RESUMO
Antifreeze agents play a critical role in various fields including tissue engineering, gene therapy, therapeutic protein production, and transplantation. Commonly used antifreeze agents such as DMSO and other organic substances are known to have cytotoxic effects. Antifreeze proteins sourced from cold-adapted organisms offer a promising solution by inhibiting ice crystal formation; however, their effectiveness is hindered by a dynamic ice-shaping (DIS) effect and thermal hysteresis (TH) properties. In response to these limitations, antifreeze peptides (AFPs) have been developed as alternatives to antifreeze proteins, providing similar antifreeze properties without the associated drawbacks. This review explores the methods for acquiring AFPs, with a particular emphasis on chemical synthesis. It aims to offer valuable insights and practical implications to drive the realm of sub-zero storage.
Assuntos
Proteínas Anticongelantes , Proteínas Anticongelantes/química , Peptídeos/química , Peptídeos/farmacologia , Crioprotetores/química , Crioprotetores/farmacologia , Humanos , Animais , GeloRESUMO
Large-scale biosafe T-cell cryopreservation is required to bring T-cell therapies to the market, but it remains challenging due to the cytotoxicity of common cryoprotectants [e.g., dimethyl sulfoxide (DMSO)] and unavoidable ice injuries to cells. Herein, inspired by natural globular antifreeze proteins, we establish a biocompatible zwitterionic magnetic nanoparticle (ZMNP)-based cryoprotection system, achieving large-scale cryopreservation of T cells for lymphoma immunotherapy. ZMNPs could form a globular hydration shell to inhibit water molecule aggregation as well as ice growth, and the surficial hydration strength-antifreeze performance relationship of ZMNPs was investigated. During the thawing process, ZMNPs possessed a magnetic field-mediated nanowarming property that enabled rapid heating and also facilitated easy magnetic separation for cell recovery. These combined effects resulted in a high post-thaw viability (>80%) of large-scale T-cell cryopreservation (20 mL). Notably, post-thaw T cells exhibited similar transcript profiles to fresh cells, while up- or downregulation of 1050 genes was found in the DMSO group. In a mouse E.G7-OVA lymphoma model, ZMNP-system-cryopreserved T cells achieved a tumor suppression rate of 77.5%, twice as high as the DMSO group. This work holds great promise for the application of advanced cryopreservation techniques in the development of therapeutic cellular products.
Assuntos
Proteínas Anticongelantes , Criopreservação , Crioprotetores , Imunoterapia , Linfoma , Linfócitos T , Animais , Camundongos , Linfoma/terapia , Linfoma/patologia , Linfoma/imunologia , Proteínas Anticongelantes/química , Proteínas Anticongelantes/farmacologia , Crioprotetores/farmacologia , Crioprotetores/química , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Humanos , Nanopartículas/química , Nanopartículas de Magnetita/químicaRESUMO
Oocyte cryopreservation is not yet considered a reliable technique since it can reduce the quality and survival of oocytes in several species. This study determined the effect of different concentrations of antifreeze protein I (AFP I) on the vitrification solution of immature cat oocytes. For this, oocytes were randomly distributed in three groups and vitrified with 0 µg/mL (G0, 0 µM); 0.5 µg/mL (G0.5, 0.15 µM), or 1 µg/mL (G1, 0.3 µM) of AFP I. After thawing, oocytes were evaluated for morphological quality, and compared to a fresh group (FG) regarding actin integrity, mitochondrial activity and mass, reactive oxygen species (ROS) and glutathione (GSH) levels, nuclear maturation, expression of GDF9, BMP15, ZAR-1, PRDX1, SIRT1, and SIRT3 genes (normalized by ACTB and YWHAZ genes), and ultrastructure. G0.5 and G1 presented a higher proportion of COCs graded as I and while G0 had a significantly lower quality. G1 had a higher percentage of intact actin in COCs than G0 and G0.5 (P < 0.05). There was no difference (P > 0.05) in the mitochondrial activity between FG and G1 and they were both higher (P < 0.05) than G0 and G0.5. G1 had a significantly lower (P < 0.05) mitochondrial mass than FG and G0, and there was no difference among FG, G0, and G0.5. G1 had higher ROS than all groups (P < 0.05), and there was no difference in GSH levels among the vitrified groups (P > 0.05). For nuclear maturation, there was no difference between G1 and G0.5 (P > 0.05), but these were both higher (P < 0.05) than G0 and lower (P < 0.05) compared to FG. Regarding gene expression, in G0 and G0.5, most genes were downregulated compared to FG, except for SIRT1 and SIRT3 in G0 and SIRT3 in G0.5. In addition, G1 kept the expression more similar to FG. Regardless of concentration, AFP I supplementation in vitrification solution of immature cat oocytes improved maturation rates, morphological quality, and actin integrity and did not impact GSH levels. In the highest concentration tested (1 µg/mL), AFP maintained the mitochondrial activity, reduced mitochondrial mass, increased ROS levels, and had the gene expression more similar to FG. Altogether these data show that AFP supplementation during vitrification seems to mitigate some of the negative impact of cryopreservation improving the integrity and cryosurvival of cat oocytes.
Assuntos
Criopreservação , Oócitos , Vitrificação , Animais , Criopreservação/veterinária , Criopreservação/métodos , Gatos , Oócitos/efeitos dos fármacos , Vitrificação/efeitos dos fármacos , Feminino , Crioprotetores/farmacologia , Proteínas Anticongelantes/farmacologia , Proteínas Anticongelantes/genética , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Glutationa/farmacologia , Glutationa/metabolismoRESUMO
In this study, peptides designed using fragments of an antifreeze protein (AFP) from the freeze-tolerant insect Tenebrio molitor, TmAFP, were evaluated as inhibitors of clathrate hydrate formation. It was found that these peptides exhibit inhibitory effects by both direct and indirect mechanisms. The direct mechanism involves the displacement of methane molecules by hydrophobic methyl groups from threonine residues, preventing their diffusion to the hydrate surface. The indirect mechanism is characterized by the formation of cylindrical gas bubbles, the morphology of which reduces the pressure difference at the bubble interface, thereby slowing methane transport. The transfer of methane to the hydrate interface is primarily dominated by gas bubbles in the presence of antifreeze peptides. Spherical bubbles facilitate methane migration and potentially accelerate hydrate formation; conversely, the promotion of a cylindrical bubble morphology by two of the designed systems was found to mitigate this effect, leading to slower methane transport and reduced hydrate growth. These findings provide valuable guidance for the design of effective peptide-based inhibitors of natural-gas hydrate formation with potential applications in the energy and environmental sectors.
Assuntos
Proteínas Anticongelantes , Metano , Tenebrio , Água , Proteínas Anticongelantes/química , Cinética , Metano/química , Metano/análogos & derivados , Água/química , Tenebrio/química , Animais , Gases/química , Peptídeos/química , Peptídeos/farmacologiaRESUMO
The quality of surimi, widely used in processed seafood, is compromised by freeze-thaw cycles, leading to protein denaturation and oxidative degradation. The objective of this study is to explore the effects of adding natural whey peptide hydrolysate (WPH) on the myofibrillar proteins of repeatedly freeze-thawed surimi. Results indicated surimi treated with 15% WPH exhibited only a 128% increase in surface hydrophobicity and a maximum peroxide value of 7.84 µg/kg, significantly lower than the control group. Additionally, salt-soluble protein content, emulsification activity, and stability decreased with the increase in freeze-thaw cycles. With a 15% WPH offering the most significant protective effect, evidenced by reductions of only 25.02%, 42.52% and 37.02% in salt-soluble protein content, emulsification activity, and stability, respectively. These outcomes demonstrate that WPH effectively reduces protein denaturation during repeated freeze-thaw processes. Future research should explore the molecular mechanisms underlying WPH's protective effects and evaluate their applicability in other food systems.
Assuntos
Congelamento , Hidrolisados de Proteína , Proteínas do Soro do Leite , Proteínas do Soro do Leite/química , Hidrolisados de Proteína/química , Animais , Produtos Pesqueiros/análise , Proteínas Musculares/química , Proteínas de Peixes/química , Proteínas Anticongelantes/química , Interações Hidrofóbicas e Hidrofílicas , Manipulação de AlimentosRESUMO
Molecules that inhibit the growth of ice crystals are highly desirable for applications in building materials, foods, and agriculture. Antifreezes are particularly essential in biomedicine for tissue banking, yet molecules currently in use have known toxic effects. Antifreeze glycoproteins have evolved naturally in polar fish species living in subzero climates, but practical issues with collection and purification have limited their commercial use. Here, we present a synthetic strategy using polymerization of amino acid N-carboxyanhydrides to produce polypeptide mimics of these potent natural antifreeze proteins. We investigated a set of mimics with varied structural properties and identified a glycopolypeptide with potent ice recrystallization inhibition properties. We optimized for molecular weight, characterized their conformations, and verified their cytocompatibility in a human cell line. Overall, we present a material that will have broad applications as a biocompatible antifreeze.
Assuntos
Proteínas Anticongelantes , Proteínas Anticongelantes/química , Humanos , Glicosilação , Animais , Gelo , Cristalização , Linhagem Celular , Glicopeptídeos/química , Glicopeptídeos/farmacologiaRESUMO
This study evaluated the effects of different antifreeze protein type I (AFP I) concentrations added to a slow freezing solution in sheep in vivo-derived embryos. Good-quality embryos were allocated into: AFP-free (CONT); 0.1 µg/mL of AFP I (AFP0.1); or 0.5 µg/mL of AFP I (AFP0.5). After thawing, embryos were in vitro cultured (IVC) for 48 h. At 24 h and 48 h of IVC, dead cells and apoptosis, mitochondrial activity, intracellular reactive oxygen species (ROS), and glutathione (GSH) evaluations were performed. At 24 h, evaluated embryos were submitted to RT-qPCR for metabolism (SIRT2, PRDX1, OCT4, CDX2) and quality (AQP3, CDH1, HSP70, BAX, BCL2) genes. The in vitro survival rate was 56% (22/39) for CONT, 60% (32/53) for AFP0.1, and 53% (23/43) for AFP0.5 (p > 0.05). A tendency (p = 0.09) for a higher blastocyst hatching rate was noted in AFP0.1 (62%) compared to AFP0.5 (33%), and both groups were similar to CONT (50%). An increased (p < 0.05) mitochondrial activity at 24 h was observed in AFP0.1 compared to CONT. No differences (p > 0.05) were observed in oxidative stress homeostasis and viability between treatments. A downregulation (p < 0.05) of CDH1 in AFP0.1 and a downregulation of AQP3 in AFP0.5 were observed in comparison to the other groups. An upregulation (p < 0.05) was detected in HSP70 and BCL2 on AFP0.5 compared to AFP0.1 group. The addition of AFP I in slow freezing solution can benefit cryopreserved sheep in vivo-derived embryos, without affecting embryonic survival.
Assuntos
Criopreservação , alfa-Fetoproteínas , Animais , Ovinos , Congelamento , Criopreservação/veterinária , Crioprotetores/farmacologia , Blastocisto , Proteínas Anticongelantes , Proteínas Proto-Oncogênicas c-bcl-2RESUMO
Antifreeze proteins (AFPs) are biodegradable inhibitors that effectively prevent the formation of natural gas hydrates that block pipelines. In this study, molecular dynamics simulations were employed to establish a kinetic model of the hyperactive insect antifreeze protein (Tenebrio molitor, TmAFP) and its mutants to inhibit the growth of sI natural methane hydrate. Simulations revealed that the hydrophobic and hydrophilic groups of threonine (Thr) residues at hydrate-binding sites played a synergistic role in binding hydrates. The hydrophobic groups anchored TmAFP to the hydrate surface through residues Thr39-Thr65 by migrating pendant hydrophobic methyl groups to the hydrate semicages. The hydrophilic groups stabilized TmAFP by hydrogen bonding with water molecules and integrating them into a quasi-hydrate structure, which more effectively inhibited hydrate growth. The results suggest that the hydrate growth inhibition is attributed to both the shape complementarity and the flexibility of binding residues. The synergy between hydrophobic and hydrophilic groups provides guidance for the design of more effective hydrate inhibitors.
Assuntos
Gelo , Água , Água/química , Proteínas Anticongelantes/química , Simulação de Dinâmica Molecular , Sítios de LigaçãoRESUMO
Antifreeze proteins (AFPs) are multifunctional polypeptides that adsorb onto ice crystals to inhibit their growth and onto cells to protect them from nonfreezing hypothermic damage. However, the mechanism by which AFP exerts its hypothermic cell protective (HCP) function remains uncertain. Here, we assessed the HCP function of three types of fish-derived AFPs (type I, II, and III AFPs) against human T-lymphoblastic lymphoma by measuring the survival rate (%) of the cells after preservation at 4 °C for 24 h. All AFPs improved the survival rate in a concentration-dependent manner, although the HCP efficiency was inferior for type III AFP compared to other AFPs. In addition, after point mutations were introduced into the ice-binding site (IBS) of a type III AFP, HCP activity was dramatically increased, suggesting that the IBS of AFP is involved in cell adsorption. Significantly, high HCP activity was observed for a mutant that exhibited poorer antifreeze activity, indicating that AFP exerts HCP- and ice-binding functions through a different mechanism. We next incubated the cells in an AFP-containing solution, replaced it with pure EC solution, and then preserved the cells, showing that no significant reduction in the cell survival rate occurred for type I and II AFPs even after replacement. Thus, these AFPs irreversibly bind to the cells at 4 °C, and only tightly adsorbed AFP molecules contribute towards the cell-protection function.
Assuntos
Gelo , alfa-Fetoproteínas , Animais , Humanos , Sítios de Ligação , Proteínas Anticongelantes/genética , Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Fenômenos Biofísicos , Proteínas de Peixes/genéticaRESUMO
Antifreeze proteins (AFPs) bind to ice crystals to prevent organisms from freezing. A diversity of AFP folds has been found in fish and insects, including alpha helices, globular proteins, and several different beta solenoids. But the variety of AFPs in flightless arthropods, like Collembola, has not yet been adequately assessed. Here, antifreeze activity was shown to be present in 18 of the 22 species of Collembola from cold or temperate zones. Several methods were used to characterize these AFPs, including isolation by ice affinity purification, MALDI mass spectrometry, amino acid composition analysis, tandem mass spectrometry sequencing, transcriptome sequencing, and bioinformatic investigations of sequence databases. All of these AFPs had a high glycine content and were predicted to have the same polyproline type II helical bundle fold, a fold unique to Collembola. These Hexapods arose in the Ordovician Period with the two orders known to produce AFPs diverging around 400 million years ago during the Andean-Saharan Ice Age. Therefore, it is likely that the AFP arose then and persisted in many lineages through the following two ice ages and intervening warm periods, unlike the AFPs of fish which arose independently during the Cenozoic Ice Age beginning ~ 30 million years ago.
Assuntos
Proteínas Anticongelantes Tipo II , Artrópodes , Animais , alfa-Fetoproteínas , Artrópodes/genética , Artrópodes/metabolismo , Proteínas Anticongelantes/química , Peixes/genética , Peixes/metabolismo , Insetos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
The membrane-separated silver carp hydrolysates (>10 kD, 3-10 kD and < 3 kD) displayed abilities to mitigate oxidation and denaturation of myofibrillar protein and cryoprotective activities for frozen surimi. However, the mechanism of the membrane-separated fractions on ice crystal growth in the system is still unknown. Therefore, the cryoprotective activities (recrystallization inhibition, RI and thermal hysteresis activity, THA) of the fractions were investigated and the mechanism was explored by molecular dynamics (MD) simulation to predict the probable binding sites and model the possible interactions between the peptides and water/ice. The fractions < 3 kD displayed remarkable RI activity, with significantly higher THA (0.60 ± 0.13 °C) and lower amount of ice nuclei (4.74 ± 0.53%) than that of fractions > 10 kD and 3-10 kD. The results of MD simulation certified that the main peptides in the fractions < 3 kD interacted firmly with water molecules and inhibited growth of ice crystals with mechanism compatible with Kelvin effect. Hydrophilic and hydrophobic amino acid residues in the membrane-separated fractions offered synergistic effects on the inhibition of ice crystals.
Assuntos
Carpas , Gelo , Animais , Simulação de Dinâmica Molecular , Cristalização , Congelamento , Água/química , Peptídeos/química , Proteínas Anticongelantes , Crioprotetores/farmacologiaRESUMO
Freeze denaturation of protein caused by ice crystals is the main motivation for the quality deterioration of surimi during circulation and storage. This investigation aimed to cryoprotect surimi by adding antifreeze peptides from Takifugu obscurus skin (TsAFP) which can inhibit ice recrystallization, and to elucidate regulating mechanism. The comprehensive results showed that 4% TsAFP, half dosage of commercial cryoprotectant, had good cryoprotection on surimi by reducing the moisture variation and maintaining protein solubility of surimi at macro level, as well as inhibiting the degeneration and structure changes of myofibrillar proteins at micro level. Meanwhile, TsAFP could directly bind to the structural cavity of myosin, inhibit protein freezing-induced oxidation, maintain the spatial structure of myosin and water retention ability to preserve the surimi quality. This study helped better comprehend the protective mechanisms of antifreeze peptides in frozen surimi and was expected to provide a promising cryoprotectant for low-sweetness and low-calorie surimi.
Assuntos
Crioprotetores , Gelo , Congelamento , Crioprotetores/farmacologia , Crioprotetores/química , Miosinas , Proteínas AnticongelantesRESUMO
Antifreeze proteins (AFPs) protect organisms from freezing by binding to ice crystals to prevent their growth. Here, we have investigated how the area of an AFP's ice-binding site (IBS) changes its antifreeze activity. The polyproline type II helical bundle fold of the 9.6-kDa springtail (Collembola) AFP from Granisotoma rainieri (a primitive arthropod) facilitates changes to both IBS length and width. A one quarter decrease in area reduced activity to less than 10%. A one quarter increase in IBS width, through the addition of a single helix, tripled antifreeze activity. However, increasing IBS length by a similar amount actually reduced activity. Expanding the IBS area can greatly increase antifreeze activity but needs to be evaluated by experimentation on a case-by-case basis.
Assuntos
Proteínas Anticongelantes , Gelo , alfa-Fetoproteínas , Proteínas Anticongelantes/química , Proteínas Anticongelantes/genética , Proteínas Anticongelantes/metabolismo , Sítios de Ligação , Engenharia de ProteínasRESUMO
Antifreeze glycoproteins (AFGPs) are a special kind of antifreeze proteins with strong flexibility. Whether their antifreeze activity is achieved by reversibly or irreversibly binding to ice is widely debated, and the molecular mechanism of irreversible binding remains unclear. In this work, the antifreeze mechanism of the smallest AFGP isoform, AFGP8, is investigated at the atomic level. The results indicate that AFGP8 can bind to ice both reversibly through its hydrophobic methyl groups (peptide binding) and irreversibly through its hydrophilic disaccharide moieties (saccharide binding). Although peptide binding occurs faster than saccharide binding, free-energy calculations indicate that the latter is energetically more favorable. In saccharide binding, at least one disaccharide moiety is frozen in the grown ice, resulting in irreversible binding, while the other moieties significantly perturb the water hydrogen-bonding network, thus inhibiting ice growth more effectively. The present study reveals the coexistence of reversible and irreversible bindings of AFGP8, both contributing to the inhibition of ice growth and further provides molecular mechanism of irreversible binding.
Assuntos
Gelo , Água , Água/química , Proteínas Anticongelantes/química , Dissacarídeos , PeptídeosRESUMO
Hypothermic (cold) preservation is a limiting factor for successful cell and tissue transplantation where cell swelling (edema) usually develops, impairing cell function. University of Wisconsin (UW) solution, a standard cold preservation solution, contains effective components to suppress hypothermia-induced cell swelling. Antifreeze proteins (AFPs) found in many cold-adapted organisms can prevent cold injury of the organisms. Here, the effects of a beetle AFP from Dendroides canadensis (DAFP-1) on pancreatic ß-cells preservation were first investigated. As low as 500 µg/mL, DAFP-1 significantly minimized INS-1 cell swelling and subsequent cell death during 4 °C preservation in UW solution for up to three days. However, such significant cytoprotection was not observed by an AFP from Tenebrio molitor (TmAFP), a structural homologue to DAFP-1 but lacking arginine, at the same levels. The cytoprotective effect of DAFP-1 was further validated with the primary ß-cells in the isolated rat pancreatic islets in UW solution. The submilligram level supplement of DAFP-1 to UW solution significantly increased the islet mass recovery after three days of cold preservation followed by rewarming. The protective effects of DAFP-1 in UW solution were discussed at a molecular level. The results indicate the potential of DAFP-1 to enhance cell survival during extended cold preservation.
Assuntos
Besouros , Animais , Ratos , Besouros/química , Besouros/metabolismo , Sobrevivência Celular , alfa-Fetoproteínas/farmacologia , Proteínas Anticongelantes/química , Glutationa/farmacologia , Insulina/farmacologia , EdemaRESUMO
Foodborne hydrolyzed antifreeze peptides have been widely used in the food industry and the biomedical field. However, the components of hydrolyzed peptides are complex and the molecular mechanism remains unclear. This study focused on identification and mechanism analysis of novel antifreeze peptides from Takifugu obscurus skin by traditional methods and computer-assisted techniques. Results showed that three peptides (EGPRAGGAPG, GDAGPSGPAGPTG, and GEAGPAGPAG) possessed cryoprotection via reducing the freezing point and inhibiting ice crystal growth. Molecular docking confirmed that the cryoprotective property was related to peptide structure, especially α-helix, and hydrogen bond sites. Moreover, the antifreeze peptides were double-faces, which controlled ice crystals while affecting the arrangement of surrounding water molecules, thus exhibiting a strong antifreeze activity. This investigation deepens the comprehension of the mechanism of antifreeze peptides at molecular scale, and the novel efficient antifreeze peptides can be developed in antifreeze materials design and applied in food industry.
Assuntos
Gelo , Takifugu , Animais , Cristalização , Simulação de Acoplamento Molecular , Congelamento , Proteínas Anticongelantes/química , Peptídeos/químicaRESUMO
Defatted Antarctic krill powder is the main by-product in the manufacturing of krill oil. Exploring a high value-added approach for utilizing this protein-rich material has received much attention in research and industry. Given this, the preparation and primary characterization of antifreeze peptides from defatted Antarctic krill (AKAPs) were carried out in this study. The cryoprotective effect of AKAPs on Lactobacillus rhamnosus ATCC7469 was also investigated. The results showed that Protamex was the optimum protease for AKAP preparation from defatted Antarctic krill. AKAPs were found to be rich in short peptides, with the MW ranging from 600 to 2000 Da (69.2%). An amino acid composition analysis showed that AKAPs were rich in glutamic acid (18.71%), aspartic acid (12.19%), leucine (7.87%), and lysine (7.61%). After freezing, the relative survival rate of Lactobacillus rhamnosus in the 1.0 mg/mL AKAP-treated group (96.83%) was significantly higher than in the saline group (24.12%) (p < 0.05). AKAPs also retarded the loss of acidifying activity of L. rhamnosus after freezing. AKAPs showed even better cryoprotective activity than three commercial cryoprotectants (sucrose, skim milk, and glycerol). In addition, AKAPs significantly alleviated the decrease in ß-galactosidase and lactic dehydrogenase activities of L. rhamnosus (p < 0.05). Furthermore, AKAPs effectively protected the integrity of L. rhamnosus cell membranes from freezing damage and alleviated the leakage of intracellular substances. These findings demonstrate that AKAPs can be a potential cryoprotectant for preserving L. rhamnosus, providing a new way to use defatted Antarctic krill.
Assuntos
Euphausiacea , Lacticaseibacillus rhamnosus , Aminoácidos/metabolismo , Animais , Proteínas Anticongelantes/metabolismo , Euphausiacea/química , Peptídeos/metabolismo , Peptídeos/farmacologiaRESUMO
CONTEXT: Ovarian tissue cryopreservation is effective in preserving fertility in cancer patients who have concerns about fertility loss due to cancer treatment. However, ischemia reduces the lifespan of grafts. Microvascular transplantation of cryopreserved whole ovary may allow immediate revascularisation, but the damage incurred during the cryopreservation procedure may cause follicular depletion; hence, preventing chilling injury would help maintain ovarian function. AIM: This study was designed to investigate the beneficial effects of antifreeze protein III (AFP III) on rabbit ovary cryopreservation. METHODS: Ovaries (n =25) obtained from 5-month-old female rabbits (n =13) were frozen by slow freezing and vitrification. Cryoprotectant media were supplemented with and without 1mg/mL of AFP III. The experiment was divided into five groups: fresh control group (F), slow freezing group (S), slow freezing group with AFP III (AFP III-S), vitrification group (V) and vitrification group with AFP III (AFP III-V). All groups of ovaries were examined by histological characteristics analysis, ultrastructural analysis, apoptosis detection and follicle viability test. KEY RESULTS: With slow freezing, the normal rate of change in follicle morphology, density of stromal cells and the survival rate of follicles in the AFP III supplemented group were significantly higher than those in the non-supplemented group, and a lower oocyte apoptotic rate was shown in the AFP III supplemented group. In the vitrification groups, the normal rate of change in follicle morphology and density of stromal cells in the AFP III supplemented group were significantly higher than those in the non-supplemented group, and a lower oocyte apoptotic rate was found in the AFP III supplemented group. But there was no obvious difference in the survival rate of follicles between the two groups. There was also no significant difference in the normal rate of change in follicle morphology, the survival rate of follicles and the apoptotic rate of oocytes between the vitrification and slow freezing groups (P >0.05), but the density of stromal cells in the vitrification groups was statistically higher than that of the slow freezing group (P <0.05). CONCLUSIONS: The addition of AFP III in slow freezing and vitrification could improve the cryoprotective effect of ovaries, which was more evident in slow freezing. IMPLICATIONS: The findings of this study provide a foundation for further research on the effects of AFP III in human ovarian tissue.
Assuntos
Crioprotetores , Preservação da Fertilidade , Animais , Proteínas Anticongelantes , Criopreservação/métodos , Crioprotetores/farmacologia , Feminino , Preservação da Fertilidade/métodos , Congelamento , Humanos , Ovário/metabolismo , Coelhos , Vitrificação , alfa-Fetoproteínas/metabolismo , alfa-Fetoproteínas/farmacologiaRESUMO
Ice-binding proteins are expressed in the cells of some cold adapted organisms, helping them to survive at extremely low temperatures. One of the problems in studying such proteins is the difficulty of their isolation and purification. For example, eight cysteine residues in the cfAF (antifreeze protein from the eastern spruce budworm Choristoneura fumiferana) form intermolecular bridges during the overexpression of this protein. This impedes the process of the protein purification dramatically. To overcome this issue, in this work, we designed a mutant form of the ice-binding protein cfAFP, which is much easier to isolate that the wild-type protein. The mutant form named mIBP83 did not lose the ability to bind to ice surface. Besides, observation of the processes of freezing and melting of ice in the presence of mIBP83 showed that this protein affects the process of ice melting, increasing its melting temperature, and does not decrease the water freezing temperature.
Assuntos
Gelo , Mariposas , Animais , Proteínas Anticongelantes/química , Proteínas Anticongelantes/genética , Proteínas Anticongelantes/metabolismo , Proteínas de Transporte , Congelamento , Mariposas/química , Mariposas/genética , Mariposas/metabolismoRESUMO
Dendroctonus armandi (Tsai and Li) (Coleoptera: Curculionidae: Scolytinae) is considered to be the most destructive forest pest in the Qinling and Bashan Mountains of China. Low winter temperatures limit insect's populations, distribution, activity, and development. Insects have developed different strategies such as freeze-tolerance and freeze-avoidance to survive in low temperature conditions. In the present study, we used gene cloning, real-time polymerase chain reaction (PCR), RNA interference (RNAi), and heterologous expression to study the function of the D. armandi antifreeze protein gene (DaAFP). We cloned the 800 bp full-length cDNA encoding 228 amino acids of DaAFP and analyzed its structure using bioinformatics analysis. The DaAFP amino acid sequence exhibited 24-86% similarity with other insect species. The expression of DaAFP was high in January and in the larvae, head, and midgut of D. armandi. In addition, the expression of DaAFP increased with decreasing temperature and increasing exposure time. RNAi analysis also demonstrated that AFP plays an important role in the cold tolerance of overwintering larvae. The thermal hysteresis and antifreeze activity assay of DaAFP and its mutants indicated that the more regular the DaAFP threonine-cystine-threonine (TXT) motif, the stronger the antifreeze activity. These results suggest that DaAFP plays an essential role as a biological cryoprotectant in overwintering D. armandi larvae and provides a theoretical basis for new pest control methods.