Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Oncol ; 60(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244192

RESUMO

Pyruvate kinase M2 (PKM2) plays an important role in the consumption of glucose and the production of lactic acid, the striking feature of cancer metabolism. The association of PKM2 with osteosarcoma (OS) has been reported but its role in OS has yet to be elucidated. To study this, PKM2­bound RNAs in HeLa cells, a type of cancer cells widely used in the study of molecular function and mechanism, were obtained. Peak calling analysis revealed that PKM2 binds to long noncoding RNAs (lncRNAs), which are associated with cancer pathogenesis and development. Validation of the PKM2­lncRNA interaction in the human OS cell line revealed that lncRNA colon cancer associated transcript­1 (lncCCAT1) interacted with PKM2, which upregulated the phosphorylation of sterol regulatory element­binding protein 2 (SREBP2). These factors promoted the Warburg effect, lipogenesis, and OS cell growth. PKM2 appears to be a key regulator in OS by binding to lncCCAT1. This further extends the biological functions of PKM2 in tumorigenesis and makes it a novel potential therapeutic for OS.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Osteossarcoma/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Humanos , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/genética , Osteossarcoma/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Hormônios Tireóideos/genética , Efeito Warburg em Oncologia/efeitos dos fármacos , Proteínas de Ligação a Hormônio da Tireoide
2.
Nutrients ; 12(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526887

RESUMO

This study was aimed at investigating the hypocholesterolemic effects of extra virgin olive oil (EVOO) phenols and the mechanisms behind the effect. Two phenolic extracts were prepared from EVOO of different cultivars and analyzed using the International Olive Council (IOC) official method for total phenols, a recently validated hydrolytic procedure for total hydroxytyrosol and tyrosol, and 1H-NMR analysis in order to assess their secoiridoid profiles. Both of the extracts inhibited in vitro the 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGCoAR) activity in a dose-dependent manner. After the treatment of human hepatic HepG2 cells (25 µg/mL), they increased the low-density lipoprotein (LDL) receptor protein levels through the activation of the sterol regulatory element binding proteins (SREBP)-2 transcription factor, leading to a better ability of HepG2 cells to uptake extracellular LDL molecules with a final hypocholesterolemic effect. Moreover, both of the extracts regulated the intracellular HMGCoAR activity through the increase of its phosphorylation by the activation of AMP-activated protein kinase (AMPK)-pathways. Unlike pravastatin, they did not produce any unfavorable effect on proprotein convertase subtilisin/kexin 9 (PCSK9) protein level. Finally, the fact that extracts with different secoiridoid profiles induce practically the same biological effects suggests that the hydroxytyrosol and tyrosol derivatives may have similar roles in hypocholesterolemic activity.


Assuntos
Anticolesterolemiantes/farmacologia , Azeite de Oliva/química , Fenóis/farmacologia , Receptores de LDL/efeitos dos fármacos , Adenilato Quinase/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células Hep G2 , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Iridoides/análise , Lipoproteínas LDL/metabolismo , Fígado/metabolismo , Extratos Vegetais/química , Receptores de LDL/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
3.
Mol Psychiatry ; 22(3): 407-416, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27001618

RESUMO

Extensive evidence has indicated that a high rate of cholesterol biogenesis and abnormal neuronal energy metabolism play key roles in Alzheimer's disease (AD) pathogenesis. Here, for we believe the first time, we used osmotin, a plant protein homolog of mammalian adiponectin, to determine its therapeutic efficacy in different AD models. Our results reveal that osmotin treatment modulated adiponectin receptor 1 (AdipoR1), significantly induced AMP-activated protein kinase (AMPK)/Sirtuin 1 (SIRT1) activation and reduced SREBP2 (sterol regulatory element-binding protein 2) expression in both in vitro and in vivo AD models and in Adipo-/- mice. Via the AdipoR1/AMPK/SIRT1/SREBP2 signaling pathway, osmotin significantly diminished amyloidogenic Aß production, abundance and aggregation, accompanied by improved pre- and post-synaptic dysfunction, cognitive impairment, memory deficits and, most importantly, reversed the suppression of long-term potentiation in AD mice. Interestingly, AdipoR1, AMPK and SIRT1 silencing not only abolished osmotin capability but also further enhanced AD pathology by increasing SREBP2, amyloid precursor protein (APP) and ß-secretase (BACE1) expression and the levels of toxic Aß production. However, the opposite was true for SREBP2 when silenced using small interfering RNA in APPswe/ind-transfected SH-SY5Y cells. Similarly, osmotin treatment also enhanced the non-amyloidogenic pathway by activating the α-secretase gene that is, ADAM10, in an AMPK/SIRT1-dependent manner. These results suggest that osmotin or osmotin-based therapeutic agents might be potential candidates for AD treatment.


Assuntos
Proteínas de Plantas/uso terapêutico , Proteína de Ligação a Elemento Regulador de Esterol 2/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Humanos , Potenciação de Longa Duração/fisiologia , Transtornos da Memória/genética , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas de Plantas/farmacologia , Proteínas de Plantas/fisiologia , Receptores de Adiponectina/efeitos dos fármacos , Receptores de Adiponectina/metabolismo , Transdução de Sinais/genética , Sirtuína 1/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 2/efeitos dos fármacos
4.
Am J Physiol Renal Physiol ; 303(2): F266-78, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22573382

RESUMO

Renal proximal tubule injury is induced by agents/conditions known to cause endoplasmic reticulum (ER) stress, including cyclosporine A (CsA), an immunosuppressant drug with nephrotoxic effects. However, the underlying mechanism by which ER stress contributes to proximal tubule cell injury is not well understood. In this study, we report lipid accumulation, sterol regulatory element-binding protein-2 (SREBP-2) expression, and ER stress in proximal tubules of kidneys from mice treated with the classic ER stressor tunicamycin (Tm) or in human renal biopsy specimens showing CsA-induced nephrotoxicity. Colocalization of ER stress markers [78-kDa glucose regulated protein (GRP78), CHOP] with SREBP-2 expression and lipid accumulation was prominent within the proximal tubule cells exposed to Tm or CsA. Prolonged ER stress resulted in increased apoptotic cell death of lipid-enriched proximal tubule cells with colocalization of GRP78, SREBP-2, and Ca(2+)-independent phospholipase A(2) (iPLA(2)ß), an SREBP-2 inducible gene with proapoptotic characteristics. In cultured HK-2 human proximal tubule cells, CsA- and Tm-induced ER stress caused lipid accumulation and SREBP-2 activation. Furthermore, overexpression of SREBP-2 or activation of endogenous SREBP-2 in HK-2 cells stimulated apoptosis. Inhibition of SREBP-2 activation with the site-1-serine protease inhibitor AEBSF prevented ER stress-induced lipid accumulation and apoptosis. Overexpression of the ER-resident chaperone GRP78 attenuated ER stress and inhibited CsA-induced SREBP-2 expression and lipid accumulation. In summary, our findings suggest that ER stress-induced SREBP-2 activation contributes to renal proximal tubule cell injury by dysregulating lipid homeostasis.


Assuntos
Apoptose/fisiologia , Retículo Endoplasmático/fisiologia , Túbulos Renais Proximais/fisiopatologia , Metabolismo dos Lipídeos/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Estresse Fisiológico/fisiologia , Animais , Apoptose/efeitos dos fármacos , Biópsia , Células Cultivadas , Ciclosporina/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Homeostase/fisiologia , Humanos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Ligação a Elemento Regulador de Esterol 2/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Tunicamicina/farmacologia
5.
Br J Pharmacol ; 155(4): 596-605, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18852694

RESUMO

BACKGROUND AND PURPOSE: Mutations in the low-density lipoprotein receptor (LDLR) gene cause familial hypercholesterolaemia in humans and deletion of the LDLR induces lesion development in mice fed a high-fat diet. LDLR expression is predominantly regulated by sterol regulatory element-binding protein 2 (SREBP2). Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARalpha) ligand, belongs to a drug class used to treat dyslipidaemic patients. We have investigated the effects of fenofibrate on hepatic LDLR expression. EXPERIMENTAL APPROACH: The effects of fenofibrate on hepatic LDLR expression (mRNA and protein) and function were evaluated by both in vitro (with AML12 cells) and in vivo experiments in mice. KEY RESULTS: Fenofibrate increased LDLR expression and LDL binding in a mouse hepatoma cell line, AML12 cells. Fenofibrate restored sterol-inhibited hepatocyte LDLR expression. Mechanistic studies demonstrated that induction of LDLR expression by fenofibrate was dependent on PPARalpha and sterol regulatory elements (SRE). Specifically, fenofibrate induced LDLR expression by increasing maturation of SREBP2 and phosphorylation of protein kinase B (Akt) but had no effect on SREBP cleavage-activating protein. In vivo, a high-fat diet suppressed LDLR expression in mouse liver while elevating total and LDL cholesterol levels in plasma. However, fenofibrate restored LDLR expression inhibited by high-fat diets in the liver and reduced LDL cholesterol levels in plasma. CONCLUSIONS AND IMPLICATIONS: Our data suggest that fenofibrate increased hepatic LDLR expression in mice by a mechanism involving Akt phosphorylation and LDLR gene transcription mediated by SREBP2.


Assuntos
Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , PPAR alfa/efeitos dos fármacos , Receptores de LDL/efeitos dos fármacos , Animais , Linhagem Celular , Colesterol/sangue , LDL-Colesterol/sangue , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de LDL/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Transcrição Gênica/efeitos dos fármacos
6.
J Hepatol ; 45(5): 717-24, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16879892

RESUMO

BACKGROUND/AIMS: Alcohol-induced fatty liver is associated with induction of sterol response element binding proteins (SREBPs), transcription factors which regulate expression of genes of lipid synthesis. The contribution of SREBP-1c to alcohol-induced fatty liver and injury was studied. METHODS: Wild type and SREBP1c null mice were fed alcohol or control diet by intragastric infusion for 4 weeks. H&E and TUNEL staining, real-time PCR, RT-PCR, and immunoblotting were applied to analyze alcohol-induced liver injury. RESULTS: ALT, plasma homocysteine, liver cholesterol, and TUNEL positive hepatocytes were increased in alcohol-fed mice as compared to control in both genotypes. Liver triglycerides were increased 4-fold in alcohol-fed wild type mice (87.2+/-7.5 vs. control 22.3+/-3.1mg/g liver) but 1.8-fold in alcohol-fed null mice (27.9+/-4 vs. control 14.5+/-3.8 mg/g liver). SREBP-2 and HMG CoA reductase were higher in the null than in wild type. Betaine feeding prevented partially the alcohol-induced changes of hepatic lipids and injury in both genotypes. mRNA of Insig-1 was reduced in both genotypes fed alcohol. No change was detected for the SREBP cleavage-activating protein (Scap) or S1P in either genotype fed alcohol. CONCLUSIONS: The predominant mechanism of hepatic triglyceride accumulation in the intragastric alcohol fed mouse requires the participation of SREBP-1c. SREBP-2 regulated cholesterol accumulation still occurs.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Fígado Gorduroso Alcoólico/metabolismo , Hiper-Homocisteinemia/fisiopatologia , Lipogênese/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 2/fisiologia , Alanina Transaminase/sangue , Animais , Betaína/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Fígado Gorduroso Alcoólico/patologia , Proteínas de Choque Térmico/metabolismo , Homocisteína/sangue , Lipogênese/genética , Lipotrópicos/farmacologia , Fígado/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , Chaperonas Moleculares/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 2/efeitos dos fármacos , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA