Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 22, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238853

RESUMO

BACKGROUND: Triple-negative breast cancer is a complex breast malignancy subtype characterized by poor prognosis. The pursuit of effective therapeutic approaches for this subtype is considerably challenging. Notably, recent research has illuminated the key role of the tricarboxylic acid cycle in cancer metabolism and the complex landscape of tumor development. Concurrently, an emerging body of evidence underscores the noteworthy role that long non-coding RNAs play in the trajectory of breast cancer development. Despite this growing recognition, the exploration of whether long non-coding RNAs can influence breast cancer progression by modulating the tricarboxylic acid cycle has been limited. Moreover, the underlying mechanisms orchestrating these interactions have not been identified. METHODS: The expression levels of LINC00571 and IDH2 were determined through the analysis of the public TCGA dataset, transcriptome sequencing, qRT‒PCR, and Western blotting. The distribution of LINC00571 was assessed using RNA fluorescence in situ hybridization. Alterations in biological effects were evaluated using CCK-8, colony formation, EdU, cell cycle, and apoptosis assays and a tumor xenograft model. To elucidate the interaction between LINC00571, HNRNPK, and ILF2, RNA pull-down, mass spectrometry, coimmunoprecipitation, and RNA immunoprecipitation assays were performed. The impacts of LINC00571 and IDH2 on tricarboxylic acid cycle metabolites were investigated through measurements of the oxygen consumption rate and metabolite levels. RESULTS: This study revealed the complex interactions between a novel long non-coding RNA (LINC00571) and tricarboxylic acid cycle metabolism. We validated the tumor-promoting role of LINC00571. Mechanistically, LINC00571 facilitated the interaction between HNRNPK and ILF2, leading to reduced ubiquitination and degradation of ILF2, thereby stabilizing its expression. Furthermore, ILF2 acted as a transcription factor to enhance the expression of its downstream target gene IDH2. CONCLUSIONS: Our study revealed that the LINC00571/HNRNPK/ILF2/IDH2 axis promoted the progression of triple-negative breast cancer by regulating tricarboxylic acid cycle metabolites. This discovery provides a novel theoretical foundation and new potential targets for the clinical treatment of triple-negative breast cancer.


Assuntos
RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/patologia , Ciclo do Ácido Cítrico , Hibridização in Situ Fluorescente , RNA/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047232

RESUMO

Increased expression of NUSAP1 has been identified as a robust prognostic biomarker in prostate cancer and other malignancies. We have previously shown that NUSAP1 is positively regulated by E2F1 and promotes cancer invasion and metastasis. To further understand the biological function of NUSAP1, we used affinity purification and mass spectrometry proteomic analysis to identify NUSAP1 interactors. We identified 85 unique proteins in the NUSAP1 interactome, including ILF2, DHX9, and other RNA-binding proteins. Using proteomic approaches, we uncovered a function for NUSAP1 in maintaining R-loops and in DNA damage response through its interaction with ILF2. Co-immunoprecipitation and colocalization using confocal microscopy verified the interactions of NUSAP1 with ILF2 and DHX9, and RNA/DNA hybrids. We showed that the microtubule and charged helical domains of NUSAP1 were necessary for the protein-protein interactions. Depletion of ILF2 alone further increased camptothecin-induced R-loop accumulation and DNA damage, and NUSAP1 depletion abolished this effect. In human prostate adenocarcinoma, NUSAP1 and ILF2 mRNA expression levels are positively correlated, elevated, and associated with poor clinical outcomes. Our study identifies a novel role for NUSAP1 in regulating R-loop formation and accumulation in response to DNA damage through its interactions with ILF2 and hence provides a potential therapeutic target.


Assuntos
Neoplasias da Próstata , Estruturas R-Loop , Humanos , Masculino , Dano ao DNA , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteômica
3.
Sci Rep ; 12(1): 8837, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614067

RESUMO

The Nuclear Factor 90 (NF90)-NF45 complex has been known to regulate the progression of transcription, mRNA stability, translational inhibition, RNA export and microRNA biogenesis. However, the physiological functions of the NF90-NF45 complex remain unclear. We newly discovered that the NF90-NF45 complex was expressed in primary ß cells and established cell lines. Therefore, in this study, we focused on the function of the endogenous NF90-NF45 complex in the ß cells. To investigate this issue, we generated ß-cell-specific NF90-NF45 deficient mice. These mice exhibited hyperglycaemia and lower plasma insulin levels under a high fat diet together with decreased islet mass. To uncover this mechanism, we performed a whole-genome expression microarray of the total RNA prepared from ß cell lines treated with siRNAs targeting both NF90 and NF45. In this result, we found an activation of p53 signaling in the NF90-NF45-knockdown cells. This activation was supported by elevation of luciferase activity derived from a reporter plasmid harboring p53 binding sites in the NF90-NF45-knockdown cells. Furthermore, the knockdown of NF90-NF45 resulted in a significant retardation of the ß cell line growth rates. Importantly, a dominant negative form of p53 rescues the growth retardation in BTC6 cells depleted of NF90-NF45, suggesting that NF90-NF45 would be positively involved in ß cell proliferation through suppression of p53 signal pathway. Taken together, NF90-NF45 is essential for ß cell compensation under obesity-inducing metabolic stress via repression of p53 signaling.


Assuntos
Proteína do Fator Nuclear 45 , Proteínas do Fator Nuclear 90 , Proteína Supressora de Tumor p53 , Animais , Camundongos , Proteína do Fator Nuclear 45/metabolismo , Proteínas do Fator Nuclear 90/metabolismo , Obesidade/genética , RNA , Transdução de Sinais , Estresse Fisiológico , Proteína Supressora de Tumor p53/metabolismo
4.
Sci Rep ; 12(1): 2278, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145187

RESUMO

DNA cytosine deaminase APOBEC3B (A3B) is an endogenous source of mutations in many human cancers, including multiple myeloma. A3B proteins form catalytically inactive high molecular mass (HMM) complexes in nuclei, however, the regulatory mechanisms of A3B deaminase activity in HMM complexes are still unclear. Here, we performed mass spectrometry analysis of A3B-interacting proteins from nuclear extracts of myeloma cell lines and identified 30 putative interacting proteins. These proteins are involved in RNA metabolism, including RNA binding, mRNA splicing, translation, and regulation of gene expression. Except for SAFB, these proteins interact with A3B in an RNA-dependent manner. Most of these interacting proteins are detected in A3B HMM complexes by density gradient sedimentation assays. We focused on two interacting proteins, ILF2 and SAFB. We found that overexpressed ILF2 enhanced the deaminase activity of A3B by 30%, while SAFB did not. Additionally, siRNA-mediated knockdown of ILF2 suppressed A3B deaminase activity by 30% in HEK293T cell lysates. Based on these findings, we conclude that ILF2 can interact with A3B and enhance its deaminase activity in HMM complexes.


Assuntos
Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Mieloma Múltiplo/genética , Mutação/genética , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Proteína do Fator Nuclear 45/metabolismo , Mapas de Interação de Proteínas/genética
5.
Clin Transl Med ; 11(10): e608, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709752

RESUMO

BACKGROUND: 1q21.3 amplification, which is frequently observed in metastatic melanoma, is associated with cancer progression. Interleukin enhancer-binding factor 2 (ILF2) is located in the 1q21.3 amplified region, but its functional role or contribution to tumour aggressiveness in cutaneous melanoma is unknown. METHODS: In silico analyses were performed using the TCGA SKCM dataset with clinical annotations and three melanoma microarray cohorts from the GEO datasets. RNA in situ hybridisation and immunohistochemistry were utilised to validate the gene expression in melanoma tissues. Four stable melanoma cell lines were established for in vitro ILF2 functional characterisation. RESULTS: Our results showed that the ILF2 copy number variation (CNV) is positively correlated with ILF2 mRNA expression (r = 0.68, p < .0001). Additionally, ILF2 expression is significantly increased with melanoma progression (p < .0001), and significantly associated with poor overall survival for metastatic melanoma patients (p = .026). The overexpression of ILF2 (ILF2-OV) promotes proliferation in metastatic melanoma cells, whereas ILF2 knockdown decreases proliferation by blocking the cell cycle. Mechanistically, we demonstrated the interaction between ILF2 and the splicing factor U2AF2, whose knockdown reverses the proliferation effects mediated by ILF2-OV. Stage IIIB-C melanoma patients with high ILF2-U2AF2 expression showed significantly shorter overall survival (p = .024). Enhanced ILF2/U2AF2 expression promotes a more efficient DNA-damage repair by increasing RAD50 and ATM mRNA expression. Paradoxically, metastatic melanoma cells with ILF2-OV were more sensitive to ATM inhibitors. CONCLUSION: Our study uncovered that ILF2 amplification of the 1q21.3 chromosome is associated with melanoma progression and triggers a functional downstream pathway in metastatic melanoma promoting drug resistance.


Assuntos
Proliferação de Células/genética , Dano ao DNA/genética , Melanoma/genética , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Neoplasias Cutâneas/genética , Linhagem Celular Tumoral , Células Cultivadas , Variações do Número de Cópias de DNA/genética , Humanos , Melanoma/metabolismo , Melanoma/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
6.
Life Sci ; 284: 119708, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34153299

RESUMO

AIMS: Hepatocellular carcinoma (HCC) is a primary malignancy of the hepatocyte. Interleukin enhancer binding factor 2 (ILF2) plays a role in the development of HCC. However, the regulatory mechanisms of ILF2 expression in HCC remain unclear. In this study, we aimed to identify ILF2-targeting microRNAs (miRNAs) and to explore how they affect ILF2 expression in HCC. MAIN METHODS: The tissue specimens were collected from 25 HCC patients. The underlying regulatory mechanism of ILF2 expression in HCC progression was determined using luciferase reporter assay, quantitative real-time PCR, Western blotting, and BrdU incorporation assay. KEY FINDINGS: Of predicted miRNA candidates (miR-122-5p, miR-425-5p, miR-136-5p, miR-7-5p, miR-421 and miR-543), a statistically significant inverse correlation by linear correlation analysis was observed between miR-136-5p and ILF2 mRNA expressions in patients with HCC (r = -0.627, P < 0.001). Further analysis demonstrated that ILF2 was directly regulated by miR-136-5p. In addition, we showed that long noncoding RNA colorectal neoplasia differentially expressed-h (lncRNA CRNDE-h) transcript expression was significantly up-regulated in HCC, and a miR-136-5p binding site was newly found in the lncRNA CRNDE-h transcript sequence using IntaRNA tool. In terms of mechanism, highly-expressed lncRNA CRNDE-h transcript can sponge miR-136-5p, thereby preventing it from interacting with target ILF2 mRNA while promoting the proliferation of HCC cells. SIGNIFICANCE: The lncRNA CRNDE-h/miR-136-5p/ILF2 axis plays a significant regulatory role in HCC progression, which may partly explain the pathogenic mechanisms of HCC and may provide promising potential targets for the diagnosis, treatment, and prognosis of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , Proteína do Fator Nuclear 45/genética , RNA Longo não Codificante/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , MicroRNAs/genética , Proteína do Fator Nuclear 45/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Cancer Res ; 81(13): 3525-3538, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33975879

RESUMO

Balancing mRNA nuclear export kinetics with its nuclear decay is critical for mRNA homeostasis control. How this equilibrium is aberrantly disrupted in esophageal cancer to acquire cancer stem cell properties remains unclear. Here we find that the RNA-binding protein interleukin enhancer binding factor 2 (ILF2) is robustly upregulated by nicotine, a major chemical component of tobacco smoke, via activation of JAK2/STAT3 signaling and significantly correlates with poor prognosis in heavy-smoking patients with esophageal cancer. ILF2 bound the THO complex protein THOC4 as a regulatory cofactor to induce selective interactions with pluripotency transcription factor mRNAs to promote their assembly into export-competent messenger ribonucleoprotein complexes. ILF2 facilitated nuclear mRNA export and inhibited hMTR4-mediated exosomal degradation to promote stabilization and expression of SOX2, NANOG, and SALL4, resulting in enhanced stemness and tumor-initiating capacity of esophageal cancer cells. Importantly, inducible depletion of ILF2 significantly increased the therapeutic efficiency of cisplatin and abrogated nicotine-induced chemoresistance in vitro and in vivo. These findings reveal a novel role of ILF2 in nuclear mRNA export and maintenance of cancer stem cells and open new avenues to overcome smoking-mediated chemoresistance in esophageal cancer. SIGNIFICANCE: This study defines a previously uncharacterized role of nicotine-regulated ILF2 in facilitating nuclear mRNA export to promote cancer stemness, suggesting a potential therapeutic strategy against nicotine-induced chemoresistance in esophageal cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Nicotina/farmacologia , Proteína do Fator Nuclear 45/metabolismo , RNA Mensageiro/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Agonistas Nicotínicos/farmacologia , Proteína do Fator Nuclear 45/genética , Prognóstico , RNA Mensageiro/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Taxa de Sobrevida , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Protein J ; 39(5): 411-421, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33009960

RESUMO

Interleukin enhancer-binding factor 2 (ILF2) forms a heterodimer with interleukin enhancer-binding factor 3 (ILF3) via double-stranded RNA-binding motif and zinc finger associated domain and thus regulates gene expression and cancer cell growth. However, how ILF2 is degraded in cells remains elusive. In this work, using stable isotope labeling by amino acids in cell culture (SILAC) quantitative proteomics, we find that ILF2 is downregulated in cells expressing cereblon (CRBN). Using affinity purification and immunoblotting analysis, we demonstrate that CRBN interacts with ILF2 and functions as a substrate receptor of the cullin-4 RING E3 ligase complex. Biochemical experiments disclose that CRBN expression reduces ILF2 protein level and this reduction is diminished when the proteasome is inhibited. Upon protein synthesis inhibition, the degradation of ILF2 is enhanced by CRBN. Moreover, CRBN promotes the ubiquitination of ILF2 and thus results in the ubiquitin-mediated proteasomal degradation. Analyses of previously identified post-translational modification sites and the crystal structure of ILF2 discover the potential ubiquitination sites on ILF2. Through mutagenesis and biochemical experiments, we further reveal that the K45R mutation completely abolishes the effect of CRBN on ILF2, suggesting that this is the key residue responsible for its ubiquitination. Taken together, we identify an E3 ligase that regulates ILF2 and uncover a molecular pathway for its degradation. This work might be helpful to elucidate the molecular mechanism by which CRBN regulates diverse cellular functions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína do Fator Nuclear 45/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas Adaptadoras de Transdução de Sinal/genética , Células HEK293 , Humanos , Proteína do Fator Nuclear 45/genética , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina-Proteína Ligases/genética
9.
Cell Rep ; 31(7): 107660, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433969

RESUMO

In human cells, the expression of ∼1,000 genes is modulated throughout the cell cycle. Although some of these genes are controlled by specific transcriptional programs, very little is known about their post-transcriptional regulation. Here, we analyze the expression signature associated with all 687 RNA-binding proteins (RBPs) and identify 39 that significantly correlate with cell cycle mRNAs. We find that NF45 and NF90 play essential roles in mitosis, and transcriptome analysis reveals that they are necessary for the expression of a subset of mitotic mRNAs. Using proteomics, we identify protein clusters associated with the NF45-NF90 complex, including components of Staufen-mediated mRNA decay (SMD). We show that depletion of SMD components increases the binding of mitotic mRNAs to the NF45-NF90 complex and rescues cells from mitotic defects. Together, our results indicate that the NF45-NF90 complex plays essential roles in mitosis by competing with the SMD machinery for a common set of mRNAs.


Assuntos
Mitose/fisiologia , Proteína do Fator Nuclear 45/metabolismo , Proteínas do Fator Nuclear 90/metabolismo , Estabilidade de RNA/fisiologia , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Mitose/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteína do Fator Nuclear 45/genética , Proteínas do Fator Nuclear 90/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
10.
Int J Mol Sci ; 21(4)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102467

RESUMO

Photoactive RNA probes have unique advantages in the identification of microRNA (miR) targets due to their ability for efficient conjugation to the target sequences by covalent crosslinking, providing stable miR-mRNA complexes for further analysis. Here, we report a highly efficient and straightforward method for miR target identification that is based on photo-reactive chemical probes and RNA-seq technology (denotes PCP-Seq). UV reactive probes were prepared by incorporating psoralen in the specific position of the seed sequence of miR. Cancer cells that were transfected with the miR probes were treated with UV, following the isolation of poly(A) RNA and sequencing of the transcriptome. Quantitative analysis of RNA-seq reads and subsequent validation by qPCR, dual luciferase assay as well as western blotting confirmed that PCP-Seq could highly efficiently identify multiple targets of different miRs in the lung cancer cell line, such as targets PTTG1 and PTGR1 of miR-29a and ILF2 of miR-34a. Collectively, our data showed that PCP-Seq is a robust strategy for miR targets identification, and unique in the identification of the targets that escape degradation by miRISC and maintain normal cellular level, although their translation is repressed.


Assuntos
Carcinogênese/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , Células A549 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Securina/genética , Securina/metabolismo , Análise de Sequência de RNA/métodos
11.
PLoS One ; 14(4): e0216042, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31022259

RESUMO

Immediate early gene (IEG) transcription is rapidly activated by diverse stimuli. This transcriptional regulation is assumed to involve constitutively expressed nuclear factors that are targets of signaling cascades initiated at the cell membrane. NF45 (encoded by ILF2) and its heterodimeric partner NF90/NF110 (encoded by ILF3) are chromatin-interacting proteins that are constitutively expressed and localized predominantly in the nucleus. Previously, NF90/NF110 chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) in K562 erythroleukemia cells revealed its enriched association with chromatin at active promoters and strong enhancers. NF90/NF110 specifically occupied the promoters of IEGs. Here, ChIP in serum-starved HEK293 cells demonstrated that NF45 and NF90/NF110 pre-exist and specifically occupy the promoters of IEG transcription factors EGR1, FOS and JUN. Cellular stimulation with phorbol myristyl acetate increased NF90/NF110 chromatin association, while decreasing NF45 chromatin association at promoters of EGR1, FOS and JUN. In HEK293 cells stably transfected with doxycycline-inducible shRNA vectors targeting NF90/NF110 or NF45, doxycycline-mediated knockdown of NF90/NF110 or NF45 attenuated the inducible expression of EGR1, FOS, and JUN at the levels of transcription, RNA and protein. Dynamic chromatin association of NF45 and NF90/NF110 at IEG promoters are observed upon stimulation, and NF45 and NF90/NF110 contribute to inducible transcription of IEGs. NF45 and NF90/NF110 operate as chromatin regulators of the immediate early response.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Genes Precoces , Proteína do Fator Nuclear 45/genética , Proteínas do Fator Nuclear 90/genética , Doxiciclina/farmacologia , Células HEK293 , Humanos , Células K562 , Proteína do Fator Nuclear 45/metabolismo , Proteínas do Fator Nuclear 90/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , Transcrição Gênica/efeitos dos fármacos
12.
Anal Cell Pathol (Amst) ; 2019: 1575031, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881868

RESUMO

Cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) is overexpressed and has an oncogenic role in hepatocellular carcinoma (HCC). Interleukin enhancer binding factor 2 (ILF2) has become research hotspot in liver cancer recently. However, it is still unclear whether and how CREB and ILF2 interact with each other. And how this interaction exerts its role in occurrence and development of liver cancer is still unclear. Here, we found that ILF2 directly bound with CREB, and this binding was essential for the malignant phenotypes of liver cancer cells. Moreover, we found that ILF2 acted as one of the upstream proteins of CREB and promoted CREB only in the protein level, whereas ILF2 expression was not regulated by CREB. Mechanistically, ILF2 bound to the pKID domain of CREB and stimulated its phosphorylation at Ser133. Taken together, our study finds a novel interaction between CREB and ILF2 in liver cancer, and this interaction might play a role in the diagnosis and remedy of liver cancer.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neoplasias Hepáticas/metabolismo , Proteína do Fator Nuclear 45/metabolismo , Western Blotting , Linhagem Celular , Proliferação de Células , Imunofluorescência , Humanos , Imuno-Histoquímica , Imunoprecipitação , Espectrometria de Massas , Ligação Proteica , Transdução de Sinais
13.
Theranostics ; 8(20): 5676-5689, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555573

RESUMO

Long noncoding RNAs (lncRNAs) play an important role in the development and progression of cancers. However, the clinical significances of lncRNAs and their functions and mechanisms in nasopharyngeal carcinoma (NPC) remain largely unclear. Methods: Quantitative RT-PCR was used to determine DANCR expression and Kaplan-Meier curves were used to evaluate its prognostic value. RNA sequencing followed by bioinformatic analysis was performed to determine the potential function of DANCR. In vitro and in vivo experiments were conducted to investigate its biological effects. DANCR-interacting proteins were identified by RNA pull-down assay followed by mass spectrometry and western blotting, and then confirmed by RNA immunoprecipitation (RIP) assays. Results: Our previous microarray analysis identified a metastasis-associated lncRNA DANCR. Here, we found that DANCR was upregulated in NPC, especially in those with lymph lode metastasis, and its upregulation could predict poor survival. We then constructed a prognostic predictive model. RNA sequencing followed by bioinformatic analysis revealed that DANCR was responsible for NPC metastasis and hypoxia phenotype. Functional studies showed that DANCR promoted NPC cell invasion and metastasis in vitro and in vivo. Further investigation suggested that DANCR could increase HIF-1α mRNA stability through interacting with the NF90/NF45 complex. Additionally, overexpression of HIF-1α in DANCR knockdown cells restored its suppressive effects on NPC cell migration and invasion. Conclusions: Taken together, our results suggest that DANCR acts as a prognostic biomarker and increases HIF-1α mRNA stability by interacting with NF90/NF45, leading to metastasis and disease progression of NPC.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/fisiopatologia , Proteína do Fator Nuclear 45/metabolismo , Proteínas do Fator Nuclear 90/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Biologia Computacional , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos Endogâmicos BALB C , Camundongos Nus , Carcinoma Nasofaríngeo/secundário , Prognóstico , Ligação Proteica , Multimerização Proteica , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
14.
Biochem Biophys Res Commun ; 500(2): 398-404, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29655789

RESUMO

The activation of the NLRP3 inflammasome is a key process of host immune response that establishes the first line of defense against pathogen infections and cellular stresses, whereas excessive inflammasome activation may damage the hosts, and thus it must be precisely controlled. However, the mechanism underlying the repression of the NLRP3 inflammasome activation remains largely unknown. In this study, by establishing and using a reconstructed NLRP3 inflammasome activation system, we reveal that the NLRP3 inflammasome activation, pro-caspase-1 cleavage, and pro-interleukin-1ß (pro-IL-1ß) activation are repressed by the interleukin-enhanced binding factor 2 (ILF2). Further studies demonstrate that ILF2 represses the activation of NLRP3 inflammasome through interacting with the NACHT-associated domain (NAD) of NLRP3 and co-localized with NLRP3 in the cytoplasm of HEK293T cells. Finally, by generating a THP-1 cell line stably expressing ILF2 protein using the lentivirus infection system, we demonstrate that ILF2 represses ATP-induced activation of endogenous NLRP3 inflammasome in macrophages. Therefore, this study identifies a new role of ILF2 in the regulation of the NLRP3 inflammasome, and reveals a unique mechanism underlying the repression of the NLRP3 inflammasome activation.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína do Fator Nuclear 45/metabolismo , Células HEK293 , Humanos , Interleucina-1beta/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/química , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos
15.
Nucleic Acids Res ; 45(21): 12441-12454, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040738

RESUMO

The heterodimer NF90-NF45 is an RNA-binding protein complex that modulates the expression of various cellular mRNAs on the post-transcriptional level. Furthermore, it acts as a host factor that supports the replication of several RNA viruses. The molecular mechanisms underlying these activities have yet to be elucidated. Recently, we showed that the RNA-binding capabilities and binding specificity of NF90 considerably improves when it forms a complex with NF45. Here, we demonstrate that NF90 has a substrate-selective RNA chaperone activity (RCA) involving RNA annealing and strand displacement activities. The mechanism of the NF90-catalyzed RNA annealing was elucidated to comprise a combination of 'matchmaking' and compensation of repulsive charges, which finally results in the population of dsRNA products. Heterodimer formation with NF45 enhances 'matchmaking' of complementary ssRNAs and substantially increases the efficiency of NF90's RCA. During investigations of the relevance of the NF90-NF45 RCA, the complex was shown to stimulate the first step in the RNA replication process of hepatitis C virus (HCV) in vitro and to stabilize a regulatory element within the mRNA of vascular endothelial growth factor (VEGF) by protein-guided changes of the RNAs' structures. Thus, our study reveals how the intrinsic properties of an RNA-binding protein determine its biological activities.


Assuntos
Proteína do Fator Nuclear 45/metabolismo , Proteínas do Fator Nuclear 90/metabolismo , RNA Viral/química , RNA/química , Riboswitch , Motivos de Aminoácidos , Dimerização , Hepacivirus/genética , Proteína do Fator Nuclear 45/química , Proteínas do Fator Nuclear 90/química , Conformação de Ácido Nucleico , RNA/metabolismo , RNA Mensageiro/química , RNA Viral/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
16.
Dis Markers ; 2017: 4387081, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28831206

RESUMO

The aim of this study is to investigate the expression levels and clinical significance of ILF2 in gastric cancer. The mRNA and protein expression levels of ILF2 were, respectively, examined by quantitative real-time PCR (qRT-PCR) and Western blot from 21 paired fresh frozen GC tissues and corresponding normal gastric tissues. In order to analyze the expression pattern of ILF2 in GC, 60 paired paraffin-embedded GC slides and corresponding normal gastric slides were detected by immunohistochemistry (IHC) assay. The correlation between ILF2 protein expression levels and clinicopathological parameters, overall survival (OS), disease-free survival (DFS), and clinical prognosis were analyzed by statistical methods. Significantly higher levels of ILF2 were detected in GC tissues compared with normal controls at both mRNA and protein level. High expression of ILF2 was tightly correlated with depth of invasion, lymph node metastasis, pathological stage, and histological differentiation. Log-rank test showed that high expression of ILF2 was positively associated with poor clinical prognosis. Multivariate analysis identified that ILF2 was an independent prognostic factor for OS and DFS. Our findings suggest that ILF2 may be a valuable biomarker and a novel potential prognosis predictor for GC patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteína do Fator Nuclear 45/metabolismo , Neoplasias Gástricas/metabolismo , Idoso , Biomarcadores Tumorais/genética , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Proteína do Fator Nuclear 45/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
17.
Virol J ; 14(1): 125, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28693575

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failures in sows and respiratory diseases in growing pigs, resulting in huge economic loss for the pig production worldwide. The nonstructural protein 9 (nsp9) and nonstructural protein 2 (nsp2) of PRRSV are known to play important roles in viral replication. Cellular interleukin-2 enhancer binding factor 2 (ILF2) participates in many cellular pathways and involves in life cycle of some viruses. In the present study, we analyzed the interaction of cellular ILF2 with the nsp9 and nsp2 of PRRSV in vitro and explored the effect of ILF2 on viral replication. METHODS: The interaction of ILF2 with the nsp9 or nsp2 of PRRSV was analyzed in 293FT cells and MARC-145 cells by co-immunoprecipitation (Co-IP) and the co-localization of ILF2 with the nsp9 or nsp2 of PRRSV in MARC-145 cell and pulmonary alveolar macrophages (PAMs) was examined by confocal immunofluorescence assay. The effect of ILF2 knockdown and over-expression on PRRSV replication was explored in MARC-145 cells by small interfering RNA (siRNA) and lentivirus transduction, respectively. RESULTS: The interaction of ILF2 with nsp9 or nsp2 was first demonstrated in 293FT cells co-transfected with ILF2-expressing plasmid and nsp9-expressing plasmid or nsp2-expressing plasmid. The interaction of endogenous ILF2 with the nsp9 or nsp2 of PRRSV was further confirmed in MARC-145 cells transduced with GFP-nsp9-expressing lentiviruses or infected with PRRSV JXwn06. The RdRp domain of nsp9 was shown to be responsible for its interaction with ILF2, while three truncated nsp2 were shown to interact with ILF2. Moreover, we observed that ILF2 partly translocated from the nucleus to the cytoplasm and co-localized with nsp9 and nsp2 in PRRSV-infected MARC-145 cells and PAMs. Finally, our analysis indicated that knockdown of ILF2 favored the replication of PRRSV, while over-expression of ILF2 impaired the viral replication in MARC-145 cells. CONCLUSION: Our findings are the first to confirm that the porcine ILF2 interacts with the nsp9 and nsp2 of PRRSV in vitro, and exerts negatively regulatory effect on the replication of PRRSV. Our present study provides more evidence for understanding the roles of the interactions between cellular proteins and viral proteins in the replication of PRRSV.


Assuntos
Interações Hospedeiro-Patógeno , Proteína do Fator Nuclear 45/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Células Cultivadas , Células Epiteliais/virologia , Macrófagos Alveolares/virologia , Microscopia Confocal , Microscopia de Fluorescência , Ligação Proteica , Suínos
18.
Cancer Cell ; 32(1): 88-100.e6, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28669490

RESUMO

Amplification of 1q21 occurs in approximately 30% of de novo and 70% of relapsed multiple myeloma (MM) and is correlated with disease progression and drug resistance. Here, we provide evidence that the 1q21 amplification-driven overexpression of ILF2 in MM promotes tolerance of genomic instability and drives resistance to DNA-damaging agents. Mechanistically, elevated ILF2 expression exerts resistance to genotoxic agents by modulating YB-1 nuclear localization and interaction with the splicing factor U2AF65, which promotes mRNA processing and the stabilization of transcripts involved in homologous recombination in response to DNA damage. The intimate link between 1q21-amplified ILF2 and the regulation of RNA splicing of DNA repair genes may be exploited to optimize the use of DNA-damaging agents in patients with high-risk MM.


Assuntos
Mieloma Múltiplo/genética , Proteína do Fator Nuclear 45/fisiologia , Splicing de RNA/genética , Dano ao DNA , Reparo do DNA , Recombinação Homóloga , Humanos , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Fator de Processamento U2AF/metabolismo , Células Tumorais Cultivadas , Proteína 1 de Ligação a Y-Box/metabolismo
19.
Arterioscler Thromb Vasc Biol ; 37(8): 1524-1535, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28596374

RESUMO

OBJECTIVE: Bacterial endotoxin (lipopolysaccharide)-mediated sepsis involves dysregulated systemic inflammation, which injures the lung and other organs, often fatally. Vascular endothelial cells act as both targets and mediators of lipopolysaccharide-induced inflammatory responses. Dysfunction of endothelium results in increases of proinflammatory cytokine production and permeability leakage. BMPER (bone morphogenetic protein-binding endothelial regulator), an extracellular modulator of bone morphogenetic protein signaling, has been identified as a vital component in chronic endothelial inflammatory responses and atherosclerosis. However, it is unclear whether BMPER also regulates inflammatory response in an acute setting such as sepsis. To address this question, we investigated the role of BMPER during lipopolysaccharide-induced acute lung injury. APPROACH AND RESULTS: Mice missing 1 allele of BMPER (BMPER+/- mice used in the place of BMPER-/- mice that die at birth) were used for lipopolysaccharide challenge. Lipopolysaccharide-induced pulmonary inflammation and injury was reduced in BMPER+/- mice as shown by several measures, including survival rate, infiltration of inflammatory cells, edema, and production of proinflammatory cytokines. Mechanistically, we have demonstrated that BMPER is required and sufficient for the activation of nuclear factor of activated T cells c1. This BMPER-induced nuclear factor of activated T cells activation is coordinated by multiple signaling pathways, including bone morphogenetic protein-independent low-density lipoprotein receptor-related protein 1-extracellular signal-regulated kinase activation, calcineurin signaling, and low-density lipoprotein receptor-related protein 1ß-mediated nuclear factor 45 nuclear export in response to BMPER treatment. CONCLUSIONS: We conclude that BMPER plays a pivotal role in pulmonary inflammatory response, which provides new therapeutic options against sepsis shock. The new signaling pathway initiated by BMPER/low-density lipoprotein receptor-related protein 1 axis broadens our understanding about BMPER's role in vascular homeostasis.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Proteínas de Transporte/metabolismo , Células Endoteliais/metabolismo , Endotoxinas , Pulmão/irrigação sanguínea , Pneumonia/metabolismo , Receptores de LDL/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Apoptose , Permeabilidade Capilar , Proteínas de Transporte/genética , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/patologia , Predisposição Genética para Doença , Haploinsuficiência , Mediadores da Inflamação/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Proteína do Fator Nuclear 45/metabolismo , Fenótipo , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/patologia , Interferência de RNA , Receptores de LDL/genética , Fatores de Tempo , Transfecção , Proteínas Supressoras de Tumor/genética
20.
Int J Mol Sci ; 17(8)2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27556459

RESUMO

Interleukin enhancer binding factor 2 (ILF2), a transcription factor, regulates cell growth by inhibiting the stabilization of mRNA. Currently, its role has gained recognition as a factor in the tumorigenic process. However, until now, little has been known about the detailed role ILF2 plays in hepatocellular carcinoma (HCC). In this study, we investigated the expression levels of ILF2 in HCC tissue with Western blot and immunohistochemical assays. To examine the effect of ILF2 on liver cancer cell growth and apoptosis, small interfering RNAs (siRNAs) targeting ILF2 were recombined to create lentiviral overexpression vectors. Our results showed higher expression levels of ILF2 mRNA and ILF2 protein in HCC tissue compared with matched peritumoral tissue. Expression of ILF2 may regulate cell growth and apoptosis in liver cancer cells via regulation of B-cell lymphoma 2 (Bcl-2), Bcl-2 related ovarian killer (Bok), Bcl-2-associated X protein (BAX), and cellular inhibitor of apoptosis 1 (cIAP1). Moreover, we inoculated nude mice with liver cancer cells to investigate the effect of ILF2 on tumorigenesis in vivo. As expected, a rapid growth was observed in cancer cells inoculated with a lentiviral vector coding Flag-ILF2 (Lenti-ILF2) compared with the control cells. Hence, these results promote a better understanding of ILF2's potential role as a therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular/fisiopatologia , Regulação Neoplásica da Expressão Gênica , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Animais , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus , RNA Interferente Pequeno , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA