Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 626
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 63, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605414

RESUMO

BACKGROUND: Chitinase-like proteins (CLPs) play a key role in immunosuppression under inflammatory conditions such as cancer. CLPs are enzymatically inactive and become neutralized upon binding of their natural ligand chitin, potentially reducing CLP-driven immunosuppression. We investigated the efficacy of chitin treatment in the context of triple-negative breast cancer (TNBC) using complementary mouse models. We also evaluated the immunomodulatory influence of chitin on immune checkpoint blockade (ICB) and compared its efficacy as general CLP blocker with blockade of a single CLP, i.e. chitinase 3-like 1 (CHI3L1). METHODS: Female BALB/c mice were intraductally injected with luciferase-expressing 4T1 or 66cl4 cells and systemically treated with chitin in combination with or without anti-programmed death (PD)-1 ICB. For single CLP blockade, tumor-bearing mice were treated with anti-CHI3L1 antibodies. Metastatic progression was monitored through bioluminescence imaging. Immune cell changes in primary tumors and lymphoid organs (i.e. axillary lymph nodes and spleen) were investigated through flow cytometry, immunohistochemistry, cytokine profiling and RNA-sequencing. CHI3L1-stimulated RAW264.7 macrophages were subjected to 2D lymphatic endothelial cell adhesion and 3D lymphatic integration in vitro assays for studying macrophage-mediated lymphatic remodeling. RESULTS: Chitin significantly reduced primary tumor progression in the 4T1-based model by decreasing the high production of CLPs that originate from tumor-associated neutrophils (TANs) and Stat3 signaling, prominently affecting the CHI3L1 and CHI3L3 primary tumor levels. It reduced immunosuppressive cell types and increased anti-tumorigenic T-cells in primary tumors as well as axillary lymph nodes. Chitin also significantly reduced CHI3L3 primary tumor levels and immunosuppression in the 66cl4-based model. Compared to anti-CHI3L1, chitin enhanced primary tumor growth reduction and anti-tumorigenicity. Both treatments equally inhibited lymphatic adhesion and integration of macrophages, thereby hampering lymphatic tumor cell spreading. Upon ICB combination therapy, chitin alleviated anti-PD-1 resistance in both TNBC models, providing a significant add-on reduction in primary tumor and lung metastatic growth compared to chitin monotherapy. These add-on effects occurred through additional increase in CD8α+ T-cell infiltration and activation in primary tumor and lymphoid organs. CONCLUSIONS: Chitin, as a general CLP blocker, reduces CLP production, enhances anti-tumor immunity as well as ICB responses, supporting its potential clinical relevance in immunosuppressed TNBC patients.


Assuntos
Quitina , Quitinases , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Quitina/farmacologia , Quitina/uso terapêutico , Quitinases/uso terapêutico , Terapia de Imunossupressão , Metástase Linfática , Proteínas/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia
2.
Nat Rev Chem ; 8(3): 211-229, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38388838

RESUMO

The ability to construct a peptide or protein in a spatio-specific manner is of great interest for therapeutic and biochemical research. However, the various functional groups present in peptide sequences and the need to perform chemistry under mild and aqueous conditions make selective protein functionalization one of the greatest synthetic challenges. The fascinating paradox of selenium (Se) - being found in both toxic compounds and also harnessed by nature for essential biochemical processes - has inspired the recent exploration of selenium chemistry for site-selective functionalization of peptides and proteins. In this Review, we discuss such approaches, including metal-free and metal-catalysed transformations, as well as traceless chemical modifications. We report their advantages, limitations and applications, as well as future research avenues.


Assuntos
Selênio , Proteínas/uso terapêutico , Peptídeos
4.
Curr Protein Pept Sci ; 25(3): 226-243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37921168

RESUMO

Bioconjugation techniques have emerged as powerful tools for enhancing the stability and targeting efficiency of protein and peptide therapeutics. This review provides a comprehensive analysis of the various bioconjugation strategies employed in the field. The introduction highlights the significance of bioconjugation techniques in addressing stability and targeting challenges associated with protein and peptide-based drugs. Chemical and enzymatic bioconjugation methods are discussed, along with crosslinking strategies for covalent attachment and site-specific conjugation approaches. The role of bioconjugation in improving stability profiles is explored, showcasing case studies that demonstrate successful stability enhancement. Furthermore, bioconjugation techniques for ligand attachment and targeting are presented, accompanied by examples of targeted protein and peptide therapeutics. The review also covers bioconjugation approaches for prolonging circulation and controlled release, focusing on strategies to extend half-life, reduce clearance, and design-controlled release systems. Analytical characterization techniques for bioconjugates, including the evaluation of conjugation efficiency, stability, and assessment of biological activity and targeting efficiency, are thoroughly examined. In vivo considerations and clinical applications of bioconjugated protein and peptide therapeutics, including pharmacokinetic and pharmacodynamic considerations, as well as preclinical and clinical developments, are discussed. Finally, the review concludes with an overview of future perspectives, emphasizing the potential for novel conjugation methods and advanced targeting strategies to further enhance the stability and targeting efficiency of protein and peptide therapeutics.


Assuntos
Peptídeos , Proteínas , Preparações de Ação Retardada , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Proteínas/uso terapêutico
5.
Expert Opin Drug Deliv ; 21(1): 1-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38116624

RESUMO

INTRODUCTION: Due to the concerns raised by the extensive application of PEGylation, polypeptides have stood out as excellent candidates with adequate biocompatibility and biodegradability with tunable hydrophilicity. AREAS COVERED: In this review, polypeptides with the potential to replace PEGylation have been summarized and their application has been reviewed, including XTEN, PASylation, polysarcosine, zwitterion polypeptides, ELPylation, etc. Besides their strengths, the remaining challenges have also been discussed and the future perspectives have been provided. EXPERT OPINION: Polypeptides have been applied in the designing of peptide/protein drugs as well as nanomedicines, and some of the pharmaceutics have made it into the clinical trials and got approved. These polypeptides showed similar hydrophilic properties to PEGylation, which increased the hydrodynamic volumes of protein drugs, reduced kidney elimination, decreased protein-polymer interaction and potentially improved the drug delivery efficiency due to the extended circulation time in the system. Moreover, they demonstrated superior biodegradability and biocompatibility, compensating for the deficiencies for polymers such as PEG.


Assuntos
Peptídeos , Polietilenoglicóis , Polietilenoglicóis/química , Peptídeos/química , Proteínas/uso terapêutico , Proteínas/química , Polímeros/química , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos
6.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38069380

RESUMO

Ongoing research is gradually broadening the idea of cancer treatment, with attention being focused on nanoparticles to improve the stability, therapeutic efficacy, targeting, and other important metrics of conventional drugs and traditional drug delivery methods. Studies have demonstrated that drug delivery carriers based on biomaterials (e.g., protein nanoparticles and lipids) and inorganic materials (e.g., metal nanoparticles) have potential anticancer effects. Among these carriers, self-assembled proteins and peptides, which are highly biocompatible and easy to standardize and produce, are strong candidates for the preparation of anticancer drugs. Breast cancer (BC) and cervical cancer (CC) are two of the most common and deadly cancers in women. These cancers not only threaten lives globally but also put a heavy burden on the healthcare system. Despite advances in medical care, the incidence of these two cancers, particularly CC, which is almost entirely preventable, continues to rise, and the mortality rate remains steady. Therefore, there is still a need for in-depth research on these two cancers to develop more targeted, efficacious, and safe therapies. This paper reviews the types of self-assembling proteins and peptides (e.g., ferritin, albumin, and virus-like particles) and natural products (e.g., soy and paclitaxel) commonly used in the treatment of BC and CC and describes the types of drugs that can be delivered using self-assembling proteins and peptides as carriers (e.g., siRNAs, DNA, plasmids, and mRNAs). The mechanisms (including self-assembly) by which the natural products act on CC and BC are discussed. The mechanism of action of natural products on CC and BC and the mechanism of action of self-assembled proteins and peptides have many similarities (e.g., NF-KB and Wnt). Thus, natural products using self-assembled proteins and peptides as carriers show potential for the treatment of BC and CC.


Assuntos
Produtos Biológicos , Neoplasias da Mama , Nanopartículas , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Peptídeos/uso terapêutico , Peptídeos/farmacologia , Proteínas/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/uso terapêutico , Nanopartículas/uso terapêutico , Produtos Biológicos/uso terapêutico
7.
AAPS J ; 26(1): 3, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036919

RESUMO

Therapeutic fusion proteins are a class of hybrid constructs that combine distinct biomolecules into a single platform with the additive effects of the components. The ability to fuse two unrelated proteins provides a means to localize mechanisms to better treat a range of diseases. Fusion proteins can be designed to impart diverse functions, including increasing half-life, providing targeting, and enabling sustained signaling. Of these, half-life extenders, which are fused to a therapeutic protein to increase exposure, are the most established group of fusion proteins, with many clinical successes. Rapid advances in antibody and antibody-derivative technology have enabled the fusion of targeting domains with therapeutic proteins. An emerging group of therapeutic fusion proteins has two separate active functions. Although most research for therapeutic fusion proteins focuses on cancer, prior successes provide a foundation for studies into other diseases as well. The exponential emergence of biopharmaceuticals gives precedence for increased research into therapeutic fusion proteins for a multitude of diseases.


Assuntos
Neoplasias , Proteínas , Humanos , Proteínas/uso terapêutico , Anticorpos , Neoplasias/tratamento farmacológico , Proteínas Recombinantes de Fusão/uso terapêutico
8.
Breast Cancer Res ; 25(1): 144, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968653

RESUMO

BACKGROUND: Breast cancer stem cells (BCSCs) are resistant to standard therapies, facilitate tumor dissemination, and contribute to relapse and progression. Super-enhancers are regulators of stemness, and BET proteins, which are critical for super-enhancer function, are a potential therapeutic target. Here, we investigated the effects of BET proteins on the regulation of breast cancer stemness using the pan-BET degrader ZBC260. METHODS: We evaluated the effect of ZBC260 on CSCs in TNBC cell lines. We assessed the effect of ZBC260 on cellular viability and tumor growth and measured its effects on cancer stemness. We used RNA sequencing and stemness index to determine the global transcriptomic changes in CSCs and bulk cells and further validated our findings by qPCR, western blot, and ELISA. RESULTS: ZBC260 potently inhibited TNBC growth both in vitro and in vivo. ZBC260 reduced stemness as measured by cell surface marker expression, ALDH activity, tumorsphere number, and stemness index while increasing differentiated cells. GSEA analysis indicated preferential downregulation of stemness-associated and inflammatory genes by ZBC260 in ALDH+ CSCs. CONCLUSIONS: The BET degrader ZBC260 is an efficient degrader of BET proteins that suppresses tumor progression and decreases CSCs through the downregulation of inflammatory genes and pathways. Our findings support the further development of BET degraders alone and in combination with other therapeutics as CSC targeting agents.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Proteínas/metabolismo , Proteínas/farmacologia , Proteínas/uso terapêutico , Transformação Celular Neoplásica/metabolismo , Diferenciação Celular/genética , Células-Tronco Neoplásicas/patologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-37138514

RESUMO

Clinical applications of protein therapeutics-an advanced generation of drugs characterized by high biological specificity-are rapidly expanding. However, their development is often impeded by unfavorable pharmacokinetic profiles and largely relies on the use of drug delivery systems to prolong their in vivo half-life and suppress undesirable immunogenicity. Although a commercially established PEGylation technology based on protein conjugation with poly(ethylene glycol) (PEG)-protective steric shield resolves some of the challenges, the search for alternatives continues. Noncovalent PEGylation, which mainly relies on multivalent (cooperative) interactions and high affinity (host-guest) complexes formed between protein and PEG offers a number of potential advantages. Among them are dynamic or reversible protection of the protein with minimal loss of biological activity, drastically lower manufacturing costs, "mix-and-match" formulations approaches, and expanded scope of PEGylation targets. While a great number of innovative chemical approaches have been proposed in recent years, the ability to effectively control the stability of noncovalently assembled protein-PEG complexes under physiological conditions presents a serious challenge for the commercial development of the technology. In an attempt to identify critical factors affecting pharmacological behavior of noncovalently linked complexes, this Review follows a hierarchical analysis of various experimental techniques and resulting supramolecular architectures. The importance of in vivo administration routes, degradation patterns of PEGylating agents, and a multitude of potential exchange reactions with constituents of physiological compartments are highlighted. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Peptídeos , Proteínas , Proteínas/uso terapêutico , Proteínas/química , Peptídeos/química , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Composição de Medicamentos , Polietilenoglicóis/química
10.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108181

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive type of malignant primary brain tumor, and it is characterized by a high recurrence incidence and poor prognosis due to the presence of a highly heterogeneous mass of stem cells with self-renewal capacity and stemness maintenance ability. In recent years, the epigenetic landscape of GBM has been explored and many epigenetic alterations have been investigated. Among the investigated epigenetic abnormalities, the bromodomain and extra-terminal domain (BET) chromatin readers have been found to be significantly overexpressed in GBM. In this work, we investigated the effects of BET protein inhibition on GBM cell reprogramming. We found that the pan-BET pharmacological inhibitor JQ1 was able to promote a differentiation program in GBM cells, thus impairing cell proliferation and enhancing the toxicity of the drug Temozolomide (TMZ). Notably, the pro-differentiation capability of JQ1 was prevented in autophagy-defective models, suggesting that autophagy activation is necessary for BET protein activity in regulating glioma cell fate. Given the growing interest in epigenetic therapy, our results further support the possibility of introducing a BET-based approach in GBM clinical management.


Assuntos
Glioblastoma , Humanos , Glioblastoma/metabolismo , Proteínas/uso terapêutico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Diferenciação Celular , Autofagia , Linhagem Celular Tumoral
11.
Small ; 19(28): e2207973, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36971279

RESUMO

The development of smart nanosystems, which could overcome diverse biological barriers of nanomedicine transport, has received intense scientific interest in improving the therapeutic efficacies of traditional nanomedicines. However, the reported nanosystems generally hold disparate structures and functions, and the knowledge of involved biological barriers is usually scattered. There is an imperative need for a summary of biological barriers and how these smart nanosystems conquer biological barriers, to guide the rational design of the new-generation nanomedicines. This review starts from the discussion of major biological barriers existing in nanomedicine transport, including blood circulation, tumoral accumulation and penetration, cellular uptake, drug release, and response. Design principles and recent progress of smart nanosystems in overcoming the biological barriers are overviewed. The designated physicochemical properties of nanosystems can dictate their functions in biological environments, such as protein absorption inhibition, tumor accumulation, penetration, cellular internalization, endosomal escape, and controlled release, as well as modulation of tumor cells and their resident tumor microenvironment. The challenges facing smart nanosystems on the road heading to clinical approval are discussed, followed by the proposals that could further advance the nanomedicine field. It is expected that this review will provide guidelines for the rational design of the new-generation nanomedicines for clinical use.


Assuntos
Nanomedicina , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Portadores de Fármacos/química , Proteínas/uso terapêutico , Endossomos , Sistemas de Liberação de Medicamentos , Microambiente Tumoral
12.
ACS Biomater Sci Eng ; 9(2): 784-796, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36693219

RESUMO

Protein-based therapeutics have emerged as next-generation pharmaceutical agents for oncology, bone regeneration, autoimmune disorders, viral infections, and other diseases. The clinical application of protein therapeutics has been impeded by pharmacokinetic and pharmacodynamic challenges including off-target toxicity, rapid clearance, and drug stability. Strategies for the localized and sustained delivery of protein therapeutics have shown promise in addressing these challenges. Hydrogels are critical materials that enable these delivery strategies. Supramolecular hydrogels composed of self-assembled materials have demonstrated biocompatibility advantages over polymer hydrogels, with peptide and protein-based gels showing strong potential. However, cost is a significant drawback of peptide-based supramolecular hydrogels. Supramolecular hydrogels composed of inexpensive low-molecular-weight (LMW) gelators, including modified amino acid derivatives, have been reported as viable alternatives to peptide-based materials. Herein, we report the encapsulation and release of proteins from supramolecular hydrogels composed of perfluorinated fluorenylmethyloxcarbonyl-modified phenylalanine (Fmoc-F5-Phe-DAP). Specifically, we demonstrate release of four model proteins (ribonuclease A (RNase A), trypsin inhibitor (TI), bovine serum albumin (BSA), and human immunoglobulin G (IgG)) from these hydrogels. The emergent viscoelastic properties of these materials are characterized, and the functional and time-dependent release of proteins from the hydrogels is demonstrated. In addition, it is shown that the properties of the aqueous solution used for hydrogel formulation have a significant influence on the in vitro release profiles, as a function of the isoelectric point and molecular weight of the protein payloads. These studies collectively validate that this class of supramolecular LMW hydrogel possesses the requisite properties for the sustained and localized release of protein therapeutics.


Assuntos
Hidrogéis , Fenilalanina , Humanos , Hidrogéis/química , Fenilalanina/química , Preparações de Ação Retardada/farmacologia , Proteínas/uso terapêutico , Peptídeos/química
13.
J Immunother Cancer ; 10(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36543379

RESUMO

BACKGROUND: Triple-negative breast cancer is characterized by a poor prognosis and lack of targeted treatments, and thus, new targeting markers and therapeutic strategies are urgently needed. We previously indicated that PLAC8 promotes tumorigenesis and exerts multidrug resistance in breast cancer. Therefore, we aimed to characterize the PLAC8-regulated network in triple-negative breast cancer. METHODS: We measured the levels of PLAC8 in breast cancer cell lines and found that PLAC8 is post-translationally modified by ubiquitin-fold modifier 1 (UFM1). Then, we revealed a new regulatory system of PD-L1 by PLAC8 in triple-negative breast cancer. We also tested the molecular functions of PLAC8 in triple-negative breast cancer cell lines and measured the expression of PLAC8 and PD-L1 in breast cancer tissues. RESULTS: PLAC8 was generally highly expressed in triple-negative breast cancer and could be modified by UFM1, which maintains PLAC8 protein stability. Moreover, PLAC8 could promote cancer cell proliferation and affect the immune response by regulating the level of PD-L1 ubiquitination. Additionally, among patients with breast cancer, the expression of PLAC8 was higher in triple-negative breast cancer than in non-triple-negative breast cancer and positively correlated with the level of PD-L1. CONCLUSIONS: Our current study discoveries a new PLAC8-regulated network in triple-negative breast cancer and provides corresponding guidance for the clinical diagnosis and immunotherapy of triple-negative breast cancer.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Humanos , Antígeno B7-H1/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Imunoterapia , Imunidade , Proliferação de Células , Proteínas/uso terapêutico
14.
J Transl Med ; 20(1): 611, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36544142

RESUMO

BACKGROUND: High-grade serous carcinoma (HGSC) is the most common and deadly subtype of ovarian cancer. Although most patients will initially respond to first-line treatment with a combination of surgery and platinum-based chemotherapy, up to a quarter will be resistant to treatment. We aimed to identify a new strategy to improve HGSC patient management at the time of cancer diagnosis (HGSC-1LTR). METHODS: A total of 109 ready-available formalin-fixed paraffin-embedded HGSC tissues obtained at the time of HGSC diagnosis were selected for proteomic analysis. Clinical data, treatment approach and outcomes were collected for all patients. An initial discovery cohort (n = 21) were divided into chemoresistant and chemosensitive groups and evaluated using discovery mass-spectrometry (MS)-based proteomics. Proteins showing differential abundance between groups were verified in a verification cohort (n = 88) using targeted MS-based proteomics. A logistic regression model was used to select those proteins able to correctly classify patients into chemoresistant and chemosensitive. The classification performance of the protein and clinical data combinations were assessed through the generation of receiver operating characteristic (ROC) curves. RESULTS: Using the HGSC-1LTR strategy we have identified a molecular signature (TKT, LAMC1 and FUCO) that combined with ready available clinical data (patients' age, menopausal status, serum CA125 levels, and treatment approach) is able to predict patient response to first-line treatment with an AUC: 0.82 (95% CI 0.72-0.92). CONCLUSIONS: We have established a new strategy that combines molecular and clinical parameters to predict the response to first-line treatment in HGSC patients (HGSC-1LTR). This strategy can allow the identification of chemoresistance at the time of diagnosis providing the optimization of therapeutic decision making and the evaluation of alternative treatment strategies. Thus, advancing towards the improvement of patient outcome and the individualization of HGSC patients' care.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Proteômica/métodos , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Neoplasias Ovarianas/tratamento farmacológico , Proteínas/uso terapêutico , Biomarcadores Tumorais/metabolismo
15.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430160

RESUMO

Anticancer peptide (ACP) is a short peptide with less than 50 amino acids that has been discovered in a variety of foods. It has been demonstrated that traditional Chinese medicine or food can help treat cancer in some cases, which suggests that ACP may be one of the therapeutic ingredients. Studies on the anti-cancer properties of Sanghuangporus sanghuang have concentrated on polysaccharides, flavonoids, triterpenoids, etc. The function of peptides has not received much attention. The purpose of this study is to use computer mining techniques to search for potential anticancer peptides from 62 proteins of Sanghuang. We used mACPpred to perform sequence scans after theoretical trypsin hydrolysis and discovered nine fragments with an anticancer probability of over 0.60. The study used AlphaFold 2 to perform structural modeling of the first three ACPs discovered, which had blast results from the Cancer PPD database. Using reverse docking technology, we found the target proteins and interacting residues of two ACPs with an unknown mechanism. Reverse docking results predicted the binding modes of the ACPs and their target protein. In addition, we determined the active part of ACPs by quantum chemical calculation. Our study provides a framework for the future discovery of functional peptides from foods. The ACPs discovered have the potential to be used as drugs in oncology clinical treatment after further research.


Assuntos
Antineoplásicos , Neoplasias , Triterpenos , Humanos , Antineoplásicos/uso terapêutico , Peptídeos/química , Neoplasias/tratamento farmacológico , Proteínas/uso terapêutico , Triterpenos/uso terapêutico
16.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077236

RESUMO

Compared to single-drug therapy, drug combinations have shown great potential in cancer treatment. Most of the current methods employ genomic data and chemical information to construct drug-cancer cell line features, but there is still a need to explore methods to combine topological information in the protein interaction network (PPI). Therefore, we propose a network-embedding-based prediction model, NEXGB, which integrates the corresponding protein modules of drug-cancer cell lines with PPI network information. NEXGB extracts the topological features of each protein node in a PPI network by struc2vec. Then, we combine the topological features with the target protein information of drug-cancer cell lines, to generate drug features and cancer cell line features, and utilize extreme gradient boosting (XGBoost) to predict the synergistic relationship between drug combinations and cancer cell lines. We apply our model on two recently developed datasets, the Oncology-Screen dataset (Oncology-Screen) and the large drug combination dataset (DrugCombDB). The experimental results show that NEXGB outperforms five current methods, and it effectively improves the predictive power in discovering relationships between drug combinations and cancer cell lines. This further demonstrates that the network information is valid for detecting combination therapies for cancer and other complex diseases.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Combinação de Medicamentos , Genômica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Mapas de Interação de Proteínas , Proteínas/uso terapêutico
17.
Molecules ; 27(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36014414

RESUMO

Hydroxychloroquine (HCQ) is an autophagy inhibitor that has been used for the treatment of many diseases, such as malaria, rheumatoid arthritis, systemic lupus erythematosus, and cancer. Despite the therapeutic advances in these diseases, the underlying mechanisms have not been well determined and hinder the rational use of this drug in the future. Here, we explored the possible mechanisms and identified the potential binding targets of HCQ by performing quantitative proteomics and thermal proteome profiling on MIA PaCa-2 cells. This study revealed that HCQ may exert its functions by targeting some autophagy-related proteins such as ribosyldihydronicotinamide dehydrogenase (NQO2) and transport protein Sec23A (SEC23A), or regulating the expression of galectin-8 (LGALS8), mitogen-activated protein kinase 8 (MAPK8), and so on. Furthermore, HCQ may prevent the progression of pancreatic cancer by regulating the expression of nesprin-2 (SYNE2), protein-S-isoprenylcysteine O-methyltransferase (ICMT), and cotranscriptional regulator FAM172A (FAM172A). Together, these findings not only identified potential binding targets for HCQ but also revealed the non-canonical mechanisms of HCQ that may contribute to pancreatic cancer treatment.


Assuntos
Antirreumáticos , Artrite Reumatoide , Lúpus Eritematoso Sistêmico , Neoplasias Pancreáticas , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Galectinas , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas/uso terapêutico , Proteômica
18.
BMJ Open ; 12(6): e060189, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750461

RESUMO

OBJECTIVES: The aim of this preplanned secondary analysis of a 12-month randomised controlled trial was to investigate the effects of a multicomponent exercise programme combined with daily whey protein, calcium and vitamin D supplementation on cognition in men with prostate cancer treated with androgen deprivation therapy (ADT). DESIGN: 12-month, two-arm, randomised controlled trial. SETTING: University clinical exercise centre. PARTICIPANTS: 70 ADT-treated men were randomised to exercise-training plus supplementation (Ex+ Suppl, n=34) or usual care (control, n=36). INTERVENTION: Men allocated to Ex + Suppl undertook thrice weekly resistance training with weight-bearing exercise training plus daily whey protein (25 g), calcium (1200 mg) and vitamin D (2000 IU) supplementation. PRIMARY AND SECONDARY OUTCOME MEASURES: Cognition was assessed at baseline, 6 and 12 months via a computerised battery (CogState), Trail-making test, Rey auditory-verbal learning test and Digit span. Data were analysed with linear mixed models and an intention-to-treat and prespecified per-protocol approach (exercise-training: ≥66%, nutritional supplement: ≥80%). RESULTS: Sixty (86%) men completed the trial (Ex + Suppl, n=31; control, n=29). Five (7.1%) men were classified as having mild cognitive impairment at baseline. Median (IQR) adherence to the exercise and supplement was 56% (37%-82%) and 91% (66%-97%), respectively. Ex + Suppl had no effect on cognition at any time. CONCLUSIONS: A 12-month multicomponent exercise training and supplementation intervention had no significant effect on cognition in men treated with ADT for prostate cancer compared with usual care. Exercise training adherence below recommended guidelines does not support cognitive health in men treated with ADT for prostate cancer. TRIAL REGISTRATION NUMBER: Australian and New Zealand Clinical Trial Registry (ACTRN12614000317695, registered 25/03/2014) and acknowledged under the Therapeutic Goods Administration Clinical Trial Notification Scheme (CT-2015-CTN-03372-1 v1).


Assuntos
Antagonistas de Androgênios , Neoplasias da Próstata , Antagonistas de Androgênios/uso terapêutico , Austrália , Cálcio , Cognição , Suplementos Nutricionais , Exercício Físico , Terapia por Exercício/métodos , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Proteínas/uso terapêutico , Qualidade de Vida , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/uso terapêutico
19.
J Control Release ; 347: 282-307, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513210

RESUMO

Protein and peptide biopharmaceuticals have had a major impact on the treatment of a number of diseases. There is a growing interest in overcoming some of the challenges associated with biopharmaceuticals, such as rapid degradation in physiological fluid, using nanocarrier delivery systems. Biopharmaceutical nanoclusters (BNCs) where the therapeutic protein or peptide is clustered together to form the main constituent of the nanocarrier system have the potential to mimic the benefits of more established nanocarriers (e.g., liposomal and polymeric systems) whilst eliminating the issue of low drug loading and potential side effects from additives. These benefits would include enhanced stability, improved absorption, and increased biopharmaceutical activity. However, the successful development of BNCs is challenged by the physicochemical complexity of the protein and peptide constituents as well as the dynamics of clustering. Here, we present and discuss common methodologies for the synthesis of therapeutic protein and peptide nanoclusters, as well as review the current status of this emerging field.


Assuntos
Produtos Biológicos , Nanopartículas , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Peptídeos/uso terapêutico , Proteínas/uso terapêutico
20.
Cell ; 185(2): 250-265.e16, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35021064

RESUMO

Methods to deliver gene editing agents in vivo as ribonucleoproteins could offer safety advantages over nucleic acid delivery approaches. We report the development and application of engineered DNA-free virus-like particles (eVLPs) that efficiently package and deliver base editor or Cas9 ribonucleoproteins. By engineering VLPs to overcome cargo packaging, release, and localization bottlenecks, we developed fourth-generation eVLPs that mediate efficient base editing in several primary mouse and human cell types. Using different glycoproteins in eVLPs alters their cellular tropism. Single injections of eVLPs into mice support therapeutic levels of base editing in multiple tissues, reducing serum Pcsk9 levels 78% following 63% liver editing, and partially restoring visual function in a mouse model of genetic blindness. In vitro and in vivo off-target editing from eVLPs was virtually undetected, an improvement over AAV or plasmid delivery. These results establish eVLPs as promising vehicles for therapeutic macromolecule delivery that combine key advantages of both viral and nonviral delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Engenharia Genética , Proteínas/uso terapêutico , Vírion/genética , Animais , Sequência de Bases , Cegueira/genética , Cegueira/terapia , Encéfalo/metabolismo , DNA/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Edição de Genes , Células HEK293 , Humanos , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9/metabolismo , Epitélio Pigmentado da Retina/patologia , Retroviridae , Vírion/ultraestrutura , Visão Ocular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA