Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.183
Filtrar
1.
J Cell Mol Med ; 28(18): e70096, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39289804

RESUMO

Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide, characterized by excess lipid deposition. Insulin resistance (IR) serves as a fundamental pathogenic factor in MAFLD. However, currently, there are no approved specific agents for its treatment. Farrerol, a novel compound with antioxidant and anti-inflammatory effects, has garnered significant attention in recent years due to its hepatoprotective properties. Despite this, the precise underlying mechanisms of action remain unclear. In this study, a network pharmacology approach predicted protein tyrosine phosphatase non-receptor type 1 (PTPN1) as a potential target for farrerol's action in the liver. Subsequently, the administration of farrerol improved insulin sensitivity and glucose tolerance in MAFLD mice. Furthermore, farrerol alleviated lipid accumulation by binding to PTPN1 and reducing the dephosphorylation of the insulin receptor (INSR) in HepG2 cells and MAFLD mice. Thus, the phosphoinositide 3-kinase/serine/threonine-protein kinases (PI3K/AKT) signalling pathway was active, leading to downstream protein reduction. Overall, the study demonstrates that farrerol alleviates insulin resistance and hepatic steatosis of MAFLD by targeting PTPN1.


Assuntos
Resistência à Insulina , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Humanos , Camundongos , Células Hep G2 , Masculino , Transdução de Sinais/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptor de Insulina/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
2.
Nat Commun ; 15(1): 6947, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138174

RESUMO

Fluxes in human copper levels recently garnered attention for roles in cellular signaling, including affecting levels of the signaling molecule cyclic adenosine monophosphate. We herein apply an unbiased temporal evaluation of the signaling and whole genome transcriptional activities modulated by copper level fluctuations to identify potential copper sensor proteins responsible for driving these activities. We find that fluctuations in physiologically relevant copper levels modulate EGFR signal transduction and activation of the transcription factor CREB. Both intracellular and extracellular assays support Cu1+ inhibition of the EGFR phosphatase PTPN2 (and potentially PTPN1)-via ligation to the PTPN2 active site cysteine side chain-as the underlying mechanism. We additionally show i) copper supplementation drives weak transcriptional repression of the copper importer CTR1 and ii) CREB activity is inversely correlated with CTR1 expression. In summary, our study reveals PTPN2 as a physiological copper sensor and defines a regulatory mechanism linking feedback control of copper stimulated EGFR/CREB signaling and CTR1 expression.


Assuntos
Transportador de Cobre 1 , Cobre , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Receptores ErbB , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Transdução de Sinais , Receptores ErbB/metabolismo , Receptores ErbB/genética , Cobre/metabolismo , Humanos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Transportador de Cobre 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Transcrição Gênica/efeitos dos fármacos
3.
Int Immunopharmacol ; 140: 112802, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39088924

RESUMO

BACKGROUND: Formononetin (FNT) is an isoflavone known for its anti-inflammatory properties and has been shown to reduce insulin resistance in Type 2 Diabetes Mellitus (T2DM). However, its effects and the underlying mechanisms in diabetic liver injury remain largely unexplored. METHODS: We established a T2DM-induced liver injury mouse model by feeding high-fat diet, followed by injecting streptozotocin. The mice were then treated with FNT and the liver function in these mice was assessed. Macrophage markers in FNT-treated T2DM mice or human THP-1 cells were evaluated using flow cytometry, RT-qPCR, and Western blotting. The expression of PTP1B and STAT6 in mouse liver tissues and THP-1 cells was analyzed. Molecular docking predicted the interaction between PTP1B and STAT6, which was validated via co-immunoprecipitation (Co-IP) and phos-tag analysis. Microscale thermophoresis (MST) assessed the binding affinity of FNT to PTP1B. RESULTS: FNT treatment significantly ameliorated blood glucose levels, hepatocyte apoptosis, inflammatory response, and liver dysfunction in T2DM mice. Moreover, FNT facilitated M2 macrophage polarization in both T2DM mice and high glucose (HG)-induced THP-1-derived macrophages. The PTP1B/STAT6 axis, deregulated in T2DM mice, was normalized by FNT treatment, which counteracted the T2DM-induced upregulation of PTP1B and downregulation of phosphorylated STAT6. Molecular docking and subsequent analyses revealed that PTP1B binds to and dephosphorylates STAT6 at the S325A site. In contrast, FNT strongly binds to PTP1B and influences its expression at the K116A site, promoting M2 polarization of THP-1 cells via downregulation of PTP1B. CONCLUSION: Formononetin mitigates diabetic hepatic injury by fostering M2 macrophage polarization via the PTP1B/STAT6 axis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Isoflavonas , Macrófagos , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Animais , Humanos , Masculino , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT6/metabolismo , Estreptozocina , Células THP-1
4.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 9): 210-219, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39177701

RESUMO

Protein tyrosine phosphatase non-receptor type 2 (PTPN2) has recently been recognized as a promising target for cancer immunotherapy. Despite extensive structural and functional studies of other protein tyrosine phosphatases, there is limited structural understanding of PTPN2. Currently, there are only five published PTPN2 structures and none are truly unbound due to the presence of a mutation, an inhibitor or a loop (related to crystal packing) in the active site. In this report, a novel crystal packing is revealed that resulted in a true apo PTPN2 crystal structure with an unbound active site, allowing the active site to be observed in a native apo state for the first time. Key residues related to accommodation in the active site became identifiable upon comparison with previously published PTPN2 structures. Structures of PTPN2 in complex with an established PTPN1 active-site inhibitor and an allosteric inhibitor were achieved through soaking experiments using these apo PTPN2 crystals. The increased structural understanding of apo PTPN2 and the ability to soak in inhibitors will aid the development of future PTPN2 inhibitors.


Assuntos
Domínio Catalítico , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/química , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Humanos , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Sítios de Ligação , Modelos Moleculares , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Cristalização , Apoenzimas/química , Apoenzimas/metabolismo , Apoenzimas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
J Leukoc Biol ; 116(3): 565-578, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39012079

RESUMO

Although tumor cell-derived microparticles (MPs) vaccines have reportedly induced antitumor immune reactions for various cancers, the mechanism by which MPs derived from Hepa1-6 cells are taken up by dendritic cells (DCs) and provide the MPs antigens message to CD8+ T cells to exert their anti-hepatocellular carcinoma (HCC) effects remain unclear. Furthermore, the role of MPs in combination with the small-molecule drug MSI-1436, an inhibitor of protein tyrosine phosphatase 1B (PTP1B), in HCC has not yet been reported. In this study, protein mass spectrometry combined with cytology revealed that MPs are mainly taken up by DCs via the clathrin-mediated endocytosis and phagocytosis pathway and localized mainly in lysosomes. High concentration of tumor necrosis factor-α and interferon-γ was detected in CD8+ T cells stimulated with MPs-loaded DCs. Moreover, MPs combined with MSI-1436 further suppressed the proliferation of HCC cells in C57BL/6 tumor-bearing mice, which was closely correlated with CD4+/CD8+ T cells counts in peripheral blood, spleen, and the tumor microenvironment. Mechanistically, the combination of MPs and MSI-1436 exerts a more powerful anti-HCC effect, which may be related to the further inhibition of the expression of PTP1B. Overall, MPs combined with MSI-1436 exerted stronger antitumor effects than MPs or MSI-1436 alone. Therefore, the combination of MPs and MSI-1436 may be a promising means of treating HCC.


Assuntos
Linfócitos T CD8-Positivos , Vacinas Anticâncer , Carcinoma Hepatocelular , Micropartículas Derivadas de Células , Células Dendríticas , Neoplasias Hepáticas , Camundongos Endogâmicos C57BL , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Animais , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Vacinas Anticâncer/imunologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Micropartículas Derivadas de Células/imunologia , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Proliferação de Células/efeitos dos fármacos
6.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000142

RESUMO

Overexpression of protein tyrosine phosphatase 1B (PTP1B) disrupts signaling pathways and results in numerous human diseases. In particular, its involvement has been well documented in the pathogenesis of metabolic disorders (diabetes mellitus type I and type II, fatty liver disease, and obesity); neurodegenerative diseases (Alzheimer's disease, Parkinson's disease); major depressive disorder; calcific aortic valve disease; as well as several cancer types. Given this multitude of therapeutic applications, shortly after identification of PTP1B and its role, the pursuit to introduce safe and selective enzyme inhibitors began. Regrettably, efforts undertaken so far have proved unsuccessful, since all proposed PTP1B inhibitors failed, or are yet to complete, clinical trials. Intending to aid introduction of the new generation of PTP1B inhibitors, this work collects and organizes the current state of the art. In particular, this review intends to elucidate intricate relations between numerous diseases associated with the overexpression of PTP1B, as we believe that it is of the utmost significance to establish and follow a brand-new holistic approach in the treatment of interconnected conditions. With this in mind, this comprehensive review aims to validate the PTP1B enzyme as a promising molecular target, and to reinforce future research in this direction.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 1 , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Neoplasias/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/enzimologia , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/enzimologia , Animais , Transdução de Sinais
7.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000313

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a non-receptor tyrosine phosphatase best known for its role in regulating insulin and leptin signalling. Recently, knowledge on the role of PTP1B as a major regulator of multiple signalling pathways involved in cell growth, proliferation, viability and metabolism has expanded, and PTP1B is recognised as a therapeutic target in several human disorders, including diabetes, obesity, cardiovascular diseases and hematopoietic malignancies. The function of PTP1B in the immune system was largely overlooked until it was discovered that PTP1B negatively regulates the Janus kinase-a signal transducer and activator of the transcription (JAK/STAT) signalling pathway, which plays a significant role in modulating immune responses. PTP1B is now known to determine the magnitude of many signalling pathways that drive immune cell activation and function. As such, PTP1B inhibitors are being developed and tested in the context of inflammation and autoimmune diseases. Here, we provide an up-to-date summary of the molecular role of PTP1B in regulating immune cell function and how targeting its expression and/or activity has the potential to change the outcomes of immune-mediated and inflammatory disorders.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 1 , Transdução de Sinais , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Animais , Inflamação/metabolismo , Inflamação/imunologia , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo
8.
Structure ; 32(8): 1231-1238.e4, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38861991

RESUMO

Due to their low binding affinities, detecting small-molecule fragments bound to protein structures from crystallographic datasets has been a challenge. Here, we report a trove of 65 new fragment hits for PTP1B, an "undruggable" therapeutic target enzyme for diabetes and cancer. These structures were obtained from computational analysis of data from a large crystallographic screen, demonstrating the power of this approach to elucidate many (∼50% more) "hidden" ligand-bound states of proteins. Our new structures include a fragment hit found in a novel binding site in PTP1B with a unique location relative to the active site, one that links adjacent allosteric sites, and, perhaps most strikingly, a fragment that induces long-range allosteric protein conformational responses. Altogether, our research highlights the utility of computational analysis of crystallographic data, makes publicly available dozens of new ligand-bound structures of a high-value drug target, and identifies novel aspects of ligandability and allostery in PTP1B.


Assuntos
Sítio Alostérico , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Cristalografia por Raios X , Humanos , Ligantes , Domínio Catalítico , Modelos Moleculares , Regulação Alostérica , Sítios de Ligação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Conformação Proteica
9.
Chem Biodivers ; 21(8): e202400699, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38860322

RESUMO

Astragalus kurdicus Boiss. roots are used in folk medicine for antidiabetic purposes. Different Astragalus plant metabolites have a notable potential for antidiabetic activity through varying mechanisms. Herein, this study is designed to assess the antidiabetic activity of Astragalus kurdicus total (AKM: methanol extract, yield: 14.53 %) and sub-extracts (AKB: n-butanol, AKC: chloroform, AKW: water, AKH: hexane extracts), utilizing a range of diabetes-related in vitro methodologies, and to investigate the chemical composition of the plant. The highest astragaloside and saponin content was seen in AKB extract. Among the measured saponins, the abundance of Astragaloside IV (27.41 µg/mg in AKM) was the highest in high-performance thin-layer chromatography (HPTLC) analysis. Furthermore, flavonoid-rich AKC was found to be mostly responsible for the high antioxidant activity. According to the results of the activity tests, AKW was the most active extract in protein tyrosine phosphatase 1 B (PTP1B), dipeptidyl peptidase IV (DPP4), and α-amylase inhibition tests (percent inhibitions are: 87.17 %, 82.4 %, and 91.49 % respectively, at 1 mg/mL). AKM and AKW demonstrated the highest efficacy in stimulating the growth of prebiotic microorganisms and preventing the formation of advanced glycation end products (AGEs). Thus, for the first time, the antidiabetic activity of A. kurdicus was evaluated from various perspectives.


Assuntos
Astrágalo , Hipoglicemiantes , Extratos Vegetais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Astrágalo/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Saponinas/farmacologia , Saponinas/química , Saponinas/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação
10.
Talanta ; 277: 126399, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876030

RESUMO

The misregulation of protein phosphatases is a key factor in the development of many human diseases, notably cancers. Here, based on a 100 MHz quartz crystal microbalance (QCM) biosensing platform, the dephosphorylation process of phosphopeptide (P-peptide) caused by protein tyrosine phosphatase 1B (PTP1B) was monitored in real time for the first time and PTP1B activity was assayed rapidly and sensitively. The QCM chip, coated with a gold (Au) film, was used to immobilized thiol-labeled single-stranded 5'-phosphate-DNAs (P-DNA) through Au-S bond. The P-peptide, specific to PTP1B, was then connected to the P-DNA via chelation between Zr4+ and phosphate groups. When PTP1B was injected into the QCM flow cell where the P-peptide/Zr4+/MCH/P-DNA/Au chip was placed, the P-peptide was dephosphorylated and released from the Au chip surface, resulting in an increase in the frequency of the QCM Au chip. This allowed the real-time monitoring of the P-peptide dephosphorylation process and sensitive detection of PTP1B activity within 6 min with a linear detection range of 0.01-100 pM and a detection limit of 0.008 pM. In addition, the maximum inhibitory ratios of inhibitors were evaluated using this proposed 100 MHz QCM biosensor. The developed 100 MHz QCM biosensing platform shows immense potential for early diagnosis of diseases related to protein phosphatases and the development of drugs targeting protein phosphatases.


Assuntos
Técnicas Biossensoriais , Fosfopeptídeos , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Técnicas de Microbalança de Cristal de Quartzo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/análise , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Técnicas de Microbalança de Cristal de Quartzo/métodos , Fosfopeptídeos/análise , Técnicas Biossensoriais/métodos , Fosforilação , Humanos , Zircônio/química , Fatores de Tempo , Ouro/química , Ensaios Enzimáticos/métodos
11.
FEBS Lett ; 598(15): 1811-1838, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38724486

RESUMO

Tyrosine protein phosphatase non-receptor type 1 (PTP1B; also known as protein tyrosine phosphatase 1B) is a member of the protein tyrosine phosphatase (PTP) family and is a soluble enzyme that plays an essential role in different physiological processes, including the regulation of metabolism, specifically in insulin and leptin sensitivity. PTP1B is crucial in the pathogenesis of type 2 diabetes mellitus and obesity. These biological functions have made PTP1B validated as an antidiabetic and anti-obesity, and potentially anticancer, molecular target. Four main approaches aim to inhibit PTP1B: orthosteric, allosteric, bidentate inhibition, and PTPN1 gene silencing. Developing a potent and selective PTP1B inhibitor is still challenging due to the enzyme's ubiquitous expression, subcellular location, and structural properties. This article reviews the main advances in the study of PTP1B since it was first isolated in 1988, as well as recent contextual information related to the PTP family to which this protein belongs. Furthermore, we offer an overview of the role of PTP1B in diabetes and obesity, and the challenges to developing selective, effective, potent, bioavailable, and cell-permeable compounds that can inhibit the enzyme.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores Enzimáticos , Hipoglicemiantes , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Animais , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/enzimologia , Obesidade/genética
12.
Protein Sci ; 33(6): e5024, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801229

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for obesity, diabetes, and certain types of cancer. In particular, allosteric inhibitors hold potential for therapeutic use, but an incomplete understanding of conformational dynamics and allostery in this protein has hindered their development. Here, we interrogate solution dynamics and allosteric responses in PTP1B using high-resolution hydrogen-deuterium exchange mass spectrometry (HDX-MS), an emerging and powerful biophysical technique. Using HDX-MS, we obtain a detailed map of backbone amide exchange that serves as a proxy for the solution dynamics of apo PTP1B, revealing several flexible loops interspersed among more constrained and rigid regions within the protein structure, as well as local regions that exchange faster than expected from their secondary structure and solvent accessibility. We demonstrate that our HDX rate data obtained in solution adds value to estimates of conformational heterogeneity derived from a pseudo-ensemble constructed from ~200 crystal structures of PTP1B. Furthermore, we report HDX-MS maps for PTP1B with active-site versus allosteric small-molecule inhibitors. These maps suggest distinct and widespread effects on protein dynamics relative to the apo form, including changes in locations distal (>35 Å) from the respective ligand binding sites. These results illuminate that allosteric inhibitors of PTP1B can induce unexpected changes in dynamics that extend beyond the previously understood allosteric network. Together, our data suggest a model of BB3 allostery in PTP1B that combines conformational restriction of active-site residues with compensatory liberation of distal residues that aid in entropic balancing. Overall, our work showcases the potential of HDX-MS for elucidating aspects of protein conformational dynamics and allosteric effects of small-molecule ligands and highlights the potential of integrating HDX-MS alongside other complementary methods, such as room-temperature X-ray crystallography, NMR spectroscopy, and molecular dynamics simulations, to guide the development of new therapeutics.


Assuntos
Espectrometria de Massa com Troca Hidrogênio-Deutério , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Regulação Alostérica , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Modelos Moleculares , Domínio Catalítico
13.
J Med Chem ; 67(10): 8406-8419, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38723203

RESUMO

Forty-one 1,3,4-thiadiazolyl-containing thiazolidine-2,4-dione derivatives (MY1-41) were designed and synthesized as protein tyrosine phosphatase 1B (PTP1B) inhibitors with activity against diabetes mellitus (DM). All synthesized compounds (MY1-41) presented potential PTP1B inhibitory activities, with half-maximal inhibitory concentration (IC50) values ranging from 0.41 ± 0.05 to 4.68 ± 0.61 µM, compared with that of the positive control lithocholic acid (IC50 = 9.62 ± 0.14 µM). The most potent compound, MY17 (IC50 = 0.41 ± 0.05 µM), was a reversible, noncompetitive inhibitor of PTP1B. Circular dichroism spectroscopy and molecular docking were employed to analyze the binding interaction between MY17 and PTP1B. In HepG2 cells, MY17 treatment could alleviate palmitic acid (PA)-induced insulin resistance by upregulating the expression of phosphorylated insulin receptor substrate and protein kinase B. In vivo, oral administration of MY17 could reduce the fasting blood glucose level and improve glucose tolerance and dyslipidemia in mice suffering from DM.


Assuntos
Diabetes Mellitus Experimental , Hipoglicemiantes , Simulação de Acoplamento Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Tiazolidinedionas , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Animais , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Hipoglicemiantes/uso terapêutico , Células Hep G2 , Camundongos , Tiazolidinedionas/farmacologia , Tiazolidinedionas/química , Tiazolidinedionas/síntese química , Diabetes Mellitus Experimental/tratamento farmacológico , Relação Estrutura-Atividade , Masculino , Tiadiazóis/farmacologia , Tiadiazóis/química , Tiadiazóis/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Resistência à Insulina , Glicemia/efeitos dos fármacos , Glicemia/análise , Glicemia/metabolismo
14.
J Med Chem ; 67(9): 7569-7584, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38690687

RESUMO

PTP1B, a promising target for insulin sensitizers in type 2 diabetes treatment, can be effectively degraded using proteolysis-targeting chimera (PROTAC). This approach offers potential for long-acting antidiabetic agents. We report potent bifunctional PROTACs targeting PTP1B through the E3 ubiquitin ligase cereblon. Western blot analysis showed significant PTP1B degradation by PROTACs at concentrations from 5 nM to 5 µM after 48 h. Evaluation of five highly potent PROTACs revealed compound 75 with a longer PEG linker (23 atoms), displaying remarkable degradation activity after 48 and 72 h, with DC50 values of 250 nM and 50 nM, respectively. Compound 75 induced selective degradation of PTP1B, requiring engagement with both the target protein and CRBN E3 ligase, in a ubiquitination and proteasome-dependent manner. It significantly reduced blood glucose AUC0-2h to 29% in an oral glucose tolerance test and activated the IRS-1/PI3K/Akt signaling pathway in HepG2 cells, showing promise for long-term antidiabetic therapy.


Assuntos
Hipoglicemiantes , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteólise , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Descoberta de Drogas , Células Hep G2 , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167227, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38733774

RESUMO

Olanzapine (OLA) is a highly obesogenic second-generation antipsychotic (SGA). Recently we demonstrated that, contrarily to OLA oral treatment, intraperitoneal (i.p.) administration resulted in weight loss and absence of hepatic steatosis in wild-type (WT) and protein tyrosine phosphatase 1B (PTP1B)-deficient (KO) male mice. This protection relied on two central-peripheral axes connecting hypothalamic AMPK with brown/inguinal white adipose tissue (BAT/iWAT) uncoupling protein-1 (UCP-1) and hypothalamic JNK with hepatic fatty acid synthase (FAS). Herein, we addressed OLA i.p. treatment effects in WT and PTP1B-KO female mice. Contrarily to our previous results in WT females receiving OLA orally, the i.p. treatment did not induce weight gain or hyperphagia. Molecularly, in females OLA failed to diminish hypothalamic phospho-AMPK or elevate BAT UCP-1 and energy expenditure (EE) despite the preservation of iWAT browning. Conversely, OLA i.p. treatment in ovariectomized mice reduced hypothalamic phospho-AMPK, increased BAT/iWAT UCP-1 and EE, and induced weight loss as occurred in males. Pretreatment of hypothalamic neurons with 17ß-estradiol (E2) abolished OLA effects on AMPK. Moreover, neither hypothalamic JNK activation nor hepatic FAS upregulation were found in WT and PTP1B-KO females receiving OLA via i.p. Importantly, this axis was reestablished upon ovariectomy. In this line, E2 prevented OLA-induced phospho-JNK in hypothalamic neurons. These results support the role of estrogens in sex-related dimorphism in OLA treatment. This study evidenced the benefit of OLA i.p. administration in preventing its obesogenic effects in female mice that could offer clinical value.


Assuntos
Tecido Adiposo Marrom , Estrogênios , Hipotálamo , Fígado , Camundongos Knockout , Olanzapina , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Desacopladora 1 , Animais , Feminino , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Estrogênios/metabolismo , Estrogênios/farmacologia , Olanzapina/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Masculino , Metabolismo Energético/efeitos dos fármacos , Injeções Intraperitoneais , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Estradiol/farmacologia , Ovariectomia
16.
Eur J Med Chem ; 270: 116390, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604096

RESUMO

Protein tyrosine phosphatases PTPN2 and PTPN1 (also known as PTP1B) have been implicated in a number of intracellular signaling pathways of immune cells. The inhibition of PTPN2 and PTPN1 has emerged as an attractive approach to sensitize T cell anti-tumor immunity. Two small molecule inhibitors have been entered the clinic. Here we report the design and development of compound 4, a novel small molecule PTPN2/N1 inhibitor demonstrating nanomolar inhibitory potency, good in vivo oral bioavailability, and robust in vivo antitumor efficacy.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Transdução de Sinais
17.
Nat Rev Endocrinol ; 20(6): 366-378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38519567

RESUMO

Protein tyrosine phosphatase 1B (PTP1B), a non-transmembrane phosphatase, has a major role in a variety of signalling pathways, including direct negative regulation of classic insulin and leptin signalling pathways, and is implicated in the pathogenesis of several cardiometabolic diseases and cancers. As such, PTP1B has been a therapeutic target for over two decades, with PTP1B inhibitors identified either from natural sources or developed throughout the years. Some of these inhibitors have reached phase I and/or II clinical trials in humans for the treatment of type 2 diabetes mellitus, obesity and/or metastatic breast cancer. In this Review, we summarize the cellular processes and regulation of PTP1B, discuss evidence from in vivo preclinical and human studies of the association between PTP1B and different disorders, and discuss outcomes of clinical trials. We outline challenges associated with the targeting of this phosphatase (which was, until the past few years, viewed as difficult to target), the current state of the field of PTP1B inhibitors (and dual phosphatase inhibitors) and future directions for manipulating the activity of this key metabolic enzyme.


Assuntos
Desenvolvimento de Medicamentos , Doenças Metabólicas , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo
18.
J Mol Graph Model ; 127: 108665, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38029632

RESUMO

Protein Tyrosine Phosphatase 1B (PTP1B), being negative regulator of insulin signaling pathways is considered as potential medicinal target. Selective and targeted inhibitors for PTP1B can impact the therapeutic options available to cure chronic illness such as diabetes. Significant research evidence including computational studies on the role of Zn2+ in binding and inhibiting the catalytic pocket have been reported along with experimental exploration of zinc(II) complexes as potent inhibitors of the enzyme. The current study has employed advanced computational methods to explore the binding and conformational orientation of zinc(II) complexes in the active site of apoenzyme, phosphoenzyme, and TSA 2 of PTP1B. Metal ion modeling was performed for zinc metal center (Zn-OOOO) utilizing a Python based Metal Center Parameter Builder (MCPB.py). The findings of the study suggest that zinc(II) complex binds to structurally and functionally important residues in open and closed conformation as well as in the phosphorylated state of the enzyme. It was observed that when the catalytic cysteine is phosphorylated in a closed conformation, the zinc(II) complex forms significant interactions with PHE182, VAL184, GLY183, and PRO180 while pushing away Q-loop GLN262 which is crucial for the hydrolysis of phosphoenzyme. Subsequently, the reported inhibitor has also demonstrated its potential to function as allosteric modulator of the enzyme occupying catalytic WPD loop residues. The study uncovers putative binding sites of zinc-containing drugs and gives insight into the size and design of such compounds which keeps them accessible and anchored in the vicinity of active site residues. Reported inhibitor offers enhanced selectivity and inhibition in all three states of the enzyme in contrast to zinc ions which can only impede enzyme in the phosphorylated state. In addition to this, investigation of ASP265→GLU265 mutation reveals the role of GLU265 in affecting the flexibility of WPD loop residues highlighting it as loss-of-function mutation. Our results hints towards a metallodrug approach that builds on the research evidence of inhibition effects of Zn2+ in the binding pocket of PTP1B. The findings presented are noteworthy, not just due to their significant relevance for clinical application, but also for the design and synthesis of novel zinc(II) complexes.


Assuntos
Hipoglicemiantes , Zinco , Simulação de Dinâmica Molecular , Sítios de Ligação , Domínio Catalítico , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Inibidores Enzimáticos/química
19.
J Mol Graph Model ; 127: 108695, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38118354

RESUMO

Overexpression of protein tyrosine phosphatase 1B (PTP1B) is the major cause of various diseases such as diabetes, obesity, and cancer. PTP1B has been identified as a negative regulator of the insulin signaling cascade, thereby causing diabetes. Numerous anti-diabetic medications based on thiazolidinedione have been successfully developed; however, 2,4-thiazolidinedione (2,4-TZD) scaffolds have been reported as potential PTP1B inhibitors for the manifestation of type 2 diabetes mellitus involving insulin resistance. In the present study, we have employed amalgamated approach involving MD-simulation studies (100 ns) as well as Gaussian field-based 3D-QSAR to develop a pharmacophoric model of 2,4-TZD as potent PTP1B inhibitors. MD simulation studies of the most potent compound in the PTP1B (PDB Id: 2QBS) binding pocket revealed that compound 43 was stable in the binding pocket and demonstrated excellent binding efficacy within the active site pocket. MM/GBSA results revealed that compound 43, bearing C-5 arylidine substitution, strongly bound to the target as compared to rosiglitazone with ΔGMM/GBSA difference of -11.13 kcal/mol. PCA, Rg, RMSF, RMSD, and SASA were analyzed from the complex's trajectories to anticipate the simulation outcome. We have suggested a series of 2,4-TZD as possible PTP1B inhibitors based on the results of MD simulation and 3D-QSAR studies.


Assuntos
Diabetes Mellitus Tipo 2 , Tiazolidinedionas , Humanos , Simulação de Dinâmica Molecular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Relação Quantitativa Estrutura-Atividade , Inibidores Enzimáticos/química , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Simulação de Acoplamento Molecular
20.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119590, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37730132

RESUMO

Glomerular podocytes are instrumental for the barrier function of the kidney, and podocyte injury contributes to proteinuria and the deterioration of renal function. Protein tyrosine phosphatase 1B (PTP1B) is an established metabolic regulator, and the inactivation of this phosphatase mitigates podocyte injury. However, there is a paucity of data regarding the substrates that mediate PTP1B actions in podocytes. This study aims to uncover novel substrates of PTP1B in podocytes and validate a leading candidate. To this end, using substrate-trapping and mass spectroscopy, we identified putative substrates of this phosphatase and investigated the actin cross-linking cytoskeletal protein alpha-actinin4. PTP1B and alpha-actinin4 co-localized in murine and human glomeruli and transiently transfected E11 podocyte cells. Additionally, podocyte PTP1B deficiency in vivo and culture was associated with elevated tyrosine phosphorylation of alpha-actinin4. Conversely, reconstitution of the knockdown cells with PTP1B attenuated alpha-actinin4 tyrosine phosphorylation. We demonstrated co-association between alpha-actinin4 and the PTP1B substrate-trapping mutant, which was enhanced upon insulin stimulation and disrupted by vanadate, consistent with an enzyme-substrate interaction. Moreover, we identified alpha-actinin4 tandem tyrosine residues 486/487 as mediators of its interaction with PTP1B. Furthermore, knockdown studies in E11 cells suggest that PTP1B and alpha-actinin4 are modulators of podocyte motility. These observations indicate that PTP1B and alpha-actinin4 are likely interacting partners in a signaling node that modulates podocyte function. Targeting PTP1B and plausibly this one of its substrates may represent a new therapeutic approach for podocyte injury that warrants additional investigation.


Assuntos
Podócitos , Humanos , Animais , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Células Epiteliais , Monoéster Fosfórico Hidrolases , Tirosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA