Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Head Neck Pathol ; 17(4): 1026-1033, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37735286

RESUMO

BACKGROUND: Squamous cell carcinoma (SCC) is the most common oral malignancy, and somatic mutations in some driver genes have been implicated in SCC development. Clear cell SCC (CCSCC) is a rare histological variant of SCC, and various clear cell neoplasms must be considered in the differential diagnosis of CCSCC in the oral cavity. Based on a limited number of CCSCC cases reported in the oral cavity, CCSCC is considered an aggressive variant of SCC with a poor prognosis; however, its genetic characteristics remain unknown. METHODS: A maxillary gingival tumor in an 89-year-old female was described and investigated using immunohistochemical staining, special staining, fluorescence in situ hybridization, and next-generation sequencing (NGS) with a custom panel of driver genes, including those associated with SCC and clear cell neoplasm development. RESULTS: Histopathological examination revealed a proliferation of atypical epithelial cells with abundant clear cytoplasm and enlarged and centrally placed round nuclei. The tumor was exophytic with deep, penetrating proliferation. The atypical clear cells were continuous with the conventional SCC cells. Immunohistochemical analysis showed that the clear cells were positive for CK AE1/AE3 and CK5/6 and nuclear-positive for p63. In contrast, the clear cells were negative for αSMA, S100, HMB45, Melan-A, CD10, and p16. p53 immunoreactivity exhibited a wild-type expression pattern. Additionally, the clear cells were positive for periodic acid-Schiff (PAS) and negative for diastase-PAS, mucicarmine, and Alcian blue. Based on these results, the diagnosis of CCSCC was confirmed. Molecular analysis of the clear cells identified PIK3CA p.E542K (c.1624G>A) and HRAS p.G12A (c.35 G>C) somatic mutations classified as oncogenic. No pathogenic variants were identified in TP53, EWSR1, AKT1, PTEN, BRAF, KRAS, NRAS, RASA1, or MAML2. CONCLUSIONS: We report a case of CCSCC of the oral cavity with PIK3CA and HRAS mutations. The identification of PIK3CA and/or HRAS mutations is rare in SCC; however, both mutations are important potential targets for antitumor therapy. A detailed analysis of gene mutations in CCSCC may lead to a better understanding of its biological behavior and an improved prognosis, as well as a differential diagnosis from other clear cell neoplasms.


Assuntos
Adenocarcinoma de Células Claras , Carcinoma de Células Escamosas , Feminino , Humanos , Idoso de 80 Anos ou mais , Gengiva/patologia , Hibridização in Situ Fluorescente , Carcinoma de Células Escamosas/patologia , Mutação , Células Epiteliais/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína p120 Ativadora de GTPase/genética , Proteína p120 Ativadora de GTPase/metabolismo
2.
Crit Rev Eukaryot Gene Expr ; 32(6): 57-68, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35997118

RESUMO

Esophageal squamous cell carcinoma (ESCC), classified as a primary histological subtype of esophageal cancer (EC), dominates approximately 90% of the newly diagnosed EC. Long non-coding RNAs (lncRNAs) are frequently related to the course of ESCC. The current study aimed to investigate whether lncRNA zinc finger protein 667-antisense RNA 1 (ZNF667-AS1) modulates the proliferation and invasion of ESCC cells. ESCC tissues and cell lines, para-carcinoma tissues, and human esophageal epithelial cells (HEEpiCs) were collected. lncRNA ZNF667-AS1 expression in the above tissues and cells was detected. The effect of lncRNA ZNF667-AS1 on proliferation and invasion of Eca109 cells was detected using cell counting kit-8, colony formation, and Transwell assays. lncRNA ZNF667-AS1 subcellular localization was determined via the nuclear/cytosol fractionation assay. The binding relationships between miR-18b-5p and lncRNA ZNF667-AS1 and RAS p21 protein activator 1 (RASA1) were verified using dual-luciferase reporter gene experiment and RNA immunoprecipitation experiment. The expressions of miR-18b-5p and RASA1 in the tissues and cells were identified. The roles of miR-18b-5p overexpression or silencing RASA1 in proliferation and invasion of ESCC cells were examined through rescue experiments. lncRNA ZNF667-AS1 was underexpressed in ESCC tissues and cells, and lncRNA ZNF667-AS1 overexpression hampered ESCC cell proliferation and invasiveness. miR-18b-5p targeted RASA1 while lncRNA ZNF667-AS1 promoted RASA1 transcription via binding to miR-18b-5p. Over-expression miR-18b-5p or silencing RASA1 reversed the inhibitory effects of lncRNA ZNF667-AS1 overexpression on ESCC cell proliferation and invasion. lncRNA ZNF667-AS1 overexpression accelerated RASA1 transcription by competitively binding to miR-18b-5p, thus suppressing ESCC cell proliferation and invasion.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , RNA Longo não Codificante , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , RNA Longo não Codificante/genética , Proteína p120 Ativadora de GTPase/genética , Proteína p120 Ativadora de GTPase/metabolismo
3.
Nat Commun ; 13(1): 4788, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970859

RESUMO

RhoGAP proteins are key regulators of Rho family GTPases and influence a variety of cellular processes, including cell migration, adhesion, and cytokinesis. These GTPase activating proteins (GAPs) downregulate Rho signaling by binding and enhancing the intrinsic GTPase activity of Rho proteins. Deleted in liver cancer 1 (DLC1) is a tumor suppressor and ubiquitously expressed RhoGAP protein; its activity is regulated in part by binding p120RasGAP, a GAP protein for the Ras GTPases. In this study, we report the co-crystal structure of the p120RasGAP SH3 domain bound directly to DLC1 RhoGAP, at a site partially overlapping the RhoA binding site and impinging on the catalytic arginine finger. We demonstrate biochemically that mutation of this interface relieves inhibition of RhoGAP activity by the SH3 domain. These results reveal the mechanism for inhibition of DLC1 RhoGAP activity by p120RasGAP and demonstrate the molecular basis for direct SH3 domain modulation of GAP activity.


Assuntos
Proteína p120 Ativadora de GTPase , Domínios de Homologia de src , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína p120 Ativadora de GTPase/química , Proteína p120 Ativadora de GTPase/genética , Proteína p120 Ativadora de GTPase/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
4.
Mol Med ; 27(1): 70, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238211

RESUMO

BACKGROUND: Maternally Expressed Gene 3 (MEG3) is expressed at low levels in placental villi during preeclampsia; however, its roles in unexplained recurrent spontaneous abortion (URSA) remain unclear. In this study, we aimed to explore the relationship between MEG3 and URSA. METHODS: The differentially expressed lncRNAs (MEG3) and its downstream genes (RASA1) were identified using bioinformatics analysis of Genomic Spatial Event (GSE) database. The expression levels of MEG3 in embryonic villis (with gestational ages of 49-63 days) and primary trophoblasts were determined using quantitative RT-PCR assay. A mouse model of Embryo implantation, Cell Counting Kit-8 (CCK-8), flow cytometry, and Transwell migration assays were performed to determine the implantation, proliferative, apoptotic, and invasive capacities of trophoblast. The level of phosphorylated core proteins in the RAS-MAPK pathway were analyzed using Western blot assay. The mechanisms of MEG3 in the regulation of RASA1 were studied by RNA pulldown, RNA immunoprecipitation (RIP), DNA pulldown, and chromatin immunoprecipitation (ChIP) assays. RESULTS: MEG3 had a low expression level in embryonic villis of 102 URSA patients compared with those of 102 normal pregnant women. MEG3 could promote proliferation and invasion, inhibit the apoptosis of primary trophoblast of URSA patients (PT-U cells), as well as promote embryo implantation of mouse. Besides, MEG3 also promoted the phosphorylation of rapidly accelerated fibrosarcoma (Raf), mitogen-activated protein kinase kinase (MEK), and extracellular-signal-regulated kinase (ERK) proteins. The results of RNA pull down and RIP assays showed that MEG3 bound with the enhancer of zeste homolog 2 (EZH2). The DNA pulldown assay revealed that MEG3 could bind to the promoter sequence of the RAS P21 Protein Activator 1 (RASA1) gene. Further, the ChIP assay showed that MEG3 promoted the binding of EZH2 to the promoter region of the RASA1 gene. CONCLUSIONS: The inactivation of MEG3 in embryonic villi association with URSA; MEG3 inhibited the expression of RASA1 by mediating the histone methylation of the promoter of RASA1 gene by EZH2, thereby activating the RAS-MAPK pathway and enhancing the proliferative and invasive capacities of trophoblasts.


Assuntos
Aborto Espontâneo/etiologia , Aborto Espontâneo/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais , Trofoblastos/metabolismo , Proteína p120 Ativadora de GTPase/metabolismo , Apoptose/genética , Biomarcadores , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Suscetibilidade a Doenças , Implantação do Embrião/genética , Feminino , Regulação da Expressão Gênica , Idade Gestacional , Histonas/metabolismo , Humanos , Imunofenotipagem , Metilação , Placenta/metabolismo , Gravidez
5.
Mol Med Rep ; 24(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34165173

RESUMO

Long non­coding (lnc)RNAs serve a role in a number of diseases, including different types of cancer and acute myocardial infarction. The aim of the present study was to investigate the protective role of lncRNA small nucleolar RNA host gene 8 (SNHG8) in hypoxia­ischemia­reoxygenation (HI/R)­induced myocardial injury and its potential mechanism of action. Cell viability, proliferation, creatine kinase myocardial band, cell apoptosis and protein expression levels were determined by Cell Counting Kit­8 assay, EdU assay, ELISA, flow cytometry and western blotting, respectively. The association between SNHG8 and microRNA (miR)­335 was confirmed using a dual­luciferase reporter gene assay. The effects of the miR­335 inhibitor transfections had on increasing apoptosis and decreasing H9C2 cell viability were reversed in cells co­transfected with SNHG8 small interfering (si)RNA. Furthermore, it was found that miR­335 could regulate RAS p21 protein activator 1 (RASA1) expression and that transfection with SNHG8 siRNA downregulated RASA1 expression. Silencing of RASA1 protected against HI/R­induced H9C2 cell injury. However, SNHG8 siRNA did not further reduce apoptosis, demonstrating that SNHG8 may act through RASA1, and RASA1 may mediate the protection of SNHG8 siRNA in HI/R myocardial injury. Thus, inhibition of lncRNA SNHG8 alleviated HI/R­induced myocardial damage by regulating miR­335 and RASA1.


Assuntos
Hipóxia/metabolismo , Isquemia/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Proteína p120 Ativadora de GTPase/metabolismo , Animais , Apoptose , Hipóxia Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Hipóxia/genética , Hipóxia/terapia , Isquemia/genética , Isquemia/terapia , MicroRNAs/genética , Infarto do Miocárdio , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/terapia , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Ratos , Proteína p120 Ativadora de GTPase/genética
6.
Oncol Rep ; 44(6): 2386-2396, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33125148

RESUMO

Ras p21 protein activator 1 (RASA1) is a regulator of Ras GDP and GTP and is involved in numerous physiological processes such as angiogenesis, cell proliferation, and apoptosis. As a result, RASA1 also contributes to pathological processes in vascular diseases and tumour formation. This review focuses on the role of RASA1 in multiple tumours types in the lung, intestines, liver, and breast. Furthermore, we discuss the potential mechanisms of RASA1 and its downstream effects through Ras/RAF/MEK/ERK or Ras/PI3K/AKT signalling. Moreover, miRNAs are capable of regulating RASA1 and could be a novel targeted treatment strategy for tumours.


Assuntos
Neoplasias/patologia , Neovascularização Patológica/patologia , Proteína p120 Ativadora de GTPase/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , MicroRNAs/administração & dosagem , MicroRNAs/metabolismo , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína p120 Ativadora de GTPase/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-32843429

RESUMO

Parkes Weber syndrome is associated with autosomal dominant inheritance, caused by germline heterozygous inactivating changes in the RASA1 gene, characterized by multiple micro arteriovenous fistulas and segmental overgrowth of soft tissue and skeletal components. The focal nature and variable expressivity associated with this disease has led to the hypothesis that somatic "second hit" inactivating changes in RASA1 are necessary for disease development. We report a 2-yr-old male with extensive capillary malformation and segmental overgrowth of his lower left extremity. Ultrasound showed subcutaneous phlebectasia draining the capillary malformation; magnetic resonance imaging showed overgrowth of the extremity with prominence of fatty tissues, fatty infiltration, and enlargement of all the major muscle groups. Germline RASA1 testing was normal. Later somatic testing from affected tissue showed two pathogenic variants in RASA1 consistent with the c.934_938del, p.(Glu312Argfs*14) and the c.2925del, p.(Asn976Metfs*20) with variant allele fractions of 3.6% and 4.2%, respectively. The intrafamilial variability of Parkes Weber syndrome involving segmental overgrowth of soft tissue, endothelium, and bone is strongly suggestive of a somatic second-hit model. There are at least two reports of confirmed second somatic hits in RASA1 To our knowledge, this is the first report of an individual with two somatic pathogenic variants in the RASA1 gene in DNA from a vascular lesion.


Assuntos
Síndrome de Sturge-Weber/genética , Proteína p120 Ativadora de GTPase/genética , Alelos , Capilares/anormalidades , Pré-Escolar , Humanos , Masculino , Mutação/genética , Síndrome de Sturge-Weber/metabolismo , Malformações Vasculares/genética , Proteína p120 Ativadora de GTPase/metabolismo
8.
Biosci Rep ; 40(7)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32588875

RESUMO

RAS p21 protein activator 1 (RASA1), also known as p120-RasGAP, is a RasGAP protein that functions as a signaling scaffold protein, regulating pivotal signal cascades. However, its biological mechanism in renal cell carcinoma (RCC) remains unknown. In the present study, RASA1, F-box/WD repeat-containing protein 7 (FBXW7), and miR-223-3p expression were assessed via quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Then, the targeted correlations of miR-223-3p with FBXW7 and RASA1 were verified via a dual-luciferase reporter gene assay. CCK-8, flow cytometry, and Transwell assays were implemented independently to explore the impact of RASA1 on cell proliferation, apoptosis, migration, and cell cycle progression. Finally, the influence of RASA1 on tumor formation in RCC was assessed in vivo through the analysis of tumor growth in nude mice. Results showed that FBXW7 and RASA1 expression were decreased in RCC tissues and cell lines, while miR-223-3p was expressed at a higher level. Additionally, FBXW7 and RASA1 inhibited cell proliferation but facilitated the population of RCC cells in the G0/G1 phase. Altogether, RASA1 may play a key role in the progression of RCC by decreasing miR-223-3p and subsequently increasing FBXW7 expression.


Assuntos
Carcinoma de Células Renais/genética , Proteína 7 com Repetições F-Box-WD/genética , Neoplasias Renais/genética , MicroRNAs/metabolismo , Proteína p120 Ativadora de GTPase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/cirurgia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Rim/patologia , Rim/cirurgia , Neoplasias Renais/patologia , Neoplasias Renais/cirurgia , Camundongos , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Biotechnol Appl Biochem ; 67(2): 294-302, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31737949

RESUMO

MicroRNAs (miRNAs) have been shown to participate in development of neuropathic pain. However, the role of microRNA-144 (miR-144) in neuropathic pain remains unclear. In the present study, we established a neuropathic pain mouse model via chronic constriction injury (CCI)-induction. The successful establishment of this model was confirmed via evaluation of paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). By using this model, we found that miR-144 was significantly downregulated in CCI-induced neuropathic pain mice. In addition, intrathecal injection of miR-144 agomiR alleviated mechanical and thermal hyperalgesia in neuropathic pain mice as shown by the increased of PWT and PWL. Moreover, miR-144 negatively regulated neuroinflammation by decreasing the expression of proinflammatory mediators, including TNF-α (tumor necrosis factor-α), IL (interleukin)-1ß, and IL-6, thus facilitating the inhibition of neuropathic pain development. Mechanistically, RASA1 (RAS P21 Protein Activator 1) was downregulated following the injection of agomiR-144, and was verified to be a target of miR-144. Furthermore, overexpression of RASA1 reversed the inhibitory effect of miR-144 on neuropathic pain. Therefore, the present study suggested that miR-144 has the potential to be explored as therapeutic target for treatment of neuropathic pain.


Assuntos
Constrição Patológica/metabolismo , MicroRNAs/metabolismo , Neuralgia/metabolismo , Proteína p120 Ativadora de GTPase/metabolismo , Animais , Células Cultivadas , Doença Crônica , Constrição , Constrição Patológica/patologia , Modelos Animais de Doenças , Regulação para Baixo , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/administração & dosagem , MicroRNAs/genética , Neuralgia/patologia
10.
Immunobiology ; 224(5): 687-696, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31200979

RESUMO

Regulatory T cells (Tregs) maintain immune homeostasis and play an important role in tissue regeneration after injury. Mutations affecting development or homeostasis of Tregs lead to immune pathologies in humans and are often fatal in mouse models. Although the pathways required for Treg development are being increasingly characterized, factors crucial for Treg homeostasis are not completely understood. Previously we have found a role for alternative NF-κB pathway in restricting T cell activation and Th17 differentiation. Here, by using the mouse model of uncontrolled alternative NF-κB signaling we identify a crucial intrinsic role of RelB signaling in regulating homeostasis and competitive fitness of Tregs. The failure of p100-/- Tregs to maintain the population of effector Tregs and efficiently suppress immune reactions results in lethal multiorgan Th1-mediated inflammation in Rag1-/- recipients. This inflammation is combined with severe lymphopenia and could be rescued by adoptive transfer of wild type Tregs. Thus in addition to its role in Th17 differentiation, RelB acts as a potent inhibitor of Treg effector functions. Our results point to RelB as a potential therapeutic target for Treg manipulation.


Assuntos
Homeostase , NF-kappa B/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Autoimunidade , Biomarcadores , Citocinas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Imunomodulação/genética , Imunofenotipagem , Ativação Linfocitária , Camundongos , Camundongos Knockout , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fator de Transcrição RelB/metabolismo , Proteína p120 Ativadora de GTPase/genética , Proteína p120 Ativadora de GTPase/metabolismo
11.
J Clin Invest ; 129(9): 3545-3561, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185000

RESUMO

Combined germline and somatic second hit inactivating mutations of the RASA1 gene, which encodes a negative regulator of the Ras signaling pathway, cause blood and lymphatic vascular lesions in the human autosomal dominant vascular disorder capillary malformation-arteriovenous malformation (CM-AVM). How RASA1 mutations in endothelial cells (EC) result in vascular lesions in CM-AVM is unknown. Here, using different murine models of RASA1-deficiency, we found that RASA1 was essential for the survival of EC during developmental angiogenesis in which primitive vascular plexuses are remodeled into hierarchical vascular networks. RASA1 was required for EC survival during developmental angiogenesis because it was necessary for export of collagen IV from EC and deposition in vascular basement membranes. In the absence of RASA1, dysregulated Ras mitogen-activated protein kinase (MAPK) signal transduction in EC resulted in impaired folding of collagen IV and its retention in the endoplasmic reticulum (ER) leading to EC death. Remarkably, the chemical chaperone, 4-phenylbutyric acid, and small molecule inhibitors of MAPK and 2-oxoglutarate dependent collagen IV modifying enzymes rescued ER retention of collagen IV and EC apoptosis and resulted in normal developmental angiogenesis. These findings have important implications with regards an understanding of the molecular pathogenesis of CM-AVM and possible means of treatment.


Assuntos
Colágeno Tipo IV/metabolismo , Vasos Linfáticos/embriologia , Proteína p120 Ativadora de GTPase/genética , Proteína p120 Ativadora de GTPase/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Malformações Arteriovenosas/metabolismo , Linhagem Celular Tumoral , Edema/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Valvas Cardíacas , Ventrículos do Coração/patologia , Hemorragia/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Neovascularização Patológica , Fenótipo , Fenilbutiratos/farmacologia , Gravidez , Transdução de Sinais , Transgenes
12.
Trends Mol Med ; 25(4): 265-286, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30819650

RESUMO

Recent whole exome sequencing studies in humans have provided novel insight into the importance of the ephrinB2-EphB4-RASA1 signaling axis in cerebrovascular development, corroborating and extending previous work in model systems. Here, we aim to review the human cerebrovascular phenotypes associated with ephrinB2-EphB4-RASA1 mutations, including those recently discovered in Vein of Galen malformation: the most common and severe brain arteriovenous malformation in neonates. We will also discuss emerging paradigms of the molecular and cellular pathophysiology of disease-causing ephrinB2-EphB4-RASA1 mutations, including the potential role of somatic mosaicism. These observations have potential diagnostic and therapeutic implications for patients with rare congenital cerebrovascular diseases and their families.


Assuntos
Transtornos Cerebrovasculares/etiologia , Transtornos Cerebrovasculares/metabolismo , Efrina-B2/metabolismo , Neovascularização Fisiológica , Receptor EphB4/metabolismo , Transdução de Sinais , Proteína p120 Ativadora de GTPase/metabolismo , Animais , Transtornos Cerebrovasculares/patologia , Suscetibilidade a Doenças , Efrina-B2/química , Efrina-B2/genética , Predisposição Genética para Doença , Humanos , Receptor EphB4/química , Receptor EphB4/genética , Relação Estrutura-Atividade , Proteína p120 Ativadora de GTPase/química , Proteína p120 Ativadora de GTPase/genética
13.
Biol Chem ; 400(6): 753-763, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-30653462

RESUMO

The present study was designed to investigate the mechanism of the traditional Chinese medicine Changqin NO. 1 on the amelioration of traumatic brain injury (TBI). Adult male C57BL/6J mice and newborn mice were used to generate a mouse TBI model and harvest primary neurons, respectively. The localizations of specific neural markers neuropilin-1 (Nrp-1), growth-associated protein-43 (GAP-43) and microtubule-associated protein Tau (Tau) were examined in brain tissues by immunohistochemistry. Terminal deoxynucleotidyl transferase dUTP nick end labeling apoptotic cell detection in tissue sections and the CCK-8 cell viability assay were performed to examine neuronal apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were also carried out in this study. The association between long non-coding RNA (lncRNA) growth-arrest specific 5 (GAS5), miR-335 and RAS p21 GTPase activating protein 1 (Rasa1) was disclosed using the dual-luciferase reporter assay. Changqin NO. 1 inhibited TBI-induced neuronal apoptosis in vivo and in vitro. GAS5 functioned as a competing endogenous RNA (ceRNA) by sponging miR-335 to upregulate Rasa1 expression in mouse neuronal cells. Further investigations demonstrated that GAS5 promoted neuronal apoptosis following TBI via the miR-335/Rasa1 axis. In vivo experiments indicated that Changqin NO. 1 exerted neuroprotection during TBI via the GAS5/miR-335/Rasa1 axis. Changqin NO. 1 promoted neuroprotective effects by inhibiting neuronal apoptosis via the GAS5/miR-335/Rasa1 axis in TBI.


Assuntos
Apoptose , Lesões Encefálicas Traumáticas/metabolismo , Medicina Tradicional Chinesa , Neurônios/efeitos dos fármacos , Neurônios/patologia , RNA Longo não Codificante/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteína p120 Ativadora de GTPase/metabolismo
14.
Oncol Rep ; 41(3): 1627-1637, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30569149

RESUMO

MicroRNA­21 (miR­21) has been revealed to play a crucial role in regulating the biological behavior, including proliferation, migration, invasion and metastasis in certain cancers. However, its role in esophageal squamous cell carcinoma (ESCC) has yet to be elucidated. Based on the data of GSE13937 downloaded from Gene Expression Omnibus (GEO) database, miR­21 was revealed to be one of the top 20 differentially expressed (DE) miRNAs screened using the Morpheus online tool. RAS p21 protein activator 1 (RASA1) was predicted as the target gene of miR­21 using the predicting software and was combined with miR­21 using the luciferase reporter assay. Its relative expression was significantly decreased, however, miR­21 was increased in the tumor tissues compared to the normal adjacent tissues in patients with ESCC as determined by quantitative polymerase chain reaction (q­PCR). Furthermore, overexpression of miR­21 (mimic) could significantly decrease the gene level of RASA1. Conversely, downregulation of miR­21 (inhibitor) significantly increased the gene level of RASA1, while downregulation of RASA1 (siRASA1) markedly increased the gene expression of miR­21. Notably, the expression of Snail and vimentin were significantly increased by upregulation of miR­21 and downregulation of RASA1. Transwell results revealed that miR­21 and RASA1 regulated proliferation, migration and invasion in ESCC cells. In an in vivo model, miR­21 inhibitor (antagomir) could inhibit tumor growth. In conclusion, miR­21 regulated cell proliferation, migration, invasion and tumor growth of ESCC by directly targeting RASA1, which may have been achieved via regulation of Snail and vimentin. Anti­miR­21 revealed an antitumor effect. Thus, it may be considered as a possible target for ESCC therapy.


Assuntos
Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Proteína p120 Ativadora de GTPase/genética , Idoso , Animais , Antagomirs/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação para Baixo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Esôfago/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail/metabolismo , Regulação para Cima , Vimentina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína p120 Ativadora de GTPase/metabolismo
15.
Biochem Biophys Res Commun ; 505(1): 222-228, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30243714

RESUMO

As the leading cause of death for gynecological cancers, ovarian cancer (OC) ranks fifth overall for cancer-related death among women. Emerging evidence has indicated that circular RNA (circRNA), recognized as functional non-coding transcripts in eukaryotic cells, may be involved in many physiological or pathological processes. It was reported that circ-ITCH is downregulated in multi cancers and serves as a powerful tumor suppressor among through a competing endogenous RNA (ceRNA) pathway. However, the existence and the role of circ-ITCH in OC was not reported. Here, we found a broad down-regulation of circ-ITCH in OC tissues and cells, which correlates with a worse prognosis in OC patients. Functional studies suggest that circ-ITCH overexpression inhibits the cell viability and motility by CCK8, cell cycle, wound healing assay and invasion assay. It also inhibits the tumorigenesis ability in xenograft NOD mice in vivo. Mechanically, we demonstrated that circ-TCH acts as a ceRNA to sponge miR-145, increases the level of RASA1, and inhibits the malignant progression of OC cells via the circ-ITCH-miR-145-RASA1 axis in vitro and in vivo. Taken together, our findings provide a novel tumor suppressive role regarding circ-ITCH function in the malignant progression of OC.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Ovarianas/genética , RNA/genética , Transdução de Sinais/genética , Proteína p120 Ativadora de GTPase/genética , Animais , Carcinogênese/genética , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , RNA Circular , Transplante Heterólogo , Proteína p120 Ativadora de GTPase/metabolismo
16.
Cancer Res ; 78(19): 5668-5679, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30115694

RESUMO

In human cancers, FGFR signaling is frequently hyperactivated by deregulation of FGF ligands or by activating mutations in the FGFR receptors such as gene amplifications, point mutations, and gene fusions. As such, FGFR inhibitors are considered an attractive therapeutic strategy for patients with mutations in FGFR family members. We previously identified Fgfr2 as a key driver of invasive lobular carcinoma (ILC) in an in vivo insertional mutagenesis screen using the Sleeping Beauty transposon system. Here we explore whether these FGFR-driven ILCs are sensitive to the FGFR inhibitor AZD4547 and use transposon mutagenesis in these tumors to identify potential mechanisms of resistance to therapy. Combined with RNA sequencing-based analyses of AZD4547-resistant tumors, our in vivo approach identified several known and novel potential resistance mechanisms to FGFR inhibition, most of which converged on reactivation of the canonical MAPK-ERK signaling cascade. Observed resistance mechanisms included mutations in the tyrosine kinase domain of FGFR2, overexpression of MET, inactivation of RASA1, and activation of the drug-efflux transporter ABCG2. ABCG2 and RASA1 were identified only from de novo transposon insertions acquired during AZD4547 treatment, demonstrating that insertional mutagenesis in mice is an effective tool for identifying potential mechanisms of resistance to targeted cancer therapies.Significance: These findings demonstrate that a combined approach of transcriptomics and insertional mutagenesis in vivo is an effective method for identifying potential targets to overcome resistance to therapy in the clinic. Cancer Res; 78(19); 5668-79. ©2018 AACR.


Assuntos
Benzamidas/química , Elementos de DNA Transponíveis , Resistencia a Medicamentos Antineoplásicos , Mutagênese , Piperazinas/química , Pirazóis/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Carcinoma Lobular/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Amplificação de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Mutação , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Análise de Sequência de RNA , Transcriptoma , Proteína p120 Ativadora de GTPase/metabolismo
17.
Cell Physiol Biochem ; 46(4): 1439-1454, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29689569

RESUMO

BACKGROUND/AIMS: Percutaneous coronary intervention reduces acute myocardial infarction (MI)-induced mortality to a great extent, but effective treatments for MI-induced cardiac fibrosis and heart failure are still lacking. MicroRNAs (miRNAs) play a variety of roles in cells and have thus been investigated extensively. MicroRNA-223 (miR-223) expression has been reported to be altered in post-MI heart failure in humans; however, the roles of miR-223 in MI remain unknown. Our study aimed to elucidate the roles of miR-223 in cardiac fibrosis. METHODS: Cultured cardiac fibroblasts (CFs) were activated by TGF-ß1 stimulation. Gain and loss of miR-223 and RAS p21 protein activator 1 (RASA1) knockdown in CFs were achieved by transfecting the cells with miR-223 mimics and inhibitors, as well as small interfering RNA-RASA1 (siRASA1), respectively. Quantitative real-time reverse transcriptase-polymerase chain reactions (qRT-PCR) was used to determine miR-223-3p and RASA1 expression levels, and Cell Counting Kit-8 (CCK-8), transwell migration and scratch assays were performed to assess CFs viability and migration, respectively. Western blotting was used to detect collagen I, collagen III, alpha-smooth muscle actin (a-SMA), RASA1, p-Akt/t-Akt, p-MEK1/2/t-MEK1/2, and p-ERK1/2/t-ERK1/2 protein expressions, and immunofluorescence assays were used to detect the expression of α-actin, vimentin and α-SMA. Luciferase assays were carried out to determine whether miR-223 binds to RASA1. Rat models of MI were established by the ligation of the left anterior descending (LAD) coronary artery. MiR-223 inhibition in vivo was achieved via intramyocardial injections of the miR-223 sponge carried by adeno-associated virus 9 (AAV9). The cardiac function was detected by echocardiography, and cardiac fibrosis was shown by Masson's trichrome staining. RESULTS: miR-223 was increased in CFs compared to cardiomypcytes, and TGF-ß1 treatment increased miR-223 expression in CFs. The miR-223 mimics enhanced cell proliferation and migration and collagen I, collagen III, and α-SMA protein expression in CFs, while the miR-223 inhibitors had contrasting effects and partially prevented the promoting effects of TGF-ß1. qRT-PCR and western blotting revealed that miR-223 negatively regulated RASA1 expression, and the luciferase assays showed that miR-223 suppressed the luciferase activity of the RASA1 3' untranslated region (3'UTR), indicating that miR-223 binds directly to RASA1. Similar to transfection with the miR-223 mimics, RASA1 knockdown enhanced cell proliferation and migration and collagen I, collagen III, and α-SMA protein expression in CFs. Moreover, RASA1 knockdown partially reversed the inhibitory effects of the miR-223 inhibitor on cell proliferation and migration and collagen I, collagen III, and α-SMA protein expression, indicating that the effects of miR-223 in CFs are partially mediated by the regulation of RASA1 expression. Further exploration showed that miR-223 mimics and siRASA1 promoted MEK1/2, ERK1/2 and AKT phosphorylation, while the miR-223 inhibitors had contrasting effects. The in vivo experiments confirmed the results of the in vitro experiments and showed that miR-223 inhibition prevented cardiac functional deterioration and cardiac fibrosis. CONCLUSIONS: miR-223 enhanced cell proliferation, migration, and differentiation in CFs, thus mediated cardiac fibrosis after MI partially via the involvement of RASA1.


Assuntos
MicroRNAs/metabolismo , Proteína p120 Ativadora de GTPase/metabolismo , Regiões 3' não Traduzidas , Actinas/metabolismo , Animais , Antagomirs/metabolismo , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Colágeno Tipo I/metabolismo , Colágeno Tipo II/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibrose , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/veterinária , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Alinhamento de Sequência , Fator de Crescimento Transformador beta1/farmacologia , Vimentina/metabolismo , Proteína p120 Ativadora de GTPase/antagonistas & inibidores , Proteína p120 Ativadora de GTPase/genética
18.
Eur J Med Genet ; 61(1): 11-16, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29024832

RESUMO

Capillary malformation-arteriovenous malformation (CM-AVM) is an autosomal dominant vascular disorder that is associated with inherited inactivating mutations of the RASA1 gene in the majority of cases. Characteristically, patients exhibit one or more focal cutaneous CM that may occur alone or together with AVM, arteriovenous fistulas or lymphatic vessel abnormalities. The focal nature and varying presentation of lesions has led to the hypothesis that somatic "second hit" inactivating mutations of RASA1 are necessary for disease development. In this study, we examined CM from four different CM-AVM patients for the presence of somatically acquired RASA1 mutations. All four patients were shown to possess inactivating heterozygous germline RASA1 mutations. In one of the patients, a somatic inactivating RASA1 mutation (c.1534C > T, p.Arg512*) was additionally identified in CM lesion tissue. The somatic RASA1 mutation was detected within endothelial cells specifically and was in trans with the germline RASA1 mutation. Together with the germline RASA1 mutation (c.2125C > T, p.Arg709*) in the same patient, the endothelial cell somatic RASA1 mutation likely contributed to lesion development. These studies provide the first clear evidence of the second hit model of CM-AVM pathogenesis.


Assuntos
Malformações Arteriovenosas/genética , Capilares/anormalidades , Células Endoteliais/metabolismo , Mancha Vinho do Porto/genética , Proteína p120 Ativadora de GTPase/genética , Adolescente , Adulto , Malformações Arteriovenosas/patologia , Capilares/patologia , Criança , Endotélio Vascular/metabolismo , Feminino , Mutação em Linhagem Germinativa , Humanos , Masculino , Mancha Vinho do Porto/patologia , Proteína p120 Ativadora de GTPase/metabolismo
19.
Mol Carcinog ; 56(6): 1680-1684, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28150874

RESUMO

Activation of oncogenes is the initial step in cellular transformation. Oncogenes favor aberrant proliferation, which, at least initially, induces cellular stress. This oncogenic stress can act as a safeguard mechanism against further transformation by inducing senescence or apoptosis. Yet, the few premalignant cells that tolerate and escape these senescent or apoptotic responses are those that will ultimately generate tumors. The caspase-3/p120 RasGAP module is a stress-sensing device that promotes survival under mild stress conditions. A point mutation in RasGAP that prevents its cleavage by caspase-3 inactivates the pro-survival capacity of the device. When the mice homozygous for this mutation (D455A knock-in mice) are patho-physiologically challenged, they experience much stronger cellular damage than their wild-type counterparts and the affected organs rapidly lose their functionality. We reasoned that the caspase-3/p120 RasGAP module could help premalignant cells to cope with oncogenic stress and hence favor the development of tumors. Using gamma-irradiation and N-ethyl-N-nitrosourea (ENU) as tumor initiators, we assessed the survival advantage that the caspase-3/p120 RasGAP module could provide to premalignant cells. No difference in overall mortality between wild-type and D455A knock-in mice were observed. However, the number of ENU-induced liver tumors in the knock-in mice was higher than in control mice. These results indicate that the caspase-3/p120 RasGAP stress-sensing module impacts on carcinogen-induced liver cancer incidence but not sufficiently so as to affect overall survival. Hence, gamma irradiation and ENU-induced tumorigenesis processes do not critically rely on a survival mechanism that contributes to the maintenance of organ homeostasis in stressed healthy tissues.


Assuntos
Caspase 3/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/patologia , Neoplasias Induzidas por Radiação/metabolismo , Proteína p120 Ativadora de GTPase/metabolismo , Animais , Linhagem Celular , Etilnitrosoureia , Raios gama , Incidência , Fígado/metabolismo , Fígado/efeitos da radiação , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Induzidas por Radiação/patologia
20.
Cancer Res ; 77(6): 1357-1368, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28108518

RESUMO

RAS genes are mutated in 20% of human tumors, but these mutations are very rare in breast cancer. Here, we used a mouse model to generate tumors upon activation of a mutagenic T2Onc2 transposon via expression of a transposase driven by the keratin K5 promoter in a p53+/- background. These animals mainly developed mammary tumors, most of which had transposon insertions in one of two RASGAP genes, neurofibromin1 (Nf1) and RAS p21 protein activator (Rasa1). Immunohistochemical analysis of a collection of human breast tumors confirmed that low expression of RASA1 is frequent in basal (triple-negative) and estrogen receptor negative tumors. Bioinformatic analysis of human breast tumors in The Cancer Genome Atlas database showed that although RASA1 mutations are rare, allelic loss is frequent, particularly in basal tumors (80%) and in association with TP53 mutation. Inactivation of RASA1 in MCF10A cells resulted in the appearance of a malignant phenotype in the context of mutated p53. Our results suggest that alterations in the Ras pathway due to the loss of negative regulators of RAS may be a common event in basal breast cancer. Cancer Res; 77(6); 1357-68. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/metabolismo , Elementos de DNA Transponíveis/genética , Transposases/fisiologia , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/fisiologia , Proteína p120 Ativadora de GTPase/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Estadiamento de Neoplasias , Prognóstico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína p120 Ativadora de GTPase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA