Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 763
Filtrar
1.
Nat Commun ; 15(1): 7797, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242676

RESUMO

Ribosomal DNA (rDNA) encodes the ribosomal RNA genes and represents an intrinsically unstable genomic region. However, the underlying mechanisms and implications for genome integrity remain elusive. Here, we use Bloom syndrome (BS), a rare genetic disease characterized by DNA repair defects and hyper-unstable rDNA, as a model to investigate the mechanisms leading to rDNA instability. We find that in Bloom helicase (BLM) proficient cells, the homologous recombination (HR) pathway in rDNA resembles that in nuclear chromatin; it is initiated by resection, replication protein A (RPA) loading and BRCA2-dependent RAD51 filament formation. However, BLM deficiency compromises RPA-loading and BRCA1/2 recruitment to rDNA, but not RAD51 accumulation. RAD51 accumulates at rDNA despite depletion of long-range resection nucleases and rDNA damage results in micronuclei when BLM is absent. In summary, our findings indicate that rDNA is permissive to RAD51 accumulation in the absence of BLM, leading to micronucleation and potentially global genomic instability.


Assuntos
DNA Ribossômico , Instabilidade Genômica , Rad51 Recombinase , RecQ Helicases , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Humanos , RecQ Helicases/metabolismo , RecQ Helicases/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Recombinação Homóloga , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Reparo do DNA
2.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125953

RESUMO

Targeting CDC20 can enhance the radiosensitivity of tumor cells, but the function and mechanism of CDC20 on DNA damage repair response remains vague. To examine that issue, tumor cell lines, including KYSE200, KYSE450, and HCT116, were utilized to detect the expression, function, and underlying mechanism of CDC20 in radio-chemoresistance. Western blot and immunofluorescence staining were employed to confirm CDC20 expression and location, and radiation could upregulate the expression of CDC20 in the cell nucleus. The homologous recombination (HR) and non-homologous end joining (NHEJ) reporter gene systems were utilized to explore the impact of CDC20 on DNA damage repair, indicating that CDC20 could promote HR repair and radio/chemo-resistance. In the early stages of DNA damage, CDC20 stabilizes the RPA1 protein through protein-protein interactions, activating the ATR-mediated signaling cascade, thereby aiding in genomic repair. In the later stages, CDC20 assists in the subsequent steps of damage repair by the ubiquitin-mediated degradation of RPA1. CCK-8 and colony formation assay were used to detect the function of CDC20 in cell vitality and proliferation, and targeting CDC20 can exacerbate the increase in DNA damage levels caused by cisplatin or etoposide. A tumor xenograft model was conducted in BALB/c-nu/nu mice to confirm the function of CDC20 in vivo, confirming the in vitro results. In conclusion, this study provides further validation of the potential clinical significance of CDC20 as a strategy to overcome radio-chemoresistance via uncovering a novel role of CDC20 in regulating RPA1 during DNA damage repair.


Assuntos
Proteínas Cdc20 , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Tolerância a Radiação , Proteína de Replicação A , Humanos , Animais , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Camundongos , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Camundongos Nus , Reparo do DNA/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Células HCT116 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
3.
Nat Commun ; 15(1): 7197, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169038

RESUMO

Templated DNA repair that occurs during homologous recombination and replication stress relies on RAD51. RAD51 activity is positively regulated by BRCA2 and the RAD51 paralogs. The Shu complex is a RAD51 paralog-containing complex consisting of SWSAP1, SWS1, and SPIDR. We demonstrate that SWSAP1-SWS1 binds RAD51, maintains RAD51 filament stability, and enables strand exchange. Using single-molecule confocal fluorescence microscopy combined with optical tweezers, we show that SWSAP1-SWS1 decorates RAD51 filaments proficient for homologous recombination. We also find SWSAP1-SWS1 enhances RPA diffusion on ssDNA. Importantly, we show human sgSWSAP1 and sgSWS1 knockout cells are sensitive to pharmacological inhibition of PARP and APE1. Lastly, we identify cancer variants in SWSAP1 that alter Shu complex formation. Together, we show that SWSAP1-SWS1 stimulates RAD51-dependent high-fidelity repair and may be an important new cancer therapeutic target.


Assuntos
DNA de Cadeia Simples , Rad51 Recombinase , Proteína de Replicação A , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , Humanos , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Reparo do DNA , Ligação Proteica , Recombinação Homóloga , Imagem Individual de Molécula , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética
4.
J Struct Biol ; 216(3): 108115, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39117045

RESUMO

Human RAD52 protein binds DNA and is involved in genomic stability maintenance and several forms of DNA repair, including homologous recombination and single-strand annealing. Despite its importance, there are very few structural details about the variability of the RAD52 ring size and the RAD52 C-terminal protein-protein interaction domains. Even recent attempts to employ cryogenic electron microscopy (cryoEM) methods on full-length yeast and human RAD52 do not reveal interpretable structures for the C-terminal half that contains the replication protein A (RPA) and RAD51 binding domains. In this study, we employed the monodisperse purification of two RAD52 deletion constructs and small angle X-ray scattering (SAXS) to construct a structural model that includes RAD52's RPA binding domain. This model is of interest to DNA repair specialists as well as for drug development against HR-deficient cancers.


Assuntos
Ligação Proteica , Proteína Rad52 de Recombinação e Reparo de DNA , Proteína de Replicação A , Espalhamento a Baixo Ângulo , Humanos , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/química , Proteína de Replicação A/metabolismo , Proteína de Replicação A/química , Proteína de Replicação A/genética , Rad51 Recombinase/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/genética , Difração de Raios X/métodos , Reparo do DNA , Modelos Moleculares , Domínios Proteicos
5.
Proc Natl Acad Sci U S A ; 121(34): e2402262121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39145931

RESUMO

Homologous recombination (HR) is essential for the maintenance of genome stability. During HR, Replication Protein A (RPA) rapidly coats the 3'-tailed single-strand DNA (ssDNA) generated by end resection. Then, the ssDNA-bound RPA must be timely replaced by Rad51 recombinase to form Rad51 nucleoprotein filaments that drive homology search and HR repair. How cells regulate Rad51 assembly dynamics and coordinate RPA and Rad51 actions to ensure proper HR remains poorly understood. Here, we identified that Rtt105, a Ty1 transposon regulator, acts to stimulate Rad51 assembly and orchestrate RPA and Rad51 actions during HR. We found that Rtt105 interacts with Rad51 in vitro and in vivo and restrains the adenosine 5' triphosphate (ATP) hydrolysis activity of Rad51. We showed that Rtt105 directly stimulates dynamic Rad51-ssDNA assembly, strand exchange, and D-loop formation in vitro. Notably, we found that Rtt105 physically regulates the binding of Rad51 and RPA to ssDNA via different motifs and that both regulations are necessary and epistatic in promoting Rad51 nucleation, strand exchange, and HR repair. Consequently, disrupting either of the interactions impaired HR and conferred DNA damage sensitivity, underscoring the importance of Rtt105 in orchestrating the actions of Rad51 and RPA. Our work reveals additional layers of mechanisms regulating Rad51 filament dynamics and the coordination of HR.


Assuntos
DNA de Cadeia Simples , Rad51 Recombinase , Reparo de DNA por Recombinação , Proteína de Replicação A , Proteínas de Saccharomyces cerevisiae , Rad51 Recombinase/metabolismo , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ligação Proteica
6.
Sci Rep ; 14(1): 19791, 2024 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187637

RESUMO

The ATR kinase responds to elevated levels of single-stranded DNA (ssDNA) to activate the G2/M checkpoint, regulate origin utilization, preserve fork stability, and allow DNA repair to ensure genome integrity. The intrinsic replication stress in cancer cells makes this pathway an attractive therapeutic target. The ssDNA that drives ATR signaling is sensed by the ssDNA-binding protein replication protein A (RPA), which acts as a platform for ATRIP recruitment and subsequent ATR activation by TopBP1. We have developed chemical RPA inhibitors (RPAi) that block RPA-ssDNA interactions (RPA-DBi) and RPA protein-protein interactions (RPA-PPIi); both activities are required for ATR activation. Here, we biochemically reconstitute the ATR kinase signaling pathway and demonstrate that RPA-DBi and RPA-PPIi abrogate ATR-dependent phosphorylation of target proteins with selectivity advantages over active site ATR inhibitors. We demonstrate that RPA post-translational modifications (PTMs) impact ATR kinase activation but do not alter sensitivity to RPAi. Specifically, phosphorylation of RPA32 and TopBP1 stimulate, while RPA70 acetylation does not affect ATR phosphorylation of target proteins. Collectively, this work reveals the RPAi mechanism of action to inhibit ATR signaling that can be regulated by RPA PTMs and offers insight into the anti-cancer activity of ATR pathway-targeted cancer therapeutics.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , DNA de Cadeia Simples , Processamento de Proteína Pós-Traducional , Proteína de Replicação A , Transdução de Sinais , Proteína de Replicação A/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Humanos , Fosforilação , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ligação Proteica , Proteínas de Transporte , Proteínas Nucleares
7.
J Assist Reprod Genet ; 41(9): 2419-2439, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39023827

RESUMO

PURPOSE: Ovarian aging is closely related to a decrease in follicular reserve and oocyte quality. The precise molecular mechanisms underlying these reductions have yet to be fully elucidated. Herein, we examine spatiotemporal distribution of key proteins responsible for DNA double-strand break (DSB) repair in ovaries from early to older ages. Functional studies have shown that the γH2AX, RAD51, BRCA1, and RPA70 proteins play indispensable roles in HR-based repair pathway, while the KU80 and XRCC4 proteins are essential for successfully operating cNHEJ pathway. METHODS: Female Balb/C mice were divided into five groups as follows: Prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). The expression of DSB repair proteins, cellular senescence (ß-GAL) and apoptosis (cCASP3) markers was evaluated in the ovaries using immunohistochemistry. RESULT: ß-GAL and cCASP3 levels progressively increased from prepuberty to aged groups (P < 0.05). Notably, γH2AX levels varied in preantral and antral follicles among the groups (P < 0.05). In aged groups, RAD51, BRCA1, KU80, and XRCC4 levels increased (P < 0.05), while RPA70 levels decreased (P < 0.05) compared to the other groups. CONCLUSIONS: The observed alterations were primarily attributed to altered expression in oocytes and granulosa cells of the follicles and other ovarian cells. As a result, the findings indicate that these DSB repair proteins may play a role in the repair processes and even other related cellular events in ovarian cells from early to older ages.


Assuntos
Proteína BRCA1 , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA , Histonas , Autoantígeno Ku , Folículo Ovariano , Ovário , Rad51 Recombinase , Animais , Feminino , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Camundongos , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Reparo do DNA/genética , Folículo Ovariano/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Histonas/genética , Histonas/metabolismo , Ovário/metabolismo , Ovário/crescimento & desenvolvimento , Oócitos/metabolismo , Oócitos/crescimento & desenvolvimento , Envelhecimento/genética , Envelhecimento/metabolismo , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Camundongos Endogâmicos BALB C
8.
Oncogene ; 43(32): 2475-2489, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38961202

RESUMO

The preferential response to PARP inhibitors (PARPis) in BRCA-deficient and Schlafen 11 (SLFN11)-expressing ovarian cancers has been documented, yet the underlying molecular mechanisms remain unclear. As the accumulation of single-strand DNA (ssDNA) gaps behind replication forks is key for the lethality effect of PARPis, we investigated the combined effects of SLFN11 expression and BRCA deficiency on PARPi sensitivity and ssDNA gap formation in human cancer cells. PARPis increased chromatin-bound RPA2 and ssDNA gaps in SLFN11-expressing cells and even more in cells with BRCA1 or BRCA2 deficiency. SLFN11 was co-localized with chromatin-bound RPA2 under PARPis treatment, with enhanced recruitment in BRCA2-deficient cells. Notably, the chromatin-bound SLFN11 under PARPis did not block replication, contrary to its function under replication stress. SLFN11 recruitment was attenuated by the inactivation of MRE11. Hence, under PARPi treatment, MRE11 expression and BRCA deficiency lead to ssDNA gaps behind replication forks, where SLFN11 binds and increases their accumulation. As ovarian cancer patients who responded (progression-free survival >2 years) to olaparib maintenance therapy had a significantly higher SLFN11-positivity than short-responders (<6 months), our findings provide a mechanistic understanding of the favorable responses to PARPis in SLFN11-expressing and BRCA-deficient tumors. It highlight the clinical implications of SLFN11.


Assuntos
Proteína BRCA1 , Proteína BRCA2 , Replicação do DNA , DNA de Cadeia Simples , Proteína Homóloga a MRE11 , Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Replicação do DNA/efeitos dos fármacos , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Proteína Homóloga a MRE11/metabolismo , Proteína Homóloga a MRE11/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Cromatina/metabolismo , Ftalazinas/farmacologia
9.
Nucleic Acids Res ; 52(15): 8880-8896, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38967018

RESUMO

The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45-MCM-GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system.


Assuntos
Replicação do DNA , Proteínas de Manutenção de Minicromossomo , Proteína de Replicação A , Vírus 40 dos Símios , Vírus 40 dos Símios/metabolismo , Vírus 40 dos Símios/genética , Humanos , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteína de Replicação A/metabolismo , DNA Polimerase III/metabolismo , DNA Polimerase III/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , DNA Helicases/metabolismo , DNA Helicases/genética , DNA Viral/metabolismo , DNA Viral/genética , Replicação Viral , Imagem Individual de Molécula , Antígenos Transformantes de Poliomavirus/metabolismo , Antígenos Transformantes de Poliomavirus/genética , DNA de Cadeia Simples/metabolismo , DNA Polimerase Dirigida por DNA , Complexos Multienzimáticos
10.
J Biol Chem ; 300(7): 107461, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876299

RESUMO

Theta-mediated end joining (TMEJ) is critical for survival of cancer cells when other DNA double-stranded break repair pathways are impaired. Human DNA polymerase theta (Pol θ) can extend ssDNA oligonucleotides, but little is known about preferred substrates and mechanism. We show that Pol θ can extend both ssDNA and RNA substrates by unimolecular stem-loop synthesis initiated by only two 3' terminal base pairs. Given sufficient time, Pol θ uses alternative pairing configurations that greatly expand the repertoire of sequence outcomes. Further primer-template adjustments yield low-fidelity outcomes when the nucleotide pool is imbalanced. Unimolecular stem-loop synthesis competes with bimolecular end joining, even when a longer terminal microhomology for end joining is available. Both reactions are partially suppressed by the ssDNA-binding protein replication protein A. Protein-primer grasp residues that are specific to Pol θ are needed for rapid stem-loop synthesis. The ability to perform stem-loop synthesis from a minimally paired primer is rare among human DNA polymerases, but we show that human DNA polymerases Pol η and Pol λ can catalyze related reactions. Using purified human Pol θ, we reconstituted in vitro TMEJ incorporating an insertion arising from a stem-loop extension. These activities may help explain TMEJ repair events that include inverted repeat sequences.


Assuntos
DNA Polimerase teta , DNA Polimerase Dirigida por DNA , Humanos , Reparo do DNA por Junção de Extremidades , DNA Polimerase beta/metabolismo , DNA Polimerase beta/genética , DNA Polimerase beta/química , Reparo do DNA , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/química , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética
11.
Anal Chem ; 96(25): 10443-10450, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38864271

RESUMO

Due to their ability to selectively target pathogen-specific nucleic acids, CRISPR-Cas systems are increasingly being employed as diagnostic tools. "One-pot" assays that combine nucleic acid amplification and CRISPR-Cas systems (NAAT-CRISPR-Cas) in a single step have emerged as one of the most popular CRISPR-Cas biosensing formats. However, operational simplicity comes at a cost, with one-pot assays typically being less sensitive than corresponding two-step NAAT-CRISPR-Cas assays and often failing to detect targets at low concentrations. It is thought that these performance reductions result from the competition between the two enzymatic processes driving the assay, namely, Cas-mediated cis-cleavage and polymerase-mediated amplification of the target DNA. Herein, we describe a novel one-pot RPA-Cas12a assay that circumvents this issue by leveraging in situ complexation of the target-specific sgRNA and Cas12a to purposefully limit the concentration of active Cas12a during the early stages of the assay. Using a clinically relevant assay against a DNA target for HPV-16, we show how this in situ format reduces competition between target cleavage and amplification and engenders significant improvements in detection limit when compared to the traditional one-pot assay format, even in patient-derived samples. Finally, to gain further insight into the assay, we use experimental data to formulate a mechanistic model describing the competition between the Cas enzyme and nucleic acid amplification. These findings suggest that purposefully limiting cis-cleavage rates of Cas proteins is a viable strategy for improving the performance of one-pot NAAT-CRISPR-Cas assays.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Proteínas Associadas a CRISPR/metabolismo , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Humanos , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Técnicas de Amplificação de Ácido Nucleico , Proteína de Replicação A/metabolismo , Técnicas Biossensoriais/métodos
12.
Sci Adv ; 10(21): eadk8908, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781342

RESUMO

DNA replication is a vulnerable cellular process, and its deregulation leads to genomic instability. Here, we demonstrate that chromobox protein homolog 3 (CBX3) binds replication protein A 32-kDa subunit (RPA2) and regulates RPA2 retention at stalled replication forks. CBX3 is recruited to stalled replication forks by RPA2 and inhibits ring finger and WD repeat domain 3 (RFWD3)-facilitated replication restart. Phosphorylation of CBX3 at serine-95 by casein kinase 2 (CK2) kinase augments cadherin 1 (CDH1)-mediated CBX3 degradation and RPA2 dynamics at stalled replication forks, which permits replication fork restart. Increased expression of CBX3 due to gene amplification or CK2 inhibitor treatment sensitizes prostate cancer cells to poly(ADP-ribose) polymerase (PARP) inhibitors while inducing replication stress and DNA damage. Our work reveals CBX3 as a key regulator of RPA2 function and DNA replication, suggesting that CBX3 could serve as an indicator for targeted therapy of cancer using PARP inhibitors.


Assuntos
Caseína Quinase II , Replicação do DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína de Replicação A , Humanos , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Linhagem Celular Tumoral , Proteólise , Dano ao DNA , Fosforilação , Proteínas Cromossômicas não Histona
13.
BMC Biol ; 22(1): 101, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685010

RESUMO

BACKGROUND: CRISPR-Cas9 genome editing often induces unintended, large genomic rearrangements, posing potential safety risks. However, there are no methods for mitigating these risks. RESULTS: Using long-read individual-molecule sequencing (IDMseq), we found the microhomology-mediated end joining (MMEJ) DNA repair pathway plays a predominant role in Cas9-induced large deletions (LDs). We targeted MMEJ-associated genes genetically and/or pharmacologically and analyzed Cas9-induced LDs at multiple gene loci using flow cytometry and long-read sequencing. Reducing POLQ levels or activity significantly decreases LDs, while depleting or overexpressing RPA increases or reduces LD frequency, respectively. Interestingly, small-molecule inhibition of POLQ and delivery of recombinant RPA proteins also dramatically promote homology-directed repair (HDR) at multiple disease-relevant gene loci in human pluripotent stem cells and hematopoietic progenitor cells. CONCLUSIONS: Our findings reveal the contrasting roles of RPA and POLQ in Cas9-induced LD and HDR, suggesting new strategies for safer and more precise genome editing.


Assuntos
Sistemas CRISPR-Cas , Reparo do DNA por Junção de Extremidades , Edição de Genes , Humanos , Edição de Genes/métodos , Quebras de DNA , Reparo de DNA por Recombinação , Deleção de Sequência , DNA Polimerase teta , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética
14.
Nature ; 629(8012): 697-703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658755

RESUMO

RAD52 is important for the repair of DNA double-stranded breaks1,2, mitotic DNA synthesis3-5 and alternative telomere length maintenance6,7. Central to these functions, RAD52 promotes the annealing of complementary single-stranded DNA (ssDNA)8,9 and provides an alternative to BRCA2/RAD51-dependent homologous recombination repair10. Inactivation of RAD52 in homologous-recombination-deficient BRCA1- or BRCA2-defective cells is synthetically lethal11,12, and aberrant expression of RAD52 is associated with poor cancer prognosis13,14. As a consequence, RAD52 is an attractive therapeutic target against homologous-recombination-deficient breast, ovarian and prostate cancers15-17. Here we describe the structure of RAD52 and define the mechanism of annealing. As reported previously18-20, RAD52 forms undecameric (11-subunit) ring structures, but these rings do not represent the active form of the enzyme. Instead, cryo-electron microscopy and biochemical analyses revealed that ssDNA annealing is driven by RAD52 open rings in association with replication protein-A (RPA). Atomic models of the RAD52-ssDNA complex show that ssDNA sits in a positively charged channel around the ring. Annealing is driven by the RAD52 N-terminal domains, whereas the C-terminal regions modulate the open-ring conformation and RPA interaction. RPA associates with RAD52 at the site of ring opening with critical interactions occurring between the RPA-interacting domain of RAD52 and the winged helix domain of RPA2. Our studies provide structural snapshots throughout the annealing process and define the molecular mechanism of ssDNA annealing by the RAD52-RPA complex.


Assuntos
Microscopia Crioeletrônica , DNA de Cadeia Simples , Complexos Multiproteicos , Proteína Rad52 de Recombinação e Reparo de DNA , Proteína de Replicação A , Humanos , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Modelos Moleculares , Ligação Proteica , Proteína Rad52 de Recombinação e Reparo de DNA/química , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/ultraestrutura , Proteína de Replicação A/química , Proteína de Replicação A/metabolismo , Proteína de Replicação A/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Domínios Proteicos , Sítios de Ligação
15.
J Radiat Res ; 65(3): 263-271, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38461549

RESUMO

Ionizing radiation (IR)-induced double-strand breaks (DSBs) are primarily repaired by non-homologous end joining or homologous recombination (HR) in human cells. DSB repair requires adenosine-5'-triphosphate (ATP) for protein kinase activities in the multiple steps of DSB repair, such as DNA ligation, chromatin remodeling, and DNA damage signaling via protein kinase and ATPase activities. To investigate whether low ATP culture conditions affect the recruitment of repair proteins at DSB sites, IR-induced foci were examined in the presence of ATP synthesis inhibitors. We found that p53 binding protein 1 foci formation was modestly reduced under low ATP conditions after IR, although phosphorylated histone H2AX and mediator of DNA damage checkpoint 1 foci formation were not impaired. Next, we examined the foci formation of breast cancer susceptibility gene I (BRCA1), replication protein A (RPA) and radiation 51 (RAD51), which are HR factors, in G2 phase cells following IR. Interestingly, BRCA1 and RPA foci in the G2 phase were significantly reduced under low ATP conditions compared to that under normal culture conditions. Notably, RAD51 foci were drastically impaired under low ATP conditions. These results suggest that HR does not effectively progress under low ATP conditions; in particular, ATP shortages impair downstream steps in HR, such as RAD51 loading. Taken together, these results suggest that the maintenance of cellular ATP levels is critical for DNA damage response and HR progression after IR.


Assuntos
Trifosfato de Adenosina , Proteína BRCA1 , Recombinação Homóloga , Rad51 Recombinase , Radiação Ionizante , Humanos , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Recombinação Homóloga/efeitos da radiação , Rad51 Recombinase/metabolismo , Proteína BRCA1/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Proteína de Replicação A/metabolismo , Linhagem Celular Tumoral , Espaço Intracelular/metabolismo , Espaço Intracelular/efeitos da radiação , Reparo do DNA , Histonas/metabolismo
16.
Nat Commun ; 15(1): 2210, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472229

RESUMO

The ATR-CHK1 DNA damage response pathway becomes activated by the exposure of RPA-coated single-stranded DNA (ssDNA) that forms as an intermediate during DNA damage and repair, and as a part of the replication stress response. Here, we identify ZNF827 as a component of the ATR-CHK1 kinase pathway. We demonstrate that ZNF827 is a ssDNA binding protein that associates with RPA through concurrent binding to ssDNA intermediates. These interactions are dependent on two clusters of C2H2 zinc finger motifs within ZNF827. We find that ZNF827 accumulates at stalled forks and DNA damage sites, where it activates ATR and promotes the engagement of homologous recombination-mediated DNA repair. Additionally, we demonstrate that ZNF827 depletion inhibits replication initiation and sensitizes cancer cells to the topoisomerase inhibitor topotecan, revealing ZNF827 as a therapeutic target within the DNA damage response pathway.


Assuntos
Proteínas Quinases , Transdução de Sinais , Proteínas Quinases/metabolismo , Fosforilação , Proteína de Replicação A/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ligação a DNA/metabolismo , Replicação do DNA , Dano ao DNA , DNA de Cadeia Simples , Reparo do DNA
17.
Nat Commun ; 15(1): 978, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302450

RESUMO

Besides the well-characterized protein network involved in the replication stress response, several regulatory RNAs have been shown to play a role in this critical process. However, it has remained elusive whether they act locally at the stressed forks. Here, by investigating the RNAs localizing on chromatin upon replication stress induced by hydroxyurea, we identified a set of lncRNAs upregulated in S-phase and controlled by stress transcription factors. Among them, we demonstrate that the previously uncharacterized lncRNA lncREST (long non-coding RNA REplication STress) is transcriptionally controlled by p53 and localizes at stressed replication forks. LncREST-depleted cells experience sustained replication fork progression and accumulate un-signaled DNA damage. Under replication stress, lncREST interacts with the protein NCL and assists in engaging its interaction with RPA. The loss of lncREST is associated with a reduced NCL-RPA interaction and decreased RPA on chromatin, leading to defective replication stress signaling and accumulation of mitotic defects, resulting in apoptosis and a reduction in tumorigenic potential of cancer cells. These findings uncover the function of a lncRNA in favoring the recruitment of replication proteins to sites of DNA replication.


Assuntos
Cromatina , RNA Longo não Codificante , Cromatina/genética , Replicação do DNA/genética , RNA Longo não Codificante/genética , Proteína de Replicação A/metabolismo , Fase S/genética , Dano ao DNA
18.
Nucleic Acids Res ; 52(9): 5067-5087, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38416570

RESUMO

CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA translocases that belong to the SNF2 helicase family. They both are enriched at stalled replication forks. While SMARCAL1 is recruited by RPA32 to stalled forks, little is known about whether RPA32 also regulates CSB's association with stalled forks. Here, we report that CSB directly interacts with RPA, at least in part via a RPA32C-interacting motif within the N-terminal region of CSB. Modeling of the CSB-RPA32C interaction suggests that CSB binds the RPA32C surface previously shown to be important for binding of UNG2 and SMARCAL1. We show that this interaction is necessary for promoting fork slowing and fork degradation in BRCA2-deficient cells but dispensable for mediating restart of stalled forks. CSB competes with SMARCAL1 for RPA32 at stalled forks and acts non-redundantly with SMARCAL1 to restrain fork progression in response to mild replication stress. In contrast to CSB stimulated restart of stalled forks, SMARCAL1 inhibits restart of stalled forks in BRCA2-deficient cells, likely by suppressing BIR-mediated repair of collapsed forks. Loss of CSB leads to re-sensitization of SMARCAL1-depleted BRCA2-deficient cells to chemodrugs, underscoring a role of CSB in targeted cancer therapy.


Assuntos
Proteína BRCA2 , DNA Helicases , Enzimas Reparadoras do DNA , Replicação do DNA , Proteínas de Ligação a Poli-ADP-Ribose , Proteína de Replicação A , DNA Helicases/metabolismo , DNA Helicases/genética , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Ligação Proteica , Linhagem Celular Tumoral , Reparo do DNA
19.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38081641

RESUMO

Homologous recombination (HR) is a DNA repair mechanism of double-strand breaks and blocked replication forks, involving a process of homology search leading to the formation of synaptic intermediates that are regulated to ensure genome integrity. RAD51 recombinase plays a central role in this mechanism, supported by its RAD52 and BRCA2 partners. If the mediator function of BRCA2 to load RAD51 on RPA-ssDNA is well established, the role of RAD52 in HR is still far from understood. We used transmission electron microscopy combined with biochemistry to characterize the sequential participation of RPA, RAD52, and BRCA2 in the assembly of the RAD51 filament and its activity. Although our results confirm that RAD52 lacks a mediator activity, RAD52 can tightly bind to RPA-coated ssDNA, inhibit the mediator activity of BRCA2, and form shorter RAD51-RAD52 mixed filaments that are more efficient in the formation of synaptic complexes and D-loops, resulting in more frequent multi-invasions as well. We confirm the in situ interaction between RAD51 and RAD52 after double-strand break induction in vivo. This study provides new molecular insights into the formation and regulation of presynaptic and synaptic intermediates by BRCA2 and RAD52 during human HR.


Assuntos
Rad51 Recombinase , Proteína de Replicação A , Humanos , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Rad51 Recombinase/genética , DNA de Cadeia Simples/genética , Reparo do DNA/genética , Recombinação Homóloga/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo
20.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834389

RESUMO

Replication protein A (RPA) is the major single-stranded DNA (ssDNA) binding protein that is essential for DNA replication and processing of DNA double-strand breaks (DSBs) by homology-directed repair pathways. Recently, small molecule inhibitors have been developed targeting the RPA70 subunit and preventing RPA interactions with ssDNA and various DNA repair proteins. The rationale of this development is the potential utility of such compounds as cancer therapeutics, owing to their ability to inhibit DNA replication that sustains tumor growth. Among these compounds, (1Z)-1-[(2-hydroxyanilino) methylidene] naphthalen-2-one (HAMNO) has been more extensively studied and its efficacy against tumor growth was shown to arise from the associated DNA replication stress. Here, we study the effects of HAMNO on cells exposed to ionizing radiation (IR), focusing on the effects on the DNA damage response and the processing of DSBs and explore its potential as a radiosensitizer. We show that HAMNO by itself slows down the progression of cells through the cell cycle by dramatically decreasing DNA synthesis. Notably, HAMNO also attenuates the progression of G2-phase cells into mitosis by a mechanism that remains to be elucidated. Furthermore, HAMNO increases the fraction of chromatin-bound RPA in S-phase but not in G2-phase cells and suppresses DSB repair by homologous recombination. Despite these marked effects on the cell cycle and the DNA damage response, radiosensitization could neither be detected in exponentially growing cultures, nor in cultures enriched in G2-phase cells. Our results complement existing data on RPA inhibitors, specifically HAMNO, and suggest that their antitumor activity by replication stress induction may not extend to radiosensitization. However, it may render cells more vulnerable to other forms of DNA damaging agents through synthetically lethal interactions, which requires further investigation.


Assuntos
Neoplasias , Proteína de Replicação A , Humanos , Proteína de Replicação A/metabolismo , Ciclo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Replicação do DNA , Reparo do DNA , Dano ao DNA , DNA , Mitose , DNA de Cadeia Simples
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA