Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5049, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877064

RESUMO

Type IV pili (T4P) represent one of the most common varieties of surface appendages in archaea. These filaments, assembled from small pilin proteins, can be many microns long and serve diverse functions, including adhesion, biofilm formation, motility, and intercellular communication. Here, we determine atomic structures of two distinct adhesive T4P from Saccharolobus islandicus via cryo-electron microscopy (cryo-EM). Unexpectedly, both pili were assembled from the same pilin polypeptide but under different growth conditions. One filament, denoted mono-pilus, conforms to canonical archaeal T4P structures where all subunits are equivalent, whereas in the other filament, the tri-pilus, the same polypeptide exists in three different conformations. The three conformations in the tri-pilus are very different from the single conformation found in the mono-pilus, and involve different orientations of the outer immunoglobulin-like domains, mediated by a very flexible linker. Remarkably, the outer domains rotate nearly 180° between the mono- and tri-pilus conformations. Both forms of pili require the same ATPase and TadC-like membrane pore for assembly, indicating that the same secretion system can produce structurally very different filaments. Our results show that the structures of archaeal T4P appear to be less constrained and rigid than those of the homologous archaeal flagellar filaments that serve as helical propellers.


Assuntos
Proteínas Arqueais , Microscopia Crioeletrônica , Proteínas de Fímbrias , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/ultraestrutura , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/ultraestrutura , Modelos Moleculares , Fímbrias Bacterianas/ultraestrutura , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/química , Conformação Proteica , Sequência de Aminoácidos
2.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 3): 79-84, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33682792

RESUMO

Chaperonins are biomolecular complexes that assist in protein folding. Thermophilic factor 55 (TF55) is a group II chaperonin found in the archaeal genus Sulfolobus that has α, ß and γ subunits. Using cryo-electron microscopy, structures of the ß-only complex of S. solfataricus TF55 (TF55ß) were determined to 3.6-4.2 Šresolution. The structures of the TF55ß complexes formed in the presence of ADP or ATP highlighted an open state in which nucleotide exchange can occur before progressing in the refolding cycle.


Assuntos
Proteínas Arqueais/ultraestrutura , Chaperoninas/ultraestrutura , Microscopia Crioeletrônica , Sulfolobus solfataricus/ultraestrutura , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Modelos Moleculares , Conformação Proteica
3.
Proc Natl Acad Sci U S A ; 116(2): 534-539, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30559193

RESUMO

Proteasomes occur in all three domains of life, and are the principal molecular machines for the regulated degradation of intracellular proteins. They play key roles in the maintenance of protein homeostasis, and control vital cellular processes. While the eukaryotic 26S proteasome is extensively characterized, its putative evolutionary precursor, the archaeal proteasome, remains poorly understood. The primordial archaeal proteasome consists of a 20S proteolytic core particle (CP), and an AAA-ATPase module. This minimal complex degrades protein unassisted by non-ATPase subunits that are present in a 26S proteasome regulatory particle (RP). Using cryo-EM single-particle analysis, we determined structures of the archaeal CP in complex with the AAA-ATPase PAN (proteasome-activating nucleotidase). Five conformational states were identified, elucidating the functional cycle of PAN, and its interaction with the CP. Coexisting nucleotide states, and correlated intersubunit signaling features, coordinate rotation of the PAN-ATPase staircase, and allosterically regulate N-domain motions and CP gate opening. These findings reveal the structural basis for a sequential around-the-ring ATPase cycle, which is likely conserved in AAA-ATPases.


Assuntos
Adenosina Trifosfatases/ultraestrutura , Proteínas Arqueais/ultraestrutura , Archaeoglobus fulgidus/enzimologia , Microscopia Crioeletrônica , Complexo de Endopeptidases do Proteassoma/ultraestrutura
4.
Elife ; 62017 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-28390173

RESUMO

AAA+ unfoldases are thought to unfold substrate through the central pore of their hexameric structures, but how this process occurs is not known. VAT, the Thermoplasma acidophilum homologue of eukaryotic CDC48/p97, works in conjunction with the proteasome to degrade misfolded or damaged proteins. We show that in the presence of ATP, VAT with its regulatory N-terminal domains removed unfolds other VAT complexes as substrate. We captured images of this transient process by electron cryomicroscopy (cryo-EM) to reveal the structure of the substrate-bound intermediate. Substrate binding breaks the six-fold symmetry of the complex, allowing five of the six VAT subunits to constrict into a tight helix that grips an ~80 Å stretch of unfolded protein. The structure suggests a processive hand-over-hand unfolding mechanism, where each VAT subunit releases the substrate in turn before re-engaging further along the target protein, thereby unfolding it.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas Arqueais/ultraestrutura , Thermoplasma/enzimologia , Proteína com Valosina/metabolismo , Proteína com Valosina/ultraestrutura , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica
5.
Proteins ; 82(9): 1924-36, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24638914

RESUMO

Bacteria/eukaryotes share a common pathway for coenzyme A biosynthesis which involves two enzymes to convert pantoate to 4'-phosphopantothenate. These two enzymes are absent in almost all archaea. Recently, it was reported that two novel enzymes, pantoate kinase, and phosphopantothenate synthetase (PPS), are responsible for this conversion in archaea. Here, we report the crystal structure of PPS from the hyperthermophilic archaeon, Thermococcus kodakarensis and its complexes with substrates, ATP, and ATP and 4-phosphopantoate. PPS forms an asymmetric homodimer, in which two monomers composing a dimer, deviated from the exact twofold symmetry, displaying 4°-13° distortion. The structural features are consistent with the mutagenesis data and the results of biochemical experiments previously reported. Based on these structures, we discuss the catalytic mechanism by which PPS produces phosphopantoyl adenylate, which is thought to be a reaction intermediate.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/ultraestrutura , Peptídeo Sintases/química , Peptídeo Sintases/ultraestrutura , Thermococcus/enzimologia , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Sítios de Ligação , Coenzima A/biossíntese , Cristalografia por Raios X , Complexos Multiproteicos/química , Panteteína/análogos & derivados , Panteteína/metabolismo , Alinhamento de Sequência
6.
Elife ; 2: e00218, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23483797

RESUMO

Methanogenic archaea use a [NiFe]-hydrogenase, Frh, for oxidation/reduction of F420, an important hydride carrier in the methanogenesis pathway from H2 and CO2. Frh accounts for about 1% of the cytoplasmic protein and forms a huge complex consisting of FrhABG heterotrimers with each a [NiFe] center, four Fe-S clusters and an FAD. Here, we report the structure determined by near-atomic resolution cryo-EM of Frh with and without bound substrate F420. The polypeptide chains of FrhB, for which there was no homolog, was traced de novo from the EM map. The 1.2-MDa complex contains 12 copies of the heterotrimer, which unexpectedly form a spherical protein shell with a hollow core. The cryo-EM map reveals strong electron density of the chains of metal clusters running parallel to the protein shell, and the F420-binding site is located at the end of the chain near the outside of the spherical structure. DOI:http://dx.doi.org/10.7554/eLife.00218.001.


Assuntos
Proteínas Arqueais/química , Microscopia Crioeletrônica , Hidrogenase/química , Methanobacteriaceae/enzimologia , Riboflavina/análogos & derivados , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Proteínas Arqueais/ultraestrutura , Sítios de Ligação , Hidrogenase/metabolismo , Hidrogenase/ultraestrutura , Methanobacteriaceae/classificação , Methanobacteriaceae/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Ligação Proteica , Estrutura Quaternária de Proteína , Riboflavina/química , Riboflavina/metabolismo
7.
J Struct Biol ; 182(1): 10-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23376441

RESUMO

When refining the fit of component atomic structures into electron microscopic reconstructions, use of a resolution-dependent atomic density function makes it possible to jointly optimize the atomic model and imaging parameters of the microscope. Atomic density is calculated by one-dimensional Fourier transform of atomic form factors convoluted with a microscope envelope correction and a low-pass filter, allowing refinement of imaging parameters such as resolution, by optimizing the agreement of calculated and experimental maps. A similar approach allows refinement of atomic displacement parameters, providing indications of molecular flexibility even at low resolution. A modest improvement in atomic coordinates is possible following optimization of these additional parameters. Methods have been implemented in a Python program that can be used in stand-alone mode for rigid-group refinement, or embedded in other optimizers for flexible refinement with stereochemical restraints. The approach is demonstrated with refinements of virus and chaperonin structures at resolutions of 9 through 4.5 Å, representing regimes where rigid-group and fully flexible parameterizations are appropriate. Through comparisons to known crystal structures, flexible fitting by RSRef is shown to be an improvement relative to other methods and to generate models with all-atom rms accuracies of 1.5-2.5 Å at resolutions of 4.5-6 Å.


Assuntos
Proteínas Arqueais/química , Chaperoninas/química , Microscopia Crioeletrônica/métodos , Dependovirus/ultraestrutura , Fragmentos Fab das Imunoglobulinas/química , Proteínas Arqueais/ultraestrutura , Chaperoninas/ultraestrutura , Análise de Fourier , Processamento de Imagem Assistida por Computador , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Mathanococcus/química , Modelos Moleculares , Estrutura Terciária de Proteína
8.
Nucleic Acids Res ; 41(5): 3446-56, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23361460

RESUMO

Deregulation of mini-chromosome maintenance (MCM) proteins is associated with genomic instability and cancer. MCM complexes are recruited to replication origins for genome duplication. Paradoxically, MCM proteins are in excess than the number of origins and are associated with chromatin regions away from the origins during G1 and S phases. Here, we report an unusually wide left-handed filament structure for an archaeal MCM, as determined by X-ray and electron microscopy. The crystal structure reveals that an α-helix bundle formed between two neighboring subunits plays a critical role in filament formation. The filament has a remarkably strong electro-positive surface spiraling along the inner filament channel for DNA binding. We show that this MCM filament binding to DNA causes dramatic DNA topology change. This newly identified function of MCM to change DNA topology may imply a wider functional role for MCM in DNA metabolisms beyond helicase function. Finally, using yeast genetics, we show that the inter-subunit interactions, important for MCM filament formation, play a role for cell growth and survival.


Assuntos
Proteínas Arqueais/química , Proteínas de Ligação a DNA/química , Sulfolobus solfataricus , Proteínas Arqueais/ultraestrutura , Sítios de Ligação , Cromossomos de Archaea/química , Cristalografia por Raios X , DNA Arqueal/química , DNA Super-Helicoidal/química , Proteínas de Ligação a DNA/ultraestrutura , Tomografia com Microscopia Eletrônica , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
9.
J Bioenerg Biomembr ; 41(4): 343-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19760172

RESUMO

The N-termini of E and H of A1AO ATP synthase have been shown to interact and an NMR structure of N-terminal H1-47 has been solved recently. In order to understand the E-H assembly and the N-terminal structure of E, the truncated construct E1-52 of Methanocaldococcus jannaschii A1AO ATP synthase was produced, purified and the solution structure of E1-52 was determined by NMR spectroscopy. The protein is 60.5 A in length and forms an alpha helix between the residues 8-48. The molecule is amphipathic with a strip of hydrophobic residues, discussed as a possible helix-helix interaction with neighboring subunit H.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/ultraestrutura , Euryarchaeota/enzimologia , Espectroscopia de Ressonância Magnética/métodos , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/ultraestrutura , Sequência de Aminoácidos , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas
10.
Biochem Soc Trans ; 37(Pt 1): 118-22, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19143614

RESUMO

Thermoacidophilic crenarchaea of the genus Sulfolobus contain six AAA (ATPase associated with various cellular activities) proteins, including a proteasome-associated ATPase, a Vps4 (vacuolar protein sorting 4) homologue, and two Cdc48 (cell-division cycle 48)-like proteins. The last two AAA proteins are deeply branching divergent members of this family without close relatives outside the Sulfolobales. Both proteins have two nucleotide-binding domains and, unlike other members of the family, they seem to lack folded N-terminal domains. Instead, they contain N-terminal extensions of approx. 50 residues, which are predicted to be unstructured, except for a single transmembrane helix. We have analysed the two proteins, MBA (membrane-bound AAA) 1 and MBA2, by computational and experimental means. They appear to be monophyletic and to share a common ancestor with the Cdc48 clade. Both are membrane-bound and active as nucleotidases upon heterologous expression in Escherichia coli. They form ring complexes, which are stable after solubilization in a mild detergent and whose formation is dependent on the presence of the N-terminal extensions.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Arqueais/metabolismo , Membrana Celular/enzimologia , Sulfolobus solfataricus/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/ultraestrutura , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/ultraestrutura , Fenômenos Bioquímicos , Biologia Computacional , Microscopia Crioeletrônica , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo
11.
Mol Cell ; 30(3): 360-8, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18471981

RESUMO

Substrates enter the cylindrical 20S proteasome through a gated channel that is regulated by the ATPases in the 19S regulatory particle in eukaryotes or the homologous PAN ATPase complex in archaea. These ATPases contain a conserved C-terminal hydrophobic-tyrosine-X (HbYX) motif that triggers gate opening upon ATP binding. Using cryo-electron microscopy, we identified the sites in the archaeal 20S where PAN's C-terminal residues bind and determined the structures of the gate in its closed and open forms. Peptides containing the HbYX motif bind to 20S in the pockets between neighboring alpha subunits where they interact with conserved residues required for gate opening. This interaction induces a rotation in the alpha subunits and displacement of a reverse-turn loop that stabilizes the open-gate conformation. This mechanism differs from that of PA26/28, which lacks the HbYX motif and does not cause alpha subunit rotation. These findings demonstrated how the ATPases' C termini function to facilitate substrate entry.


Assuntos
Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Proteínas Arqueais/metabolismo , Proteínas Arqueais/ultraestrutura , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Conformação Proteica , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Animais , Proteínas Arqueais/genética , Sítios de Ligação , Microscopia Crioeletrônica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Thermoplasma/química , Thermoplasma/metabolismo
12.
Structure ; 16(4): 528-34, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18400175

RESUMO

Chaperonin action is controlled by cycles of nucleotide binding and hydrolysis. Here, we examine the effects of nucleotide binding on an archaeal group 2 chaperonin. In contrast to the ordered apo state of the group 1 chaperonin GroEL, the unliganded form of the homo-16-mer Methanococcus maripaludis group 2 chaperonin is very open and flexible, with intersubunit contacts only in the central double belt of equatorial domains. The intermediate and apical domains are free of contacts and deviate significantly from the overall 8-fold symmetry. Nucleotide binding results in three distinct, ordered 8-fold symmetric conformations--open, partially closed, and fully closed. The partially closed ring encloses a 40% larger volume than does the GroEL-GroES folding chamber, enabling it to encapsulate proteins up to 80 kDa, in contrast to the fully closed form, whose cavities are 20% smaller than those of the GroEL-GroES chamber.


Assuntos
Proteínas Arqueais/química , Chaperoninas/química , Modelos Moleculares , Difosfato de Adenosina/química , Compostos de Alumínio/química , Proteínas Arqueais/ultraestrutura , Chaperoninas/ultraestrutura , Microscopia Crioeletrônica , Fluoretos/química , Processamento de Imagem Assistida por Computador , Mathanococcus , Movimento (Física) , Dobramento de Proteína , Estrutura Terciária de Proteína
13.
Biochem Biophys Res Commun ; 369(2): 707-11, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18313393

RESUMO

Chaperone function in water-miscible organic co-solvents is useful for biocatalytic applications requiring enzyme stability in semi-aqueous media and for understanding chaperone behavior in hydrophobic environments. Previously, we have shown that a recombinant single subunit thermosome (rTHS) from Methanocaldococcus jannaschii functions in multiple co-solvents to hydrolyze ATP, prevent protein aggregation, and refold enzymes following solvent denaturation. For the present study, a truncated analog to the thermosome in which 70 N-terminal amino acids are removed is used to identify important regions within the thermosome for its chaperoning functions in organic co-solvents. Data presented herein indicate that the N-terminal region of rTHS is essential for the chaperone to restore the native state of the enzyme citrate synthase, but it is not a critical region for either binding of unfolded proteins or ATP hydrolysis. This is the first demonstration that direct refolding by a Group II chaperonin requires the N-terminal region of the protein.


Assuntos
Trifosfato de Adenosina/química , Proteínas Arqueais/química , Proteínas Arqueais/ultraestrutura , Chaperoninas/química , Chaperoninas/ultraestrutura , Modelos Químicos , Modelos Moleculares , Chaperonas Moleculares/química , Proteínas Arqueais/genética , Chaperoninas/genética , Simulação por Computador , Chaperonas Moleculares/genética , Dobramento de Proteína , Proteínas Recombinantes/química , Termossomos
14.
Structure ; 15(10): 1167-77, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17937907

RESUMO

The coexistence of multiple distinct structural states often obstructs the application of three-dimensional cryo-electron microscopy to large macromolecular complexes. Maximum likelihood approaches are emerging as robust tools for solving the image classification problems that are posed by such samples. Here, we propose a statistical data model that allows for a description of the experimental image formation within the formulation of 2D and 3D maximum-likelihood refinement. The proposed approach comprises a formulation of the probability calculations in Fourier space, including a spatial frequency-dependent noise model and a description of defocus-dependent imaging effects. The Expectation-Maximization-like algorithms presented are generally applicable to the alignment and classification of structurally heterogeneous projection data. Their effectiveness is demonstrated with various examples, including 2D classification of top views of the archaeal helicase MCM and 3D classification of 70S E. coli ribosome and Simian Virus 40 large T-antigen projections.


Assuntos
Antígenos Transformantes de Poliomavirus/química , Proteínas Arqueais/química , Microscopia Crioeletrônica/métodos , DNA Helicases/química , Imageamento Tridimensional , Modelos Moleculares , Ribossomos/química , Algoritmos , Antígenos Transformantes de Poliomavirus/ultraestrutura , Proteínas Arqueais/ultraestrutura , Microscopia Crioeletrônica/estatística & dados numéricos , DNA Helicases/ultraestrutura , Escherichia coli/metabolismo , Funções Verossimilhança , Modelos Estatísticos , Conformação Proteica , Ribossomos/ultraestrutura
15.
Nucleic Acids Res ; 35(6): 1787-801, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17329376

RESUMO

The RecA family of proteins mediates homologous recombination, an evolutionarily conserved pathway that maintains genomic stability by protecting against DNA double strand breaks. RecA proteins are thought to facilitate DNA strand exchange reactions as closed-rings or as right-handed helical filaments. Here, we report the crystal structure of a left-handed Sulfolobus solfataricus RadA helical filament. Each protomer in this left-handed filament is linked to its neighbour via interactions of a beta-strand polymerization motif with the neighbouring ATPase domain. Immediately following the polymerization motif, we identified an evolutionarily conserved hinge region (a subunit rotation motif) in which a 360 degrees clockwise axial rotation accompanies stepwise structural transitions from a closed ring to the AMP-PNP right-handed filament, then to an overwound right-handed filament and finally to the left-handed filament. Additional structural and functional analyses of wild-type and mutant proteins confirmed that the subunit rotation motif is crucial for enzymatic functions of RecA family proteins. These observations support the hypothesis that RecA family protein filaments may function as rotary motors.


Assuntos
Proteínas Arqueais/química , Proteínas de Ligação a DNA/química , Modelos Moleculares , Recombinases Rec A/química , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Proteínas Arqueais/ultraestrutura , Cristalografia por Raios X , DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Microscopia de Força Atômica , Dados de Sequência Molecular , Mutação Puntual , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Rad51 Recombinase/química , Rotação , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de Sequência , Sulfolobus solfataricus/enzimologia
16.
Nucleic Acids Res ; 34(20): 5829-38, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17062628

RESUMO

The MCM complex from the archaeon Methanother-mobacter thermautotrophicus is a model for the eukaryotic MCM2-7 helicase. We present electron-microscopy single-particle reconstructions of a DNA treated M.thermautotrophicus MCM sample and a ADP.AlF(x) treated sample, respectively assembling as double hexamers and double heptamers. The electron-density maps display an unexpected asymmetry between the two rings, suggesting that large conformational changes can occur within the complex. The structure of the MCM N-terminal domain, as well as the AAA+ and the C-terminal HTH dom-ains of ZraR can be fitted into the reconstructions. Distinct configurations can be modelled for the AAA+ and the HTH domains, suggesting the nature of the conformational change within the complex. The pre-sensor 1 and the helix 2 insertions, important for the activity, can be located pointing towards the centre of the channel in the presence of DNA. We propose a mechanistic model for the helicase activity, based on a ligand-controlled rotation of the AAA+ subunits.


Assuntos
Proteínas Arqueais/química , DNA Helicases/química , Methanobacteriaceae/enzimologia , Modelos Moleculares , Adenosina Trifosfatases/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/ultraestrutura , DNA/química , DNA Helicases/metabolismo , DNA Helicases/ultraestrutura , Processamento de Imagem Assistida por Computador , Estrutura Terciária de Proteína
17.
J Struct Biol ; 156(1): 130-8, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16730457

RESUMO

We have previously reported a new group of AAA proteins, which is only found in Archaeoglobus and methanogenic archaea (AMA). The proteins are phylogenetically basal to the metalloprotease clade and their N-terminal domain is homologous to the beta-clam part of the N-domain of CDC48-like proteins. Here we report the biochemical and biophysical characterization of Archaeoglobus fulgidus AMA, and of its isolated N-terminal (AMA-N) and ATPase (AMA-DeltaN) domains. AfAMA forms hexameric complexes, as does AMA-N, while AMA-DeltaN only forms dimers. The ability to hexamerize is dependent on the integrity of a GYPL motif in AMA-N, which resembles the pore motif of FtsH and HslU. While the physiological function of AMA is unknown, we show that it has ATP-dependent chaperone activity and can prevent the thermal aggregation of proteins in vitro. The ability to interact with non-native proteins resides in the N-domain and is energy-independent.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Archaea/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Archaeoglobus/enzimologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/ultraestrutura , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/ultraestrutura , Dicroísmo Circular , Clonagem Molecular , Estabilidade Enzimática , Dados de Sequência Molecular , Peso Molecular , Filogenia , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura
18.
J Struct Biol ; 156(1): 210-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16731005

RESUMO

The primary candidate for the eukaryotic replicative helicase is the MCM2-7 complex, a hetero-oligomer formed by six AAA+ paralogous polypeptides. A simplified model for structure-function studies is the homo-oligomeric orthologue from the archaeon Methanothermobacter thermoautotrophicus. The crystal structure of the DNA-interacting N-terminal domain of this homo-oligomer revealed a double hexamer in a head-to-head configuration; single-particle electron microscopy studies have shown that the full-length protein complex can form both single and double rings, in which each ring can consist of a cyclical arrangement of six or seven subunits. Using single-particle techniques and especially multivariate statistical symmetry analysis, we have assessed the changes in stoichiometry that the complex undergoes when treated with various nucleotide analogues or when binding a double-stranded DNA fragment. We found that the binding of nucleotides or of double-stranded DNA leads to the preferred formation of double-ring structures. Specifically, the protein complex is present as a double heptamer when treated with a nucleotide analogue, but it is rather found as a double hexamer when complexed with double-stranded DNA. The possible physiological role of the various stoichiometries of the complex is discussed in the light of the proposed mechanisms of helicase activity.


Assuntos
Proteínas Arqueais/metabolismo , Cromossomos de Archaea/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Difosfato de Adenosina/farmacologia , Proteínas Arqueais/química , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/ultraestrutura , Cromossomos de Archaea/química , DNA/metabolismo , DNA Helicases/genética , Escherichia coli/genética , Methanobacteriaceae/enzimologia , Modelos Biológicos , Nucleotídeos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Transformação Genética
19.
J Struct Biol ; 156(1): 120-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16584891

RESUMO

We investigated a new archaeal member of the AAA+ protein family (ATPases associated with various cellular activities) which is found in all methanogenic archaea and the sulphate-reducer Archaeoglobus fulgidus. These proteins cluster to COG1223 predicted to form a subgroup of the AAA+ ATPases. The gene from A. fulgidus codes for a protein of 40 kDa monomeric molecular weight, which we overexpressed in Escherichia coli and purified to homogeneity. The protein forms ring-shaped complexes with a diameter of 125A as determined by electron microscopy. Using sedimentation equilibrium analysis we demonstrate that it assembles into hexamers over a wide concentration range both in presence and absence of ATP. As suggested by homology to other members of the AAA+ family, the complex binds and hydrolyzes ATP. Michaelis-Menten analysis revealed a k(cat) of 118 min(-1) and a K(M) of 1.4 mM at 78 degrees C. This hyperthermophilic archaeal ATPase is stable to 86 degrees C and the ATPase activity is maximal at this temperature. The protein is most homologous to the AAA-domain of FtsH from bacteria, while the N-terminal domain shows predicted structural homology to members of the CDC48 family of AAA proteins. Possible roles of this new AAA+ protein are discussed.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/ultraestrutura , Archaeoglobus fulgidus/enzimologia , Archaeoglobus fulgidus/genética , Dicroísmo Circular , Estabilidade Enzimática , Escherichia coli/genética , Hidrólise , Cinética , Dados de Sequência Molecular , Peso Molecular , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura
20.
Protein Expr Purif ; 47(2): 384-92, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16603379

RESUMO

sHsps are ubiquitous ATP-independent molecular chaperones, which efficiently prevent the unspecific aggregation of non-native proteins. Here, we described the purification of the small heat shock protein Hsp26 from a Saccharomyces cerevisiae strain harboring a multicopy plasmid carrying HSP26 gene under the control of its native promoter. A 26 kDa protein was purified to apparent homogeneity with a recovery of 74% by a very reproducible three steps procedure consisting of ethanol precipitation, sucrose gradient ultracentrifugation, and heat inactivation of residual contaminants. The purified polypeptide was unequivocally identified as Hsp26 using a specific Hsp26 polyclonal antibody as a probe. The analysis of the purified protein by electron microscopy revealed near spherical particles with a diameter of 12.0 nm (n=57, standard deviation +/-1.6 nm), displaying a dispersion in size ranging from 9.2 to 16.1 nm, identical to Methanococcus jannaschii Hsp16.5 and in the range of the size estimated for yeast Hsp26, in a previous report. Purified yeast Hsp26 was able to suppress 72% of the heat-induced aggregation of citrate synthase at a ratio of 1:1 (Hsp26 24-mer complex to citrate synthase dimer), and 86% of the heat-induced aggregation of lysozyme at a molar ratio of 1:16 (Hsp26 24-mer complex to lysozyme monomer). In conclusion, the Hsp26 protein purified as described here has structure and activity similar to the previously described preparations. As advantages, this new protocol is very reproducible and requires simple apparatuses which are found in all standard biochemistry laboratories.


Assuntos
Proteínas de Choque Térmico/isolamento & purificação , Complexos Multiproteicos/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas Arqueais/química , Proteínas Arqueais/ultraestrutura , Citrato (si)-Sintase/química , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/ultraestrutura , Complexos Multiproteicos/biossíntese , Complexos Multiproteicos/ultraestrutura , Muramidase/química , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA