell-derived EVs and normal bronchial epithelial cell-derived EVs were isolated and their roles in NSCLC development were evaluated in vivo and in vitro. RESULTS: miR-744 expression was lower in cancer cell-derived derived EVs than in normal lung epithelial cell-derived EVs. Reduced miR-744 expression in EVs upregulated SUV39H1 in NSCLC cells and further increased BMP4 levels to promote NSCLC development. BMP4 was upregulated in NSCLC cells upon suppression of Smad9 mediated by SUV39H1. Reduced miR-744 expression transferred from cancer cell-derived EVs into NSCLC cells enhanced cancer development. CONCLUSION: Overall, our findings unveiled a mechanism whereby miR-744 delivered by NSCLC-derived EVs upregulated SUV39H1, activating the Smad9/BMP9 axis and thus promoted cancer development.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Vesículas Extracelulares/metabolismo , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Metiltransferases , Camundongos , MicroRNAs/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína Smad8
6.
Genes (Basel) ; 11(11)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187088

RESUMO

Pulmonary arterial hypertension (PAH) describes a rare, progressive vascular disease caused by the obstruction of pulmonary arterioles, typically resulting in right heart failure. Whilst PAH most often manifests in adulthood, paediatric disease is considered to be a distinct entity with increased morbidity and often an unexplained resistance to current therapies. Recent genetic studies have substantially increased our understanding of PAH pathogenesis, providing opportunities for molecular diagnosis and presymptomatic genetic testing in families. However, the genetic architecture of childhood-onset PAH remains relatively poorly characterised. We sought to investigate a previously unsolved paediatric cohort (n = 18) using whole exome sequencing to improve the molecular diagnosis of childhood-onset PAH. Through a targeted investigation of 26 candidate genes, we applied a rigorous variant filtering methodology to enrich for rare, likely pathogenic variants. This analysis led to the detection of novel PAH risk alleles in five genes, including the first identification of a heterozygous ATP13A3 mutation in childhood-onset disease. In addition, we provide the first independent validation of BMP10 and PDGFD as genetic risk factors for PAH. These data provide a molecular diagnosis in 28% of paediatric cases, reflecting the increased genetic burden in childhood-onset disease and highlighting the importance of next-generation sequencing approaches to diagnostic surveillance.


Assuntos
Hipertensão Arterial Pulmonar/genética , Adenosina Trifosfatases/genética , Proteínas Morfogenéticas Ósseas/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Predisposição Genética para Doença/genética , Humanos , Lactente , Linfocinas/genética , Masculino , Proteínas de Membrana Transportadoras/genética , Mutação , Fator de Crescimento Derivado de Plaquetas/genética , Fatores de Risco , Proteína Smad8/genética , Receptores de Sulfonilureias/genética , Sequenciamento do Exoma/métodos
7.
Osteoarthritis Cartilage ; 28(11): 1459-1470, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32818603

RESUMO

OBJECTIVE: Exostosin-1 (EXT1) and EXT2 are the major genetic etiologies of multiple hereditary exostoses and are essential for heparan sulfate (HS) biosynthesis. Previous studies investigating HS in several mouse models of multiple hereditary exostoses have reported that aberrant bone morphogenetic protein (BMP) signaling promotes osteochondroma formation in Ext1-deficient mice. This study examined the mechanism underlying the effects of HS deficiency on BMP/Smad signaling in articular cartilage in a cartilage-specific Ext-/- mouse model. METHOD: We generated mice with a conditional Ext1 knockout in cartilage tissue (Ext1-cKO mice) using Prg4-Cre transgenic mice. Structural cartilage alterations were histologically evaluated and phospho-Smad1/5/9 (pSmad1/5/9) expression in mouse chondrocytes was analyzed. The effect of pharmacological intervention of BMP signaling using a specific inhibitor was assessed in the articular cartilage of Ext1-cKO mice. RESULTS: Hypertrophic chondrocytes were significantly more abundant (P = 0.021) and cartilage thickness was greater in Ext1-cKO mice at 3 months postnatal than in control littermates (P = 0.036 for femur; and P < 0.001 for tibia). However, osteoarthritis did not spontaneously occur before the 1-year follow-up. matrix metalloproteinase (MMP)-13 and adamalysin-like metalloproteinases with thrombospondin motifs(ADAMTS)-5 were upregulated in hypertrophic chondrocytes of transgenic mice. Immunostaining and western blotting revealed that pSmad1/5/9-positive chondrocytes were more abundant in the articular cartilage of Ext1-cKO mice than in control littermates. Furthermore, the BMP inhibitor significantly decreased the number of hypertrophic chondrocytes in Ext1-cKO mice (P = 0.007). CONCLUSIONS: HS deficiency in articular chondrocytes causes chondrocyte hypertrophy, wherein upregulated BMP/Smad signaling partially contributes to this phenotype. HS might play an important role in maintaining the cartilaginous matrix by regulating BMP signaling.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Heparitina Sulfato/deficiência , Osteoartrite do Joelho/metabolismo , Proteína ADAMTS5/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Cartilagem Articular/citologia , Condrócitos/patologia , Modelos Animais de Doenças , Hipertrofia , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , N-Acetilglucosaminiltransferases/genética , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo
8.
Eur Rev Med Pharmacol Sci ; 24(10): 5691-5696, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32495904

RESUMO

OBJECTIVE: To elucidate the role of Prunella vulgaris L (PVL) in protecting glucocorticoids (GC)-induced osteogenesis inhibition, thereafter, protecting the deterioration of osteoporosis (OP). MATERIALS AND METHODS: Cell Counting Kit-8 (CCK-8) assay was conducted to assess the influence of PVL treatment on MSCs viability. Osteogenesis in MSCs was induced by Dexamethasone (DEX) stimulation. Regulatory effects of PVL on osteogenesis-related gene expressions, ALP activity, and mineralization ability in DEX-induced MSCs were determined. At last, protein levels of p-Smad1/5/9 and total-Smad1/5/9 influenced by DEX and PVL were measured by Western blot. RESULTS: PVL treatment did not pose a time- or dose-dependent influence on MSCs viability. DEX induction in MSCs downregulated ALP, RUNX2, Bglap, and Osterix. ALP activity and mineralization in DEX-induced MSCs were suppressed. Downregulated osteogenesis-related genes decreased ALP activity and mineralization in MSCs undergoing DEX stimulation were partially reversed by PVL treatment. Moreover, the downregulated p-Smad1/5/9 level in DEX-induced MSCs was elevated by PVL treatment, while total-Smad1/5/9 was not affected. CONCLUSIONS: PVL alleviated GC-induced suppression in MSCs osteogenesis by activating the Smad pathway, thereafter, protecting the deterioration of OP.


Assuntos
Dexametasona/antagonistas & inibidores , Glucocorticoides/antagonistas & inibidores , Células-Tronco Mesenquimais/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Prunella/química , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Células Cultivadas , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Substâncias Protetoras/química , Proteína Smad1/antagonistas & inibidores , Proteína Smad5/antagonistas & inibidores , Proteína Smad8/antagonistas & inibidores
9.
Nutrients ; 12(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32456060

RESUMO

The Brazilian savanna fruit, tucum-do-cerrado (Bactris setosa Mart.) reduces hepatic hepcidin levels. Therefore, we investigated the effect of tucum-do-cerrado on the TfR/HFE and/or BMP/HJV/SMAD and JAK/STAT pathways, in normal and excess iron conditions. Rats were treated with: control diet (CT); control diet +15% tucum-do-cerrado (Tuc); iron-enriched diet (+Fe); or iron-enriched diet +15% tucum-do-cerrado (Tuc+Fe). Tucum-do-cerrado (Tuc) decreased hepatic Hamp and Hjv mRNA levels but did not alter Bmp6, Smad7, Tfr1, and Hfe mRNA levels; pSMAD1/5/8 and pSTAT3 protein levels; labile iron pool (LIP); and inflammatory biomarkers, compared to the CT group. The iron-enriched diet increased Hamp mRNA levels, as well as pSMAD1/5/8 and pSTAT3 protein levels, while no difference was observed in Hjv, Bmp6, Smad7, Tfr1, and Hfe mRNA levels and LIP compared to the CT group. The association of tucum-do-cerrado with the iron-enriched diet (Tuc+Fe) decreased Hamp, Hjv, Bmp6, and Hfe mRNA levels and pSTAT3 protein content compared to the +Fe group, while increased Hamp and decreased Hfe mRNA levels compared to the Tuc group. Therefore, the inhibition of hepatic hepcidin by tucum-do-cerrado consumption may involve the downregulation of intestinal Dmt1 and hepatic Hjv expression and deacetylation mediated by SIRT1 by a mechanism that is independent of tissue iron content. However, in excess iron conditions, the modulation of hepatic hepcidin expression by tucum-do-cerrado seems to be partially mediated by the inflammatory signaling pathway, as well as involves the chelating activity of tucum-do-cerrado.


Assuntos
Arecaceae/química , Dieta , Frutas/química , Hepcidinas/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Animais , Antígenos CD , Proteína Morfogenética Óssea 6/metabolismo , Brasil , Regulação da Expressão Gênica , Sobrecarga de Ferro , Masculino , RNA Mensageiro , Ratos , Ratos Wistar , Receptores da Transferrina , Sirtuína 1/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5 , Proteína Smad7 , Proteína Smad8
10.
Eur Rev Med Pharmacol Sci ; 24(8): 4095-4102, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32374006

RESUMO

OBJECTIVE: To illustrate the role of micro ribonucleic acid (miR)-330-5p in regulating osteogenesis through biglycan (Bgn)-mediated bone morphogenetic protein (BMP)/Smad pathway. MATERIALS AND METHODS: A mouse model of osteoporosis (OP) was established by ovariectomy (OVX). BMD and miR-330-5p levels in mice undergoing sham operation or OVX were determined. BMD and BV/TV in OP mice with in vivo knockdown of miR-330-5p were measured by Micro-CT. After silencing of miR-330-5p in mouse primary bone marrow stromal cells (BMSCs), expression changes in osteogenesis-associated genes, ALP activity, and mineralization ability were assessed. Subsequently, the interaction between miR-330-5p and Bgn was examined by Dual-Luciferase reporter gene assay and Western blotting. Then, Bgn levels in BMSCs undergoing osteogenesis at different time points were measured. At last, the regulatory effects of miR-330-5p/Bgn axis on the BMP/Smad pathway, ALP activity, and mineralization ability in BMSCs were evaluated. RESULTS: BMD was decreased and miR-330-5p was upregulated in OP mice. OP mice with in vivo knockdown of miNA-330-5p presented higher BMD and BV/TV than controls. Transfection with miR-330-5p inhibitor upregulated osteogenesis-associated genes, ALP activity, and mineralization ability in BMSCs. Bgn was time-dependently upregulated in BMSCs undergoing osteogenesis, which was indicated to be the target gene of miR-330-5p. Besides, Bgn level was negatively regulated by miR-330-5p. Importantly, Bgn was able to reverse the regulatory effects of miR-330-5p on the BMP/Smad pathway, ALP activity, and mineralization ability in BMSCs. CONCLUSIONS: Knockdown of miR-330-5p facilitates osteogenesis in BMSCs through the Bgn-induced BMP/Smad pathway, thus alleviating the progression of OP.


Assuntos
Biglicano/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteogênese/genética , Osteoporose/prevenção & controle , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Animais , Medula Óssea , Células Cultivadas , Modelos Animais de Doenças , Feminino , Camundongos , MicroRNAs/genética , Osteoporose/genética , Osteoporose/metabolismo
11.
Clin Exp Pharmacol Physiol ; 47(5): 831-837, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31883130

RESUMO

Alpha-pinene (α-pinene) is an organic compound, found in the oils of many species of coniferous trees, especially pine. α-Pinene reportedly has antioxidant and anti-inflammatory activities; however, its effects on osteoblasts are unknown. This study investigated the effects of α-pinene on osteoblast differentiation and tumour necrosis factor-alpha (TNFα)-induced inhibition of osteogenesis. Culture in control or osteogenic medium containing α-pinene increased osteogenic marker expression. Alkaline phosphatase staining and alizarin red S staining confirmed that α-pinene enhanced osteoblast differentiation. Also, α-pinene attenuated TNFα-induced inhibition of Smad1/5/9 phosphorylation and extracellular matrix mineralization. Taken together, our findings suggest that α-pinene enhances osteoblast differentiation and mineralization in MC3T3-E1 pre-osteoblasts.


Assuntos
Monoterpenos Bicíclicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Células 3T3 , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Camundongos , Osteoblastos/metabolismo , Fosforilação , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo
12.
J Cell Physiol ; 235(3): 2698-2709, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31512758

RESUMO

Hertwig's epithelial root sheath (HERS) is critical for epithelial-mesenchymal interaction (EMI) during tooth root formation. However, the exact roles of HERS in odontogenic differentiation by EMI have not been well characterized, because primary HERS cells are difficult to obtain. Immortalized cell lines constitute crucial scientific tools, while there are few HERS cell lines available. Our previous study has successfully established immortalized HERS cell lines. Here, we confirmed the phenotype of our HERS-H1 by verifying its characteristics and functions in odontogenic differentiation through EMI. The HERS-H1-conditioned medium (CM-H1) effectively enhanced odontogenic differentiation of dental papilla cells (DPCs) in vitro. Furthermore, Smad4 and p-Smad1/5/8 were significantly activated in DPCs treated with CM-H1, and this activation was attenuated by noggin. In vivo, our implanted recombinants of HERS-H1 and DPCs exhibited mineralized tissue formation and expression of Smad4, p-Smad1/5/8, and odontogenic differentiation markers. Our results indicated that HERS-H1 promoted DPCs odontoblastic differentiation via bone morphogenetic protein/Smad signaling. HERS-H1 exhibits relevant key molecular characteristics and constitutes a new biological model for basic research on HERS and the dental EMI during root development and regeneration.


Assuntos
Papila Dentária/citologia , Transição Epitelial-Mesenquimal/fisiologia , Dente Molar/citologia , Odontogênese/fisiologia , Raiz Dentária/citologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Proteína Smad1/metabolismo , Proteína Smad4/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo
13.
Front Immunol ; 10: 2194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620126

RESUMO

Mutations in the Sterile alpha motif domain containing 9 (SAMD9) gene have been described in patients with severe multisystem disorder, MIRAGE syndrome, but also in patients with bone marrow (BM) failure in the absence of other systemic symptoms. The role of hematopoietic stem cell transplantation (HSCT) in the management of the disease is still unclear. Here, we present a patient with a novel mutation in SAMD9 (c.2471 G>A, p.R824Q), manifesting with prominent gastrointestinal tract involvement and immunodeficiency, but without any sign of adrenal insufficiency typical for MIRAGE syndrome. He suffered from severe CMV (cytomegalovirus) infection at 3 months of age, with a delayed development of T lymphocyte functional response against CMV, profound T cell activation, significantly reduced B lymphocyte counts and impaired lymphocyte proliferative response. Cultured T cells displayed slightly lower calcium flux and decreased survival. At the age of 6 months, he developed severe neutropenia requiring G-CSF administration, and despite only mild morphological and immunophenotypical disturbances in the BM, 78% of the BM cells showed monosomy 7 at the age of 18 months. Surprisingly, T cell proliferation after CD3 stimulation and apoptosis of the cells normalized during the follow-up, possibly reflecting the gradual development of monosomy 7. Among other prominent symptoms, he had difficulty swallowing, requiring percutaneous endoscopic gastrostomy (PEG), frequent gastrointestinal infections, and perianal erosions. He suffered from repeated infections and periodic recurring fevers with the elevation of inflammatory markers. At 26 months of age, he underwent HSCT that significantly improved hematological and immunological laboratory parameters. Nevertheless, he continued to suffer from other conditions, and subsequently, he died at day 440 post-transplant due to sepsis. Pathogenicity of this novel SAMD9 mutation was confirmed experimentally. Expression of mutant SAMD9 caused a significant decrease in proliferation and increase in cell death of the transfected cells. Conclusion: We describe a novel SAMD9 mutation in a patient with prominent gastrointestinal and immunological symptoms but without adrenal hypoplasia. Thus, SAMD9 mutations should be considered as cause of enteropathy in pediatric patients. The insufficient therapeutic outcome of transplantation further questions the role of HSCT in the management of patients with SAMD9 mutations and multisystem involvement.


Assuntos
Síndromes de Imunodeficiência/genética , Neutropenia/genética , Proteína Smad8/genética , Pré-Escolar , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Humanos , Lactente , Masculino , Mutação
14.
Sci Rep ; 9(1): 13446, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530856

RESUMO

Bone morphogenetic proteins (BMPs) are multifunctional cytokines of the transforming growth factor ß (TGFß) superfamily with potential therapeutic applications due to their broad biological functionality. Designing BMP mimetics with specific activity will contribute to the translational potential of BMP-based therapies. Here, we report a BMP9 peptide mimetic, P3, designed from the type I receptor binding site, which showed millimolar binding affinities for the type I receptor activin receptor like kinase 1 (ALK1), ALK2 and ALK3. Although showing no baseline activity, P3 significantly enhanced BMP9-induced Smad1/5 phosphorylation as well as ID1, BMPR2, HEY1 and HEY2 gene expression in pulmonary artery endothelial cells (hPAECs), and this activity is dependent on its alpha helix propensity. However, in human dermal microvascular endothelial cells, P3 did not affect BMP9-induced Smad1/5 phosphorylation, but potently inhibited ALK3-dependent BMP4-induced Smad1/5 phosphorylation and gene expression. In C2C12 mouse myoblast cells, P3 had no effect on BMP9-induced osteogenic signalling, which is primarily mediated by ALK2. Interestingly, a previously published peptide from the knuckle region of BMP9 was found to inhibit BMP4-induced Smad1/5 phosphorylation. Together, our data identify a BMP9-derived peptide that can selectively enhance ALK1-mediated BMP9 signalling in hPAECs and modulate BMP9 and BMP4 signalling in a cell type-specific manner.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Receptores de Activinas Tipo II/química , Receptores de Activinas Tipo II/genética , Animais , Sítios de Ligação , Linhagem Celular , Células Endoteliais , Fator 2 de Diferenciação de Crescimento/química , Fator 2 de Diferenciação de Crescimento/metabolismo , Humanos , Camundongos , Mimetismo Molecular , Peptídeos/metabolismo , Fosforilação , Transdução de Sinais , Proteína Smad1/metabolismo , Proteína Smad8/metabolismo , Relação Estrutura-Atividade
15.
Biomed Pharmacother ; 120: 109378, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31541885

RESUMO

Bone homeostasis is known as a dynamic balance, including bone formation through osteoblasts and bone resorption by osteoclasts. MicroRNAs (miRs) play a critical role in regulating bone formation and homeostasis. In the study, the effects of miR-451a on bone homeostasis were investigated. The results indicated that the primary osteoblasts and mesenchymal stem cells (MSCs), as the main source of osteoblasts, isolated from miR-451a-knockout (KO) mice showed promoted osteogenesis. in vivo, an ovariectomized (OVX) animal model was used to further explore the effect of miR-451a on osteoporosis. Micro-computed tomography (µCT) indicated a promoted bone volume in miR-451a-KO mice compared to wild-type (WT) mice after OVX operation, demonstrating a redundant bone formation after the knockout of miR-451a. Importantly, we for the first time found that bone morphogenetic protein 6 (Bmp6) was a direct target of miR-451a, elevating bone formation through regulating SMAD1/5/8 expression. In conclusion, reducing miR-451a expression levels could enhance bone formation during the progression of osteoporosis, which might be at least partly via the meditation of Bmp6 expression.


Assuntos
Proteína Morfogenética Óssea 6/metabolismo , Reabsorção Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteogênese , Osteoporose Pós-Menopausa/metabolismo , Animais , Proteína Morfogenética Óssea 6/genética , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Células-Tronco Mesenquimais/patologia , Camundongos Knockout , MicroRNAs/genética , Osteoblastos/patologia , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/patologia , Ovariectomia , Transdução de Sinais , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo
16.
Sci Rep ; 9(1): 9307, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243298

RESUMO

Formononetin (FN), a typical phytoestrogen has attracted substantial attention as a novel agent because of its diverse biological activities including, osteogenic differentiation. However, the molecular mechanisms underlying osteogenic and myogenic differentiation by FN in C2C12 progenitor cells remain unknown. Therefore the objective of the current study was to investigate the action of FN on myogenic and osteogenic differentiation and its impact on signaling pathways in C2C12 cells. FN significantly increased myogenic markers such as Myogenin, myosin heavy chains, and myogenic differentiation 1 (MyoD). In addition, the expression of osteogenic specific genes alkaline phosphatase (ALP), Run-related transcription factor 2(RUNX2), and osteocalcin (OCN) were up-regulated by FN treatment. Moreover, FN enhanced the ALP level, calcium deposition and the expression of bone morphogenetic protein isoform (BMPs). Signal transduction pathways mediated by p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-related kinases (ERKs), protein kinase B (Akt), Janus kinases (JAKs), and signal transducer activator of transcription proteins (STATs) in myogenic and osteogenic differentiation after FN treatment were also examined. FN treatment activates myogenic differentiation by increasing p38MAPK and decreasing JAK1-STAT1 phosphorylation levels, while osteogenic induction was enhanced by p38MAPK dependent Smad, 1/5/8 signaling pathways in C2C12 progenitor cells.


Assuntos
Isoflavonas/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fitoestrógenos/farmacologia , Transdução de Sinais , Células-Tronco/efeitos dos fármacos , Animais , Diferenciação Celular , Sobrevivência Celular , Relação Dose-Resposta a Droga , Janus Quinase 1/metabolismo , Camundongos , Fator de Transcrição STAT1/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Hepatology ; 70(6): 1986-2002, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31127639

RESUMO

A failure of iron to appropriately regulate liver hepcidin production is central to the pathogenesis of hereditary hemochromatosis. SMAD1/5 transcription factors, activated by bone morphogenetic protein (BMP) signaling, are major regulators of hepcidin production in response to iron; however, the role of SMAD8 and the contribution of SMADs to hepcidin production by other systemic cues remain uncertain. Here, we generated hepatocyte Smad8 single (Smad8fl/fl ;Alb-Cre+ ), Smad1/5/8 triple (Smad158;Alb-Cre+ ), and littermate Smad1/5 double (Smad15;Alb-Cre+ ) knockout mice to investigate the role of SMAD8 in hepcidin and iron homeostasis regulation and liver injury. We found that Smad8;Alb-Cre+ mice exhibited no iron phenotype, whereas Smad158;Alb-Cre+ mice had greater iron overload than Smad15;Alb-Cre+ mice. In contrast to the sexual dimorphism reported for wild-type mice and other hemochromatosis models, hepcidin deficiency and extrahepatic iron loading were similarly severe in Smad15;Alb-Cre+ and Smad158;Alb-Cre+ female compared with male mice. Moreover, epidermal growth factor (EGF) failed to suppress hepcidin in Smad15;Alb-Cre+ hepatocytes. Conversely, hepcidin was still increased by lipopolysaccharide in Smad158;Alb-Cre+ mice, although lower basal hepcidin resulted in lower maximal hepcidin. Finally, unlike most mouse hemochromatosis models, Smad158;Alb-Cre+ developed liver injury and fibrosis at 8 weeks. Liver injury and fibrosis were prevented in Smad158;Alb-Cre+ mice by a low-iron diet and were minimal in iron-loaded Cre- mice. Conclusion: Hepatocyte Smad1/5/8 knockout mice are a model of hemochromatosis that encompasses liver injury and fibrosis seen in human disease. These mice reveal the redundant but critical role of SMAD8 in hepcidin and iron homeostasis regulation, establish a requirement for SMAD1/5/8 in hepcidin regulation by testosterone and EGF but not inflammation, and suggest a pathogenic role for both iron loading and SMAD1/5/8 deficiency in liver injury and fibrosis.


Assuntos
Hepatócitos/metabolismo , Sobrecarga de Ferro/etiologia , Ferro/metabolismo , Cirrose Hepática Experimental/etiologia , Proteína Smad1/fisiologia , Proteína Smad5/fisiologia , Proteína Smad8/fisiologia , Animais , Células Cultivadas , Fator de Crescimento Epidérmico/farmacologia , Feminino , Hepcidinas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Int J Mol Sci ; 20(7)2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959909

RESUMO

Culturing articular chondrocytes under physiological oxygen tension exerts positive effects on their extracellular matrix synthesis. The underlying molecular mechanisms which enhance the chondrocytic phenotype are, however, still insufficiently elucidated. The TGF-ß superfamily of growth factors, and the prototypic TGF-ß isoforms in particular, are crucial in maintaining matrix homeostasis of these cells. We employed a feedback-controlled table-top bioreactor to investigate the role of TGF-ß in microtissues of human chondrocytes over a wider range of physiological oxygen tensions (i.e., physoxia). We compared 1%, 2.5%, and 5% of partial oxygen pressure (pO2) to the 'normoxic' 20%. We confirmed physoxic conditions through the induction of marker genes (PHD3, VEGF) and oxygen tension-dependent chondrocytic markers (SOX9, COL2A1). We identified 2.5% pO2 as an oxygen tension optimally improving chondrocytic marker expression (ACAN, COL2A1), while suppressing de-differentiation markers (COL1A1, COL3A1). Expression of TGF-ß isoform 2 (TGFB2) was, relatively, most responsive to 2.5% pO2, while all three isoforms were induced by physoxia. We found TGF-ß receptors ALK1 and ALK5 to be regulated by oxygen tension on the mRNA and protein level. In addition, expression of type III co-receptors betaglycan and endoglin appeared to be regulated by oxygen tension as well. R-Smad signaling confirmed that physoxia divergently regulated phosphorylation of Smad1/5/8 and Smad2/3. Pharmacological inhibition of canonical ALK5-mediated signaling abrogated physoxia-induced COL2A1 and PAI-1 expression. Physoxia altered expression of hypertrophy markers and that of matrix metalloproteases and their activity, as well as expression ratios of specific proteins (Sp)/Krüppel-like transcription factor family members SP1 and SP3, proving a molecular concept of ECM marker regulation. Keeping oxygen levels tightly balanced within a physiological range is important for optimal chondrocytic marker expression. Our study provides novel insights into transcriptional regulations in chondrocytes under physoxic in vitro conditions and may contribute to improving future cell-based articular cartilage repair strategies.


Assuntos
Reatores Biológicos/microbiologia , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Transdução de Sinais/fisiologia , Agrecanas/metabolismo , Colágeno Tipo II/metabolismo , Colágeno Tipo III/metabolismo , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Isoformas de Proteínas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/genética , Proteína Smad1/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Cell Death Dis ; 10(5): 350, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31024000

RESUMO

The mechanism of pathological osteogenesis in Ankylosing spondylitis (AS) is largely unknown. Our previous studies demonstrated that the imbalance between BMP-2 and Noggin secretion induces abnormal osteogenic differentiation of marrow-derived mesenchymal stem cells (MSCs) from AS patients in a two-dimensional culture environment. In this study, HA/ß-TCP scaffolds were further used as a three-dimensional (3D) biomimetic culture system to mimic the bone microenvironment in vivo to determine the abnormal osteogenic differentiation of AS-MSCs. We demonstrated that when cultured in HA/ß-TCP scaffolds, AS-MSCs had a stronger osteogenic differentiation capacity than that of MSCs from healthy donors (HD-MSCs) in vitro and in vivo. This dysfunction resulted from BMP2 overexpression in AS-MSCs, which excessively activated the Smad1/5/8 and ERK signalling pathways and finally led to enhanced osteogenic differentiation. Both the signalling pathway inhibitors and siRNAs inhibiting BMP2 expression could rectify the enhanced osteogenic differentiation of AS-MSCs. Furthermore, BMP2 expression in ossifying entheses was significantly higher in AS patients. In summary, our study demonstrated that AS-MSCs possess enhanced osteogenic differentiation in HA/ß-TCP scaffolds as a 3D biomimetic microenvironment because of BMP2 overexpression, but not Noggin. These results provide insights into the mechanism of pathological osteogenesis, which can aid in the development of niche-targeting medications for AS.


Assuntos
Diferenciação Celular , Técnicas de Cultura/métodos , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Espondilite Anquilosante/patologia , Materiais Biomiméticos/química , Proteína Morfogenética Óssea 2/antagonistas & inibidores , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Fosfatos de Cálcio/química , Proliferação de Células , Células Cultivadas , Durapatita/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Espondilite Anquilosante/metabolismo , Alicerces Teciduais/química
20.
Theriogenology ; 135: 204-212, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30522699

RESUMO

The egg production of poultry depends on follicular development and selection. Nonetheless, the mechanism underlying the priority of selecting of hierarchical follicles is completely unknown. SMAD9 is one of the important transcription factors in the BMP/SMAD pathway and is involved in goose follicular initiation. To identify its potential role in determination of the goose follicle hierarchy, we used BMP type I receptor inhibitor LDN-193189 both in vivo and in vitro and found that SMAD9 mRNA expression decreased in the presence of LDN-193189. While the level of SMAD9 mRNA decreased after treatment with LDN-193189, we found that the egg production (7.08 eggs per bird per year) of the animals increased, estradiol (E2) levels significantly increased, but the levels of progesterone (P4) remained unchanged. We also detected a significant increase in luteinizing hormone receptor (LHR) mRNA expression, but no change in follicle-stimulating hormone receptor (FSHR) mRNA amounts. The in vitro experimental results indicated that SMAD9 knockdown by RNA interference noticeably reduced E2 and P4 biosynthesis and FSHR and LHR mRNA expression in goose granulosa cells. Chromatin immunoprecipitation assay of goose granulosa cells revealed that phospho-SMAD9 bound to the LHR promoter and possibly regulated its transcriptional activity. These findings revealed that SMAD9 is differentially expressed in goose follicles, and acts as a key player in the control over goose follicular selection.


Assuntos
Anseriformes/fisiologia , Folículo Ovariano/fisiologia , RNA Mensageiro/metabolismo , Receptores do LH/metabolismo , Proteína Smad8/genética , Animais , Proliferação de Células , Regulação para Baixo , Estradiol/metabolismo , Feminino , Regulação da Expressão Gênica , Progesterona/metabolismo , RNA Mensageiro/genética , Receptores do LH/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA