Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 162(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33963381

RESUMO

The WNT family of proteins is crucial in numerous developmental pathways and tissue homeostasis. WNT4, in particular, is uniquely implicated in the development of the female phenotype in the fetus, and in the maintenance of müllerian and reproductive tissues. WNT4 dysfunction or dysregulation can drive sex-reversal syndromes, highlighting the key role of WNT4 in sex determination. WNT4 is also critical in gynecologic pathologies later in life, including several cancers, uterine fibroids, endometriosis, and infertility. The role of WNT4 in normal decidualization, implantation, and gestation is being increasingly appreciated, while aberrant activation of WNT4 signaling is being linked both to gynecologic and breast cancers. Notably, single-nucleotide polymorphisms (SNPs) at the WNT4 gene locus are strongly associated with these pathologies and may functionally link estrogen and estrogen receptor signaling to upregulation and activation of WNT4 signaling. Importantly, in each of these developmental and disease states, WNT4 gene expression and downstream WNT4 signaling are regulated and executed by myriad tissue-specific pathways. Here, we review the roles of WNT4 in women's health with a focus on sex development, and gynecologic and breast pathologies, and our understanding of how WNT4 signaling is controlled in these contexts. Defining WNT4 functions provides a unique opportunity to link sex-specific signaling pathways to women's health and disease.


Assuntos
Doenças dos Genitais Femininos , Genitália Feminina , Proteína Wnt4/fisiologia , Saúde da Mulher , Animais , Neoplasias da Mama/genética , Feminino , Doenças dos Genitais Femininos/genética , Humanos , Glândulas Mamárias Humanas/fisiologia , Camundongos , Mutação , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Diferenciação Sexual/fisiologia , Desenvolvimento Sexual/fisiologia , Útero/fisiologia , Proteína Wnt4/genética
2.
J Am Soc Nephrol ; 30(11): 2177-2190, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31548351

RESUMO

BACKGROUND: Deletions or inactivating mutations of the cystinosin gene CTNS lead to cystine accumulation and crystals at acidic pH in patients with nephropathic cystinosis, a rare lysosomal storage disease and the main cause of hereditary renal Fanconi syndrome. Early use of oral cysteamine to prevent cystine accumulation slows progression of nephropathic cystinosis but it is a demanding treatment and not a cure. The source of cystine accumulating in kidney proximal tubular cells and cystine's role in disease progression are unknown. METHODS: To investigate whether receptor-mediated endocytosis by the megalin/LRP2 pathway of ultrafiltrated, disulfide-rich plasma proteins could be a source of cystine in proximal tubular cells, we used a mouse model of cystinosis in which conditional excision of floxed megalin/LRP2 alleles in proximal tubular cells of cystinotic mice was achieved by a Cre-LoxP strategy using Wnt4-CRE. We evaluated mice aged 6-9 months for kidney cystine levels and crystals; histopathology, with emphasis on swan-neck lesions and proximal-tubular-cell apoptosis and proliferation (turnover); and proximal-tubular-cell expression of the major apical transporters sodium-phosphate cotransporter 2A (NaPi-IIa) and sodium-glucose cotransporter-2 (SGLT-2). RESULTS: Wnt4-CRE-driven megalin/LRP2 ablation in cystinotic mice efficiently blocked kidney cystine accumulation, thereby preventing lysosomal deformations and crystal deposition in proximal tubular cells. Swan-neck lesions were largely prevented and proximal-tubular-cell turnover was normalized. Apical expression of the two cotransporters was also preserved. CONCLUSIONS: These observations support a key role of the megalin/LRP2 pathway in the progression of nephropathic cystinosis and provide a proof of concept for the pathway as a therapeutic target.


Assuntos
Cistinose/etiologia , Endocitose , Túbulos Renais Proximais/patologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Animais , Cistina/metabolismo , Cistinose/prevenção & controle , Progressão da Doença , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Proteína Wnt4/fisiologia
3.
FASEB J ; 33(9): 10126-10139, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31216173

RESUMO

Growing evidence shows that the inhibitory effect of inflammatory cytokines on new bone formation by osteogenic precursor cells is a critical cause of net bone-density reduction. Melatonin has been proven to be a potential therapeutic candidate for osteoporosis. However, whether it is capable of antagonizing the suppressing effect of inflammatory cytokines on osteogenic precursor cells is so far elusive. In this study, using the cell culture system of human bone marrow stromal cells and MC3T3-E1 preosteoblasts, we recorded the following vital observations that provided insights of melatonin-induced bone formation: 1) melatonin induced bone formation in both normal and inflammatory conditions; 2) Wnt4 was essential for melatonin-induced bone formation in inflammatory stimulation; 3) melatonin- and Wnt4-induced bone formation occurred via activation of ß-catenin and p38-JNK MAPK pathways by interaction with a distinct frizzled LDL receptor-related protein complex; 4) melatonin suppressed the inhibitory effect of NF-κB on osteogenesis in a Wnt4-dependent manner; and 5) melatonin induced Wnt4 expression through the ERK1/2-Pax2-Egr1 pathway. In summary, we showed a novel mechanism of melatonin-induced bone formation in an inflammatory environment. Melatonin-induced Wnt4 expression is essential for its osteoinductive effect and the inhibitory effect of NF-κB on bone formation. Our novel findings may provide useful information for its potential translational application.-Li, X., Li, Z., Wang, J., Li, Z., Cui, H., Dai, G., Chen, S., Zhang, M., Zheng, Z., Zhan, Z., Liu, H. Wnt4 signaling mediates protective effects of melatonin on new bone formation in an inflammatory environment.


Assuntos
Melatonina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , Proteína Wnt4/fisiologia , Animais , Cálcio/metabolismo , Linhagem Celular , Receptores Frizzled/fisiologia , Regulação da Expressão Gênica , Humanos , Inflamação , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , NF-kappa B/fisiologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Receptores de LDL/fisiologia , Receptores Wnt/efeitos dos fármacos , Receptores Wnt/fisiologia , Fator de Necrose Tumoral alfa/farmacologia
4.
PLoS One ; 11(1): e0147171, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26794322

RESUMO

The Wnts can be considered as candidates for the Congenital Anomaly of Kidney and Urinary Tract, CAKUT diseases since they take part in the control of kidney organogenesis. Of them Wnt5a is expressed in ureteric bud (UB) and its deficiency leads to duplex collecting system (13/90) uni- or bilateral kidney agenesis (10/90), hypoplasia with altered pattern of ureteric tree organization (42/90) and lobularization defects with partly fused ureter trunks (25/90) unlike in controls. The UB had also notably less tips due to Wnt5a deficiency being at E15.5 306 and at E16.5 765 corresponding to 428 and 1022 in control (p<0.02; p<0.03) respectively. These changes due to Wnt5a knock out associated with anomalies in the ultrastructure of the UB daughter epithelial cells. The basement membrane (BM) was malformed so that the BM thickness increased from 46.3 nm to 71.2 nm (p<0.01) at E16.5 in the Wnt5a knock out when compared to control. Expression of a panel of BM components such as laminin and of type IV collagen was also reduced due to the Wnt5a knock out. The P4ha1 gene that encodes a catalytic subunit of collagen prolyl 4-hydroxylase I (C-P4H-I) in collagen synthesis expression and the overall C-P4H enzyme activity were elevated by around 26% due to impairment in Wnt5a function from control. The compound Wnt5a+/-;P4ha1+/- embryos demonstrated Wnt5a-/- related defects, for example local hyperplasia in the UB tree. A R260H WNT5A variant was identified from renal human disease cohort. Functional studies of the consequence of the corresponding mouse variant in comparison to normal ligand reduced Wnt5a-signalling in vitro. Together Wnt5a has a novel function in kidney organogenesis by contributing to patterning of UB derived collecting duct development contributing putatively to congenital disease.


Assuntos
Membrana Basal/patologia , Células Epiteliais/citologia , Túbulos Renais Coletores/patologia , Ureter/embriologia , Ureter/metabolismo , Anormalidades Urogenitais/fisiopatologia , Refluxo Vesicoureteral/fisiopatologia , Proteínas Wnt/fisiologia , Adolescente , Animais , Membrana Basal/metabolismo , Células Cultivadas , Criança , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Técnicas Imunoenzimáticas , Hibridização In Situ , Túbulos Renais Coletores/metabolismo , Camundongos , Camundongos Knockout , Morfogênese , Mutação/genética , Conformação Proteica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Wnt/química , Proteína Wnt-5a , Proteína Wnt4/fisiologia
5.
Exp Cell Res ; 332(2): 163-78, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25645944

RESUMO

The indifferent mammalian embryonic gonad generates an ovary or testis, but the factors involved are still poorly known. The Wnt-4 signal represents one critical female determinant, since its absence leads to partial female-to-male sex reversal in mouse, but its signalling is as well implicated in the testis development. We used the Wnt-4 deficient mouse as a model to identify candidate gonadogenesis genes, and found that the Notum, Phlda2, Runx-1 and Msx1 genes are typical of the wild-type ovary and the Osr2, Dach2, Pitx2 and Tacr3 genes of the testis. Strikingly, the expression of these latter genes becomes reversed in the Wnt-4 knock-out ovary, suggesting a role in ovarian development. We identified the transcription factor Runx-1 as a Wnt-4 signalling target gene, since it is expressed in the ovary and is reduced upon Wnt-4 knock-out. Consistent with this, introduction of the Wnt-4 signal into early ovary cells ex vivo induces Runx-1 expression, while conversely Wnt-4 expression is down-regulated in the absence of Runx-1. We conclude that the Runx-1 gene can be a Wnt-4 signalling target, and that Runx-1 and Wnt-4 are mutually interdependent in their expression. The changes in gene expression due to the absence of Wnt-4 in gonads reflect the sexually dimorphic role of this signal and its complex gene network in mammalian gonad development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Ovário/metabolismo , Proteína Wnt4/fisiologia , Animais , Sequência de Bases , Sítios de Ligação , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Feminino , Expressão Gênica , Masculino , Camundongos Knockout , Ovário/embriologia , Processos de Determinação Sexual/genética , Técnicas de Cultura de Tecidos , Via de Sinalização Wnt
6.
Oncogene ; 32(35): 4110-9, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23027131

RESUMO

Aberrant motility and invasive ability are relevant hallmarks of malignant tumor cells. Pathways regulating the movement of cancer cells from the site of primary tumor toward adjacent and/or distant tissues are not entirely defined. By using a model of malignant transformation induced by Ras, we identified Wnt4 as an early target of Ras oncogenic signaling. Here we show that Wnt4 is repressed by Ras and that forced Wnt4 expression inhibits Ras-induced cell motility. Accordingly, we found that Wnt4 is downregulated in human anaplastic thyroid carcinomas, the most malignant and metastatic thyroid cancer histotype. Wnt4 interferes with Ras-induced actin cytoskeleton reorganization through non-canonical pathways, by altering the balance between the activation of different Rho-family small guanosine triphosphatases (GTPases). Finally, we demonstrate that Wnt4 is post-transcriptionally repressed by miR-24, a Ras-induced micro RNA (miRNA) targeting the 3'-untranslated region (UTR) of Wnt4. Taken together our data highlight a novel Ras-regulated miRNA-dependent circuitry regulating the motile phenotype of cancer cells.


Assuntos
Movimento Celular , Transformação Celular Neoplásica , Genes ras , Glândula Tireoide/patologia , Proteína Wnt4/fisiologia , Animais , Citoesqueleto/química , Humanos , Fosfatidilinositol 3-Quinases/fisiologia , Ratos , Neoplasias da Glândula Tireoide/patologia
7.
Blood ; 118(19): 5163-73, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21937690

RESUMO

Thymus atrophy is the most common immunopathology in humans, and its occurrence is hastened by several factors that coalesce in patients receiving chemotherapy and most of all in recipients of hematopoietic cell transplantation. We have shown previously that posthematopoietic cell transplantation thymic function was improved by retroviral overexpression of Wnt4 in donor hematopoietic cells. Here, by using both conventional and conditional null mutant mice, we show that Wnt4 regulates steady-state thymic cellularity by a thymic epithelial cell (TEC)-dependent mechanism. The absence of Wnt4 suppressed fetal and postnatal thymic expansion and resulted in decreased TEC numbers, an alteration of the medullary-to-cortical TEC ratio, and a disproportionate loss of the most immature cKit(hi) thymocyte precursors. Wnt4 also is implicated in the maintenance of adult thymopoiesis, although the impact of its deletion once thymic involution has been initiated is more subtle. Together, our results show that Wnt4 controls thymic size by modulating TEC expansion and the earliest, TEC-dependent steps of thymocyte development both in the fetal and postnatal thymus. Wnt4 and its downstream signaling pathways could thus represent interesting candidates to improve thymic output in subjects with thymic atrophy.


Assuntos
Linfopoese/fisiologia , Timo/citologia , Timo/fisiologia , Proteína Wnt4/fisiologia , Animais , Células-Tronco Embrionárias/citologia , Células Epiteliais/citologia , Feminino , Células-Tronco Hematopoéticas/citologia , Humanos , Linfopoese/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Gravidez , Timo/embriologia , Proteína Wnt4/deficiência , Proteína Wnt4/genética
8.
J Clin Endocrinol Metab ; 96(10): 3106-14, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21849527

RESUMO

CONTEXT: CTNNB1/ß-catenin mutations and activation of Wnt/ß-catenin pathway are frequent in adult adrenocortical tumors (ACT), but data on childhood ACT are lacking. OBJECTIVE: The aim of the study was to investigate the presence of Wnt/ß-catenin pathway abnormalities in childhood ACT. PATIENTS AND METHODS: Clinicopathological findings and outcome of 62 childhood ACT patients were analyzed regarding CTNNB1 mutations and the expression of Wnt-related genes (CTNNB1; WNT4, a Wnt ligand; SFRP1, DKK3, and AXIN1, Wnt inhibitors; TCF7, a transcription factor; and MYC and WISP2, target genes) by quantitative PCR and immunohistochemistry. RESULTS: CTNNB1-activating mutations were found in only four of 62 ACT (6%), all of them harboring TP53 mutation. There was association between the presence of CTNNB1 mutations and death (P = 0.02). Diffuse ß-catenin accumulation was found in 71% of ACT, even in ACT without CTNNB1 mutations. Compared to normal adrenals, ACT presented increased expression of CTNNB1 (P = 0.008) and underexpression of Wnt inhibitor genes: DKK3 (P < 0.0001), SFRP1 (P = 0.05), and AXIN1 (P = 0.04). With regard to Wnt/ß-catenin target genes, ACT presented increased expression of WISP2 but lower expression of MYC. Higher overall survival was associated with underexpression of SFRP1 (P = 0.01), WNT4 (P = 0.004), and TCF7 (P < 0.01). CONCLUSIONS: CTNNB1 mutations are not common in childhood ACT but appear to associate with poor prognosis. Nevertheless, most ACT exhibit increased expression of ß-catenin and WISP2 and reduced expression of Wnt inhibitor genes (DKK3, SFRP1, and AXIN1). Thus, in addition to CTNNB1 mutations, other genetic events affecting the Wnt/ß-catenin pathway may be involved in childhood adrenocortical tumorigenesis.


Assuntos
Neoplasias do Córtex Suprarrenal/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Adolescente , Neoplasias do Córtex Suprarrenal/genética , Proteína Axina/fisiologia , Proteínas de Sinalização Intercelular CCN , Criança , Pré-Escolar , Estudos de Coortes , DNA/genética , DNA/isolamento & purificação , Feminino , Humanos , Imuno-Histoquímica , Lactente , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Masculino , Mutação/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Proteínas Repressoras , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Análise de Sobrevida , Fator 1 de Transcrição de Linfócitos T/fisiologia , Fatores de Transcrição/fisiologia , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/genética , Proteína Wnt4/fisiologia , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA