Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Drug Dev Res ; 84(7): 1482-1495, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37551766

RESUMO

Drug resistance is a major impediment to the successful treatment of glioma. This study aimed to elucidate the effects and mechanisms of the long noncoding RNA membrane-associated guanylate kinase inverted-2 antisense RNA 3 (MAGI2-AS3) on temozolomide (TMZ) resistance in glioma cells. MAGI2-AS3 expression in TMZ-resistant glioblastoma (GBM) cells was analyzed using the Gene Expression Omnibus data set GSE113510 and quantitative real-time PCR (qRT-PCR). Cell viability and TMZ half-maximal inhibitory concentration values were determined using the MTT assay. Apoptosis and cell cycle distribution were evaluated using flow cytometry. The expression of multidrug resistance 1 (MDR1), ATP-binding cassette superfamily G member 2 (ABCG2), protein kinase B (Akt), and phosphorylated Akt was detected using qRT-PCR and/or western blot analysis. MAGI2-AS3 was expressed at low levels in TMZ-resistant GBM cells relative to that in their parental cells. MAGI2-AS3 re-expression alleviated TMZ resistance in TMZ-resistant GBM cells. MAGI2-AS3 overexpression also accelerated TMZ-induced apoptosis and G2/M phase arrest. Mechanistically, MAGI2-AS3 overexpression reduced MDR1 and ABCG2 expression and inhibited the Akt pathway, whereas Akt overexpression abrogated the reduction in MDR1 and ABCG2 expression induced by MAGI2-AS3. Moreover, activation of the Akt pathway inhibited the effects of MAGI2-AS3 on TMZ resistance. MAGI2-AS3 inhibited tumor growth and enhanced the suppressive effect of TMZ on glioma tumorigenesis in vivo. In conclusion, MAGI2-AS3 reverses TMZ resistance in glioma cells by inactivating the Akt pathway.


Assuntos
Glioblastoma , Glioma , MicroRNAs , RNA Longo não Codificante , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , RNA Antissenso/farmacologia , RNA Antissenso/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , MicroRNAs/genética , Resistencia a Medicamentos Antineoplásicos/genética , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Guanilato Quinases/farmacologia
2.
BMC Med ; 21(1): 253, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37442994

RESUMO

BACKGROUND: PARP inhibitor (PARPi), as a kind of DNA damage repair inhibitor, has been shown to be effective in various solid tumors and hematologic malignancies. Natural killer/T cell lymphoma (NKTCL) is a highly aggressive malignancy, the treatment of which has long been a major challenge in the clinic. Here, we investigated the efficacy and mechanism of PARPi, and the therapeutic value of PARPi combined with cisplatin in NKTCL. METHODS: The cell proliferation, cell apoptosis, and cell cycle of NKTCL cells were detected respectively by CCK-8 and flow cytometry. The changes of mRNA expression and protein level were measured respectively by mRNA-sequencing, quantitative real-time PCR, western blotting, and immunofluorescence. LMO2 expression was detected by immunohistochemistry and western blotting. Targeted knockdown of LMO2 was conducted by short hairpin RNA. The tumor xenograft models were established to evaluate the efficacy of drugs in vivo. RESULTS: PARPi inhibited cell proliferation, promoted cell apoptosis, and induced S-phase cell cycle arrest in NKTCL cells. PARPi led to the accumulation of DNA damage by blocking DNA repair and DNA replication. Additionally, LMO2 deficiency reduced the sensitivity of NKTCL cells to PARPi. Finally, the combination of PARPi and cisplatin exhibited significant synergistic effects both in vitro and in vivo. CONCLUSIONS: In summary, we found that PARPi exerted an anti-tumor effect via LMO2 and synergized with cisplatin in NKTCL, which provides the theoretical basis for the clinical application of PARPi.


Assuntos
Antineoplásicos , Linfoma de Células T , Linfoma , Humanos , Cisplatino/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Células Matadoras Naturais , RNA Mensageiro , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Proteínas com Domínio LIM/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-37114104

RESUMO

Objective: LncRNAs are closely correlated with chronic obstructive pulmonary disease (COPD). We investigated the molecular mechanism of lncRNA RP11-521C20.3, which targets the action of the Bcl-2 modifying factor (BMF) signaling pathway in the apoptosis of cigarette smoke extract (CSE)-treated A549 cells. Methods: Lung tissues derived from cigarette smoke exposed rats (COPD group) and controls were examined using TUNEL assay for apoptotic cells and using immunohistochemistry for BMF expression levels. Overexpression and knockdown of BMF by lentiviral vector transfection were used to explore the role of BMF on the apoptosis of CSE-treated A549 cells. Overexpression and knockdown of RP11-521C20.3 were used to assess the effect of RP11-521C20.3 on the expression levels of BMF and apoptosis in CSE-treated A549 cells. Cell proliferation, mitochondrial morphology, and apoptosis were assessed in A549 cells. Real-time quantitative polymerase chain reactions and Western blotting detected the expression of apoptosis-related molecules. Results: The number of apoptotic cells and the level of BMF protein were significantly increased in lung tissues of the COPD group compared to the control group. Overexpression of BMF or knockdown of RP11-521C20.3 in CSE-treated A549 cells increased apoptosis, inhibited cell proliferation, and exacerbated mitochondrial damage. There were also increased protein levels of p53, cleaved caspase-3, and cleaved caspase-7, and decreased protein levels of Bcl-2 and survivin. Knockdown of BMF or overexpression of RP11-521C20.3 in CSE-treated A549 cells attenuated apoptosis, promoted cell proliferation, and alleviated mitochondrial damage. Observed effects also included decreased protein levels of p53, cleaved caspase-3, and cleaved caspase-7, and increased protein levels of Bcl-2 and survivin. In CSE-treated A549 cells, overexpression of RP11-521C20.3 suppressed the expression of BMF mRNA and protein. Conclusion: In CSE-treated A549 cells, BMF promoted apoptosis and RP11-521C20.3 might target the BMF signaling axis to protect CSE-treated A549 cells from apoptosis.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , RNA Longo não Codificante , Ratos , Animais , Humanos , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA Longo não Codificante/genética , Células A549 , Survivina/genética , Survivina/metabolismo , Survivina/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Caspase 7/farmacologia , Fumar Cigarros/efeitos adversos , Proteína Supressora de Tumor p53 , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Transdução de Sinais , Nicotiana , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia
4.
Clin Oral Implants Res ; 34(6): 602-617, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37092468

RESUMO

AIM: Diabetics experience severe peri-implant inflammatory bone damage. We aimed to provide powerful evidence supporting the novel adiponectin receptor agonist AdipoAI in treating diabetes-associated peri-implantitis. MATERIALS AND METHODS: Twenty-four ZDF-Leprfa/Crl rats were randomly allocated to three groups (N = 8). After feeding with a high-fat diet to establish diabetic rats, experimental peri-implantitis was induced by implanting titanium rods (1.5 mm diameter and 20 mm length) contaminated with Staphylococcus aureus into the femurs. Radiographic evaluation, microCT, histological analyses and qRT-PCR were used to detect inflammatory infiltration and bone destruction. In vitro, the inhibition by AdipoAI of osteoclastogenesis, including the number and function of osteoclasts, was investigated by TRAP staining, immunofluorescence, qRT-PCR and Western blotting. Immunofluorescence, qRT-PCR and Western blotting were also utilized to explore AdipoR1, APPL1, NF-κB and Wnt5a-Ror2 signalling molecules in this process. One-way ANOVA with Tukey's post hoc test was used to compare the data. RESULTS: AdipoAI reduced inflammation and bone destruction caused by peri-implantitis in diabetic rats, which were manifested by a reduction in F4/80-positive macrophage infiltration by 72%, the number of osteoclasts by 58% and the levels of cytokines (p < .05) in disease group. In vitro, 1 µM AdipoAI decreased the number of osteoclasts to 51%, inhibited F-actin ring formation and reduced the levels of related markers (p < .05). Mechanistically, AdipoAI activated AdipoR1/APPL1 and conversely suppressed the phosphorylation of IκB-α, nuclear translocation of P65 and the Wnt5a-Ror2 signalling pathway (p < .05). CONCLUSIONS: AdipoAI suppressed osteoclastogenesis in diabetes-associated peri-implantitis by inhibiting the NF-κB and Wnt5a-Ror2 pathways via the AdipoR1/APPL1 axis.


Assuntos
Reabsorção Óssea , Implantes Dentários , Diabetes Mellitus Experimental , Peri-Implantite , Ratos , Animais , Peri-Implantite/patologia , Osteogênese , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Ligante RANK , Reabsorção Óssea/patologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia
5.
Eur J Pharm Sci ; 182: 106372, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621614

RESUMO

Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKIs) was one of the main drugs in the treatment of non-small cell lung cancer (NSCLC). Previous studies had demonstrated that PDZ and LIM Domain 5 (PDLIM5) played an important role in EGFR TKIs resistance. However, there was no feasible method to eliminate EGFR TKIs resistance by suppressing this gene. Here, we formulated a novel mesoporous silica-loaded PDLIM5 siRNA (Small interfering RNA) nanoplatforms. The results have shown that PDLIM5 siRNA could be effectively bound to the nanoplatforms and had good biocompatibility. Further exploration suggested that the nano-platform combined with ultrasonic irradiation could be very effective for siRNA delivery and ultrasound imaging. Moreover, Epithelial-mesenchymal transformation (EMT) changes occurred in PC-9 Gefitinib resistance (PC-9/GR) cells during the development of drug resistance. When PDLIM5 siRNA entered PC-9/GR cells, the sensitivity of drug-resistant cells to gefitinib could be restored through the transforming growth factor-ß (TGF-ß)/EMT pathway. Therefore, PDLIM5 may be an important reason for the resistance of NSCLC cells to gefitinib, and this nanoplatform may become a novel treatment for EGFR TKIs resistance in NSCLC patients.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , RNA Interferente Pequeno/genética , Neoplasias Pulmonares/metabolismo , Transição Epitelial-Mesenquimal , Receptores ErbB , Quinazolinas , Resistencia a Medicamentos Antineoplásicos , Ultrassonografia , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/uso terapêutico , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/farmacologia
6.
Front Endocrinol (Lausanne) ; 13: 994307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213280

RESUMO

Background context: Low back pain, affecting nearly 40% of adults, mainly results from intervertebral disc degeneration (IVDD), while the pathogenesis of IVDD is still not fully elucidated. Recently, some researches have revealed that necroptosis, a programmed necrosis, participated in the progression of IVDD, nevertheless, the underlying mechanism remains unclear. Purpose: To study the mechanism of necroptosis of Nucleus Pulposus (NP) cells in IVDD, focusing on the role of MyD88 signaling. Study design: The expression and co-localization of necroptotic indicators and MyD88 were examined in vivo, and MyD88 inhibitor was applied to determine the role of MyD88 signaling in necroptosis of NP cells in vitro. Methods: Human disc specimens were collected from patients receiving diskectomy for lumbar disc herniation (LDH) or traumatic lumbar fractures after MRI scanning. According to the Pfirrmann grades, they were divided into normal (Grades 1, 2) and degenerated groups (4, 5). Tissue slides were prepared for immunofluorescence to assess the co-localization of necroptotic indicators (RIP3, MLKL, p-MLKL) and MyD88 histologically. The combination of TNFα, LPS and Z-VAD-FMK was applied to induce necroptosis of NP cells. Level of ATP, reactive oxygen species (ROS), live-cell staining and electron microscope study were employed to study the role of MyD88 signaling in necroptosis of NP cells. Results: In vivo, the increased expression and co-localization of necroptotic indicators (RIP3, MLKL, p-MLKL) and MyD88 were found in NP cells of degenerated disc, while very l low fluorescence intensity in tissue of traumatic lumbar fractures. In vitro, the MyD88 inhibitor effectively rescued the necroptosis of NP cells, accompanied by increased viability, ATP level, and decreased ROS level. The effect of MyD88 inhibition on necroptosis of NP cells was further confirmed by ultrastructure of mitochondria shown by Transmission Electron Microscope (TEM). Conclusion: Our results indicated that the involvement of MyD88 signaling in the necroptosis of NP cells in IVDD, which will replenish the pathogenesis of IVDD and provide a novel potential therapeutic target for IVDD.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Adulto , Humanos , Lipopolissacarídeos , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , Necroptose , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Chin Med Sci J ; 37(4): 320-330, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36171177

RESUMO

Objective To study the effects of TYRO protein kinase-binding protein (TYROBP) deficiency on learning behavior, glia activation and pro-inflammatory cycokines, and Tau phosphorylation of a new Alzheimer's disease (AD) mouse model carrying a PSEN1 p.G378E mutation.Methods A new AD mouse model carrying PSEN1 p.G378E mutation was built based on our previously found AD family which might be ascribed to the PSEN1 mutation, and then crossed with TYROBP deficient mice to produce the heterozygous hybrid mice (PSEN1G378E/WT; Tyrobp+/-) and the homozygous hybrid mice (PSEN1G378E/G378E; Tyrobp-/-). Water maze test was used to detect spatial learning and memory ability of mice. After the mice were sacrificed, the hippocampus was excised for further analysis. Immunofluorescence was used to identify the cell that expresses TYROBP and the number of microglia and astrocyte. Western blot was used to detect the expression levels of Tau and phosphorylated Tau (p-Tau), and ELISA to measure the levels of pro-inflammatory cytokines. Results Our results showed that TYROBP specifically expressed in the microglia of mouse hippocampus. Absence of TYROBP in PSEN1G378E mutation mouse model prevented the deterioration of learning behavior, decreased the numbers of microglia and astrocytes, and the levels of interleukin-6, interleukin-1ß and tumor necrosis factor-α in the hippocampus (all P < 0.05). The ratios of AT8/Tau5, PHF1/Tau5, pT181/Tau5, pT231/Tau5 and p-ERK/ERK were all higher in homozygous hybrid mice (PSEN1G378E/G378E; Tyrobp-/- mice) compared with PSEN1G378E/G378E mice (all P < 0.05). Conclusions TYROBP deficiency might play a protective role in the modulation of neuroinflammation of AD. However, the relationship between neuroinflammation processes involving microglia and astrocyte activation, and release of pro-inflammatory cytokines, and p-Tau pathology needs further study.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/genética , Doenças Neuroinflamatórias , Hipocampo/patologia , Mutação , Citocinas/genética , Citocinas/metabolismo , Citocinas/farmacologia , Modelos Animais de Doenças , Proteínas tau/genética , Proteínas tau/metabolismo , Proteínas tau/farmacologia , Peptídeos beta-Amiloides/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia
8.
J Nat Prod ; 85(8): 2006-2017, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35976233

RESUMO

Bladder cancer, specifically, muscle-invasive bladder cancer (MIBC), is among the most common malignant tumors. Patients with MIBC who cannot tolerate standard drugs require novel treatments. Targeting apoptosis may help treat cancer, which may be achieved with the use of some natural products. Nodosin, found in Isodon serra (Maxim.) Kudo (known as Xihuangcao), may inhibit bladder cancer cells. Transcriptomics and proteomics dual-omic analyses revealed the network pharmacological mechanism: (1) blocking the S phase by up-regulating RPA2, CLSPN, MDC1, PDCD2L, and E2F6 gene expressions, suppressing cancer cell proliferation; (2) inducing apoptosis and autophagy and restraining ferroptosis by up-regulating HMOX1, G0S2, SQSTM1, FTL, SLC7A11, and AIFM2 gene expressions; (3) preventing cancer cell migration by down-regulating NEXN, LIMA1, CFL2, PALLD, and ITGA3 gene expressions. In vivo, nodosin inhibited bladder cancer cell growth in a model of xenograft tumor in nude mice. This study is the first to report basic research findings on the network pharmacological mechanism of cytotoxicity of bladder cancer cells by nodosin, providing novel evidence for the application of nodosin in the field of oncology; however, other mechanisms may be involved in the effects of nodosin for further research. These findings provide a foundation for the development of novel MIBC drugs.


Assuntos
Produtos Biológicos , Neoplasias da Bexiga Urinária , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/uso terapêutico , Animais , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/farmacologia , Proteínas do Citoesqueleto/uso terapêutico , Diterpenos , Humanos , Camundongos , Camundongos Nus , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/farmacologia , Proteínas dos Microfilamentos/uso terapêutico , Músculos/metabolismo , Músculos/patologia , Farmacologia em Rede , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
9.
Cells ; 11(14)2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35883580

RESUMO

Tumor suppressor WWOX inhibits cancer growth and retards Alzheimer's disease (AD) progression. Supporting evidence shows that the more strongly WWOX binds intracellular protein partners, the weaker is cancer cell growth in vivo. Whether this correlates with retardation of AD progression is unknown. Two functional forms of WWOX exhibit opposite functions. pY33-WWOX is proapoptotic and anticancer, and is essential for maintaining normal physiology. In contrast, pS14-WWOX is accumulated in the lesions of cancers and AD brains, and suppression of WWOX phosphorylation at S14 by a short peptide Zfra abolishes cancer growth and retardation of AD progression. In parallel, synthetic Zfra4-10 or WWOX7-21 peptide strengthens the binding of endogenous WWOX with intracellular protein partners leading to cancer suppression. Indeed, Zfra4-10 is potent in restoring memory loss in triple transgenic mice for AD (3xTg) by blocking the aggregation of amyloid beta 42 (Aß42), enhancing degradation of aggregated proteins, and inhibiting activation of inflammatory NF-κB. In light of the findings, Zfra4-10-mediated suppression of cancer and AD is due, in part, to an enhanced binding of endogenous WWOX and its binding partners. In this perspective review article, we detail the molecular action of WWOX in the HYAL-2/WWOX/SMAD4 signaling for biological effects, and discuss WWOX phosphorylation forms in interacting with binding partners, leading to suppression of cancer growth and retardation of AD progression.


Assuntos
Doença de Alzheimer , Neoplasias , Oxidorredutase com Domínios WW , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Sobrevivência Celular , Progressão da Doença , Humanos , Imunidade/genética , Imunidade/fisiologia , Camundongos , Neoplasias/metabolismo , Fragmentos de Peptídeos/farmacologia , Isoformas de Proteínas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/metabolismo
10.
J Cosmet Dermatol ; 21(10): 5148-5155, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35441794

RESUMO

BACKGROUND: Keloids are "tumor-like" scars that grow beyond the boundary of injury. Its pathogenesis is complex. This paper will discuss the pathogenesis of keloid from the transcriptional regulation mechanism of TRAF3IP2. METHODS: IL-17 was utilized to induce human keloid fibroblasts (KFs) and normal dermal fibroblasts. With the application of RT-qPCR and Western blot, TRAF3IP2 expression was detected. Subsequently, the expression of TRAF3IP2 was interfered by cell transfection and the effects of interfering TRAF3IP2 on cell proliferative rate, migration rate, and extracellular matrix were assessed with CCK-8, Wound Healing, immunofluorescence, and Western blot techniques. Proliferation, migration, and (ECM) deposition were detected by JASPAR software predicted the binding sites of transcription factors FOXO4 and TRAF3IP2 promoters. The relationship between FOXO4 and TRAF3IP2 was verified by Dual luciferase activity assay and ChIP. Finally, the expression of TRAF3IP2 and FOXO4 was interfered simultaneously to further explore the mechanism. RESULTS: TRAF3IP2 was enhanced in IL-17 induced KFs. Interference with TRAF3IP2 imparted suppressive effects on the proliferation, migration, and ECM deposition of KFs. FOXO4 could inhibit TRAF3IP2 transcription, and interference with FOXO4 reversed the effect of TRAF3IP2 down-regulation on KFs via TGF-ß1/Smad pathway. CONCLUSION: TRAF3IP2 was regulated by FOXO4 and affected fibroblast proliferation, migration, and ECM deposition in keloid through the TGF-ß1/Smad pathway.


Assuntos
Queloide , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacologia , Proliferação de Células , Células Cultivadas , Matriz Extracelular/metabolismo , Fibroblastos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/farmacologia , Interleucina-17/metabolismo , Queloide/genética , Queloide/patologia , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Smad/metabolismo , Movimento Celular
11.
Reprod Sci ; 29(1): 163-172, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382203

RESUMO

Preeclampsia (PE) is a life-threatening pregnancy complication associated with diminished trophoblast migration and invasion. Wnt signalling is one of the most important regulators of placentation. Secreted frizzled-related protein 5 (SFRP5) is an anti-inflammatory adipokine that may inhibit Wnt signalling. In this study, we aimed to investigate the relationship between SFRP5 and PE and its effect on trophoblast function, as well as the underlying signalling pathways. SFRP5 levels in the serum and placental tissues were detected using enzyme-linked immunosorbent assay and immunohistochemistry, respectively. To evaluate the effect of SFRP5 on Wnt signalling, the human trophoblast cell line HTR8/SVneo was treated with recombinant human SFRP5 and Dickkopf-related protein 1 (Dkk-1, canonical Wnt inhibitor) proteins and lithium chloride (LiCl, canonical Wnt agonist). The migration and invasion ability of HTR8/SVneo cells was evaluated using wound-healing and Matrigel Transwell assays. The activities of multiple matrix metalloproteinases (MMP)-2/9 were detected using gelatin zymography. Expression of glycogen synthase kinase-3 beta (GSK3ß) and ß-catenin proteins was investigated using western blotting. The serum SFRP5 levels were elevated in patients with PE, but SFRP5 expression was not detected in the placental tissues. Furthermore, SFRP5 inhibited the migration and invasion of HTR8/SVneo cells in vitro, increased GSK3ß, and decreased ß-catenin expression and MMP-2/9 activity in HTR8/SVneo cells. In conclusion, this study suggests that SFRP5 inhibits trophoblast migration and invasion potentially via the inhibition of Wnt/ß-catenin signalling, which might be involved in the development of PE. However, the primary cause of the increased SFRP5 levels needs to be investigated.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/sangue , Pré-Eclâmpsia/sangue , Trofoblastos/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Placenta/efeitos dos fármacos , Placenta/metabolismo , Gravidez , Trofoblastos/efeitos dos fármacos , beta Catenina/metabolismo
12.
Mol Cell Endocrinol ; 542: 111529, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34906628

RESUMO

Neuroinflammation is closely linked to the pathogenesis of Alzheimer's disease (AD). Glucagon-like peptide-1 (GLP-1) analogs exhibit anti-inflammatory and neuroprotective effects; hence, we investigated whether they reduce cognitive impairment and protect astrocytes from oxidative stress. We found that 5 × FAD transgenic mice treated with the synthetic GLP-1 receptor agonist exenatide had improved cognitive function per the Morris water maze test. Immunohistochemistry, western blotting, and ELISAs used to detect inflammatory factors revealed reduced neuroinflammation in extracted piriform cortexes of exenatide-treated mice as well as lower amyloid ß1-42-induced oxidative stress and inflammation in astrocytes treated with exendin-4 (the natural analog of exenatide). Adenovirus-mediated overexpression of nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 2 (NLRP2) revealed that exenatide/exendin-4 function may be attributed to NLRP2 inflammasome inhibition. Collectively, our results indicate that GLP-1 analogs improve cognitive dysfunction in vivo and protect astrocytes in vitro, potentially via the downregulation of the NLRP2 inflammasome.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Astrócitos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Camundongos , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia
13.
J Cell Biochem ; 123(1): 91-101, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741483

RESUMO

Hypoxia and angiogenesis in solid tumors are often strictly linked to the development of fibrotic tissues, a detrimental event that compromises the antitumor immunity. As a consequence, tumor aggressiveness and poor patient prognosis relate to higher incidence of tissue fibrosis and stromal stiffness. The molecular pathways through which normal fibroblasts are converted in cancer-associated fibroblasts (CAFs) have a central role in the onset of fibrosis in tumor stroma, thus emerging as a strategic target of novel therapeutic approaches for cancer disease. Several studies addressed the role of BAG3 in sustaining growth and survival of cancer cell and also shed light on the different mechanisms in which the intracellular protein is involved. More recently, new pieces of evidence revealed a pivotal role of extracellular BAG3 in pro-tumor cell signaling in the tumor microenvironment, as well as its involvement in the development of fibrosis in tumor tissues. Here we report further data showing the presence of the BAG3 receptor (Interferon-induced transmembrane protein [IFITM]-2) on the plasma membrane of normal dermal fibroblasts and the activity of BAG3 as a factor able to induce the expression of α-smooth muscle actin and the phosphorylation of AKT and focal adhesion kinase, that sustain CAF functions in tumor microenvironment. Furthermore, in agreement with these findings, bag3 gene expression has been analyzed by high throughput RNA sequencing databases from patients-derived xenografts. A strong correlation between bag3 gene expression and patients' survival was found in several types of fibrotic tumors. The results obtained provide encouraging data that identify BAG3 as a promising therapeutic target to counteract fibrosis in tumors.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Adenocarcinoma/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/farmacologia , Fibroblastos Associados a Câncer/metabolismo , Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias Hepáticas/genética , Mesotelioma/genética , Neoplasias Pancreáticas/genética , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Mesotelioma/metabolismo , Mesotelioma/patologia , Camundongos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fosforilação/efeitos dos fármacos , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Cell Biochem ; 123(1): 65-76, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741485

RESUMO

Pancreatic ductal adenoma carcinoma (PDAC) is considered one of the deadliest solid cancers as it is usually diagnosed in advanced stages and has a poor response to treatment. The enormous effort made in the last 2 decades in the oncology field has not led to significant progress in improving early diagnosis or therapy for PDAC. The stroma of PDAC plays an active role in tumour initiation and progression and includes immune cells and stromal cells. We previously reported that Bcl2-associated athanogene (BAG3) secreted by PDAC cells activates tumour-associated macrophages to promote tumour growth. The disruption of this tumour-stroma axis by the anti-BAG3 H2L4 therapeutic antibody is sufficient to delay tumour growth and limit metastatic spreading in different PDAC preclinical models. In the present study, we examined the role of BAG3 to activate human fibroblasts (HF) in releasing cytokines capable of supporting tumour progression. Treatment of fibroblasts with recombinant BAG3 induced important changes in the organisation of the cytoskeleton of these cells and stimulated the production of interleukin-6, monocyte chemoattractant protein-1/C-C motif chemokine ligand 2, and hepatocyte growth factor. Specifically, we observed that BAG3 triggered a depolymerisation of microtubules at the periphery of the cell while they were conserved in the perinuclear area. Conversely, the vimentin-based intermediate filaments increased and spread to the edges of the cells. Finally, the conditioned medium (CM) collected from BAG3-treated HF promoted the survival, proliferation, and migration of the PDAC cells. Blocking of the PDAC-fibroblast axis by the H2L4 therapeutic anti-BAG3 antibody, resulted in inhibition of cytokine release and, consequently, the inhibition of the migratory phenotype conferred by the CM to PDAC cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Proteínas Reguladoras de Apoptose/farmacologia , Carcinoma Ductal Pancreático/metabolismo , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Citocinas/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Humanos , Neoplasias Pancreáticas/patologia , Proteínas Recombinantes/farmacologia , Células Sf9 , Spodoptera
15.
Anticancer Drugs ; 33(1): e155-e165, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407047

RESUMO

Circular RNAs have been identified as vital regulators to regulate the development of human cancers, including cervical cancer. Therefore, this study was designed to clarify the underlying mechanism of circASAP1 in cervical cancer. The real-time quantitative PCR assay was applied to quantify the expression levels of circASAP1, microRNA (miR)-338-3p, and ribonuclease P and MRP subunit p25 (RPP25) in cervical cancer tissues and cells. The cell proliferation ability was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide and colony-forming assays. The protein expression levels of cyclin D1, proliferating cell nuclear antigen, and RPP25 were assessed by western blot assay. Flow cytometry assays were used to determine the apoptosis and cell cycle distribution of cervical cancer cells. The transwell assay was employed to test the migration and invasion abilities of cervical cancer cells. The interaction relationship between miR-338-3p and circASAP1 or RPP25 was confirmed by dual-luciferase reporter assay and RNA pull-down assay. The xenograft experiment was established to clarify the functional role of circASAP1 inhibition in vivo. CircASAP1 was overexpressed in cervical cancer tissues and cells compared with negative groups. Additionally, the loss-of-functional experiments implied that knockdown of circASAP1 impeded proliferation, migration, and invasion while induced apoptosis and cell cycle arrest in cervical cancer cells along with repressed tumor growth in vivo through regulation of miR-338-3p. In addition, RPP25 was a target mRNA of miR-338-3p, and overexpression of miR-338-3p suppressed proliferation, migration, and invasion while induced apoptosis and cell cycle arrest in cervical cancer cells by suppressing RPP25 expression. Mechanistically, circASAP1 could function as a sponge for miR-338-3p to increase the expression of RPP25, and further regulated proliferation, migration, invasion, apoptosis, and cell cycle program of cervical cancer cells, which might be potential markers for cervical cancer diagnosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/farmacologia , MicroRNAs/efeitos dos fármacos , RNA Circular/farmacologia , Ribonuclease P/efeitos dos fármacos , Neoplasias do Colo do Útero/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Neurobiol Dis ; 159: 105514, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555537

RESUMO

Synchronized and properly balanced electrical activity of neurons is the basis for the brain's ability to process information, to learn, and to remember. In Alzheimer's disease (AD), which causes cognitive decline in patients, this synchronization and balance is disturbed by the accumulation of neuropathological biomarkers such as amyloid-beta peptide (Aß42). Failure of Aß42 clearance mechanisms as well as desynchronization of crucial neuronal classes such as fast-spiking interneurons (FSN) are root causes for the disruption of the cognition-relevant gamma brain rhythm (30-80 Hz) and consequent cognitive impairment observed in AD. Here we show that recombinant BRICHOS molecular chaperone domains from ProSP-C or Bri2, which interfere with Aß42 aggregation, can rescue the gamma rhythm. We demonstrate that Aß42 progressively decreases gamma oscillation power and rhythmicity, disrupts the inhibition/excitation balance in pyramidal cells, and desynchronizes FSN firing during gamma oscillations in the hippocampal CA3 network of mice. Application of the more efficacious Bri2 BRICHOS chaperone rescued the cellular and neuronal network performance from all ongoing Aß42-induced functional impairments. Collectively, our findings offer critical missing data to explain the importance of FSN for normal network function and underscore the therapeutic potential of Bri2 BRICHOS to rescue the disruption of cognition-relevant brain rhythms in AD.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Chaperonas Moleculares/farmacologia , Células Piramidais/efeitos dos fármacos , Potenciais de Ação/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos beta-Amiloides , Animais , Modelos Animais de Doenças , Ritmo Gama , Hipocampo/fisiopatologia , Técnicas In Vitro , Interneurônios/fisiologia , Camundongos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Fragmentos de Peptídeos , Domínios Proteicos , Proteína C Associada a Surfactante Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar/farmacologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Proteínas Recombinantes
17.
Ann Clin Lab Sci ; 51(3): 368-375, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34162567

RESUMO

OBJECTIVE: The WNT pathway might be the primary pathway for the regulation of renal development by PAX2. In this study, we aimed to observe the migration and invasion abilities of human tubular epithelial cells stably transfected with PAX2 upon the WNT pathway blockade and to investigate whether the WNT pathway is involved in the regulation of cellular biological activity by PAX2. METHODS: 1. Control cells-PAX2 and control cells+PAX2 groups were formed for monitoring the expression of PAX2 and ß-catenin mRNA using RT-qPCR. 2. The PAX2-expressing cells were treated with WIF-1 (5 µg/ml), WIF-1 (10 µg/ml), or WIF-1 (15 µg/ml), and the effect was analyzed by Western blotting analysis after the WNT pathway blockade. 3. The migration and invasion abilities of the PAX2-expressing cells were evaluated using cell-scratch and transwell assays after blocking the WNT pathway. RESULTS: 1. RT-qPCR: The expression of PAX2 and ß-catenin increased significantly in the PAX2-expressing cells (P<0.05). 2. Upon treatment with WIF-1, the expression of ß-catenin in the PAX2 cells+WIF-1 5 µg/ml group, PAX2 cells+WIF-1 10µg/ml group, and PAX2 cells+WIF-1 15 µg/ml group decreased significantly compared to in the PAX2 cells-WIF-1 group (P<0.05), especially the WIF-1 (15 µg/ml) group (P<0.05). 3. The cell migration rate in the PAX2 cells + WIF-1 (15 µg/ml) group at 18 h was significantly lower than that in the PAX2 cells-WIF-1 group (P<0.05). 3. Transwell assay: the invasion ability in the PAX2 cells+WIF-1 (15 µg/ml) group was lower than that in the PAX2 cells-WIF-1 group (P<0.05). CONCLUSION: WNT pathway blockade can weaken the migration and invasion abilities of PAX2-expressing cells. Moreover, the WNT pathway was observed to be associated with the regulation of cellular biological activity by PAX2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Movimento Celular , Células Epiteliais/fisiologia , Túbulos Renais/fisiologia , Fator de Transcrição PAX2/metabolismo , Proteínas Wnt/antagonistas & inibidores , beta Catenina/antagonistas & inibidores , Proliferação de Células , Células Epiteliais/efeitos dos fármacos , Humanos , Túbulos Renais/efeitos dos fármacos , Fator de Transcrição PAX2/genética
18.
Orthop Surg ; 13(4): 1398-1407, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33939302

RESUMO

OBJECTIVE: To explore the possible way of proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2) influencing diabetes mellitus-osteoarthritis (DM-OA) progression. METHODS: In vivo, eight-week-old male Sprague Dawley rats were induced with DM-OA by intraperitoneal injection of streptozotocin with high-fat diet feeding and intra-articular injection of monoiodoacetate. PSTPIP2 overexpression was achieved by intra-articular injection of lentivirus vectors. PSTPIP2 expression was verified by real-time polymerase chain reaction and Western blotting. Histological changes were examined by hematoxylin/eosin and safranin-O/fast-green staining. In vitro, rat synovial fibroblasts were induced DM-OA by stimulation of high glucose (HG) and interleukin (IL)-1ß. PSTPIP2 overexpression was achieved by lentivirus infection. U0126 was added as an ERK inhibitor. Levels of tumor necrosis factor (TNF)-α, IL-6, and IL-1ß were detected using enzyme-linked immunosorbent assay. Expression of matrix metalloproteinase (MMP)-3, MMP-13, aggrecanase-2 (ADAMTS-5), intercellular cell adhesion molecule (ICAM)-1, extracellular regulated protein kinase (ERK) and phospho-ERK (p-ERK) was detected by Western blotting. RESULTS: In DM-OA rats, PSTPIP2 relative messenger RNA (mRNA) level was significantly decreased compared to control rats. The protein expression was also decreased obviously. Inflammation score in synovium was dramatically increased, accompanying with increased TNF-α, IL-6, and IL-1ß levels. Osteoarthritis research society international (OARSI) score in cartilage was markedly increased, along with increased MMP-3, MMP-13, ADAMTS-5, ICAM-1, ERK and p-ERK expression. In PSTPIP2-overexpressed DM-OA rats, PSTPIP2 mRNA level and protein expression was increased compared to DM-OA rats received negative-control lentivirus vectors. The inflammation score, as well as TNF-α, IL-6, and IL-1ß levels were dramatically decreased. Also, the OARSI score and protein expression of MMP-3, MMP-13, ADAMTS-5, ICAM-1, ERK and p-ERK were decreased. In HG+IL-1ß-treated rat synovial fibroblasts, PSTPIP2 protein expression was decreased compared to normal glucose (NG)-treated cells. Levels of TNF-α, IL-6, and IL-1ß, as well as expression of MMP-3, MMP-13, ADAMTS-5, ICAM-1, ERK and p-ERK were increased. After cells were infected with PSTPIP2-overexpressed lentivirus, levels of TNF-α, IL-6, and IL-1ß, and expression of MMP-3, MMP-13, ADAMTS-5, ICAM-1, ERK and p-ERK were obviously decreased compared to cells infected with NC lentivirus. In addition, ERK inhibitor U0126 treatment also decreased the TNF-α, IL-6, and IL-1ßlevels and MMP-3, MMP-13, ADAMTS-5, ICAM-1, ERK and p-ERK expression in HG + IL-1ß treated rat synovial fibroblasts. CONCLUSION: Overexpression of PSTPIP2 alleviates synovial inflammation and cartilage injury during DM-OA progression via inhibiting ERK phosphorylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Cartilagem Articular/efeitos dos fármacos , Proteínas do Citoesqueleto/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Inflamação/tratamento farmacológico , Membrana Sinovial/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Injeções Intra-Articulares , Ácido Iodoacético , Masculino , Osteoartrite do Joelho , Ratos , Ratos Sprague-Dawley , Estreptozocina
19.
Drug Discov Ther ; 15(2): 66-72, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33716240

RESUMO

Curcumin, a major component of turmeric, is known to exhibit multiple biological functions including antitumor activity. We previously reported that the mitogen-activated protein kinase (MAPK) scaffold protein c-Jun NH2-terminal kinase (JNK)-associated leucine zipper protein (JLP) reduces curcumin-induced cell death by modulating p38 MAPK and autophagy through the regulation of lysosome positioning. In this study, we investigated the role of JNK/stress-activated protein kinase-associated protein 1 (JSAP1), a JLP family member, in curcumin-induced stress, and found that JSAP1 also attenuates curcumin-induced cell death. However, JSAP1 knockout showed no or little effect on the activation of JNK and p38 MAPKs in response to curcumin. In addition, small molecule inhibitors of JNK and p38 MAPKs did not increase curcumin-induced cell death. Furthermore, JSAP1 depletion did not impair lysosome positioning and autophagosome-lysosome fusion. Instead, we noticed substantial autolysosome accumulation accompanied by an inefficient autophagic flux in JSAP1 knockout cells. Taken together, these results indicate that JSAP1 is involved in curcumin-induced cell death differently from JLP, and may suggest that JSAP1 plays a role in autophagosome degradation and its dysfunction results in enhanced cell death. The findings of this study may contribute to the development of novel therapeutic approaches using curcumin for cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Antineoplásicos/farmacologia , Curcumina/farmacologia , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/efeitos adversos , Autofagia/efeitos dos fármacos , Autofagia/genética , Técnicas de Cultura de Células , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Curcumina/efeitos adversos , Desenvolvimento de Medicamentos/métodos , Humanos , Zíper de Leucina/genética , Lisossomos/efeitos dos fármacos , Lisossomos/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/tratamento farmacológico , Proteínas do Tecido Nervoso/metabolismo , Substâncias Protetoras , Espécies Reativas de Oxigênio/metabolismo
20.
Cells ; 10(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572372

RESUMO

The present study explored the effects of endophilin A1 (SH3GL2) against oxidative damage brought about by H2O2 in HT22 cells and ischemic damage induced upon transient forebrain ischemia in gerbils. Tat-SH3GL2 and its control protein (Control-SH3GL2) were synthesized to deliver it to the cells by penetrating the cell membrane and blood-brain barrier. Tat-SH3GL2, but not Control-SH3GL2, could be delivered into HT22 cells in a concentration- and time-dependent manner and the hippocampus 8 h after treatment in gerbils. Tat-SH3GL2 was stably present in HT22 cells and degraded with time, by 36 h post treatment. Pre-incubation with Tat-SH3GL2, but not Control-SH3GL2, significantly ameliorated H2O2-induced cell death, DNA fragmentation, and reactive oxygen species formation. SH3GL2 immunoreactivity was decreased in the gerbil hippocampal CA1 region with time after ischemia, but it was maintained in the other regions after ischemia. Tat-SH3GL2 treatment in gerbils appreciably improved ischemia-induced hyperactivity 1 day after ischemia and the percentage of NeuN-immunoreactive surviving cells increased 4 days after ischemia. In addition, Tat-SH3GL2 treatment in gerbils alleviated the increase in lipid peroxidation as assessed by the levels of malondialdehyde and 8-iso-prostaglandin F2α and in pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1ß, and interleukin-6; while the reduction of protein levels in markers for synaptic plasticity, such as postsynaptic density 95, synaptophysin, and synaptosome associated protein 25 after transient forebrain ischemia was also observed. These results suggest that Tat-SH3GL2 protects neurons from oxidative and ischemic damage by reducing lipid peroxidation and inflammation and improving synaptic plasticity after ischemia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Hipocampo/patologia , Peroxidação de Lipídeos , Plasticidade Neuronal , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Animais , Isquemia Encefálica/fisiopatologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Produtos do Gene tat/metabolismo , Gerbillinae , Hipocampo/fisiopatologia , Peróxido de Hidrogênio/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA