Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.147
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2317616121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743627

RESUMO

The therapeutic targeting of ferroptosis requires full understanding of the molecular mechanism of this regulated cell death pathway. While lipid-derived electrophiles (LDEs), including 4-hydroxy-2-nonenal (4-HNE), are important biomarkers of ferroptosis, a functional role for these highly reactive species in ferroptotic cell death execution has not been established. Here, through mechanistic characterization of LDE-detoxification impairment, we demonstrate that LDEs mediate altered protein function during ferroptosis. Applying live cell fluorescence imaging, we first identified that export of glutathione-LDE-adducts through multidrug resistance-associated protein (MRP) channels is inhibited following exposure to a panel of ferroptosis inducers (FINs) with different modes of action (type I-IV FINs erastin, RSL3, FIN56, and FINO2). This channel inhibition was recreated by both initiation of lipid peroxidation and treatment with 4-HNE. Importantly, treatment with radical-trapping antioxidants prevented impaired LDE-adduct export when working with both FINs and lipid peroxidation initiators but not 4-HNE, pinpointing LDEs as the cause of this inhibited MRP activity observed during ferroptosis. Our findings, when combined with reports of widespread LDE alkylation of key proteins following ferroptosis induction, including MRP1, set a precedent for LDEs as critical mediators of ferroptotic cell damage. Lipid hydroperoxide breakdown to form truncated phospholipids and LDEs may fully explain membrane permeabilization and modified protein function downstream of lipid peroxidation, offering a unified explanation of the molecular cell death mechanism of ferroptosis.


Assuntos
Aldeídos , Ferroptose , Peroxidação de Lipídeos , Ferroptose/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Aldeídos/farmacologia , Aldeídos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Glutationa/metabolismo
2.
Life Sci ; 347: 122605, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642845

RESUMO

AIMS: Hepatocellular carcinoma (HCC) is a lead cause of cancer-related deaths. In the present study we investigated the role of Brahma-related gene 1 (BRG1), a chromatin remodeling protein, in HCC the pathogenesis focusing on identifying novel transcription targets. METHODS AND MATERIALS: Hepatocellular carcinogenesis was modeled in mice by diethylnitrosamine (DEN). Cellular transcriptome was evaluated by RNA-seq. RESULTS: Hepatocellular carcinoma was appreciably retarded in BRG1 knockout mice compared to wild type littermates. Transcriptomic analysis identified ATP Binding Cassette Subfamily C Member 3 (ABCC3) as a novel target of BRG1. BRG1 over-expression in BRG1low HCC cells (HEP1) up-regulated whereas BRG1 depletion in BRG1high HCC cells (SNU387) down-regulated ABCC3 expression. Importantly, BRG1 was detected to directly bind to the ABCC3 promoter to activate ABCC3 transcription. BRG1 over-expression in HEP1 cells promoted proliferation and migration, both of which were abrogated by ABCC3 silencing. On the contrary, BRG1 depletion in SNU387 cells decelerated proliferation and migration, both of which were rescued by ABCC3 over-expression. Importantly, high BRG1/ABCC3 expression predicted poor prognosis in HCC patients. Mechanistically, ABCC3 regulated hepatocellular carcinogenesis possibly by influencing lysosomal homeostasis. SIGNIFICANCE: In conclusion, our data suggest that targeting BRG1 and its downstream target ABCC3 can be considered as a reasonable approach for the intervention of hepatocellular carcinoma.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , DNA Helicases , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Proteínas Nucleares , Fatores de Transcrição , Animais , DNA Helicases/genética , DNA Helicases/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Camundongos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Proliferação de Células , Masculino , Linhagem Celular Tumoral , Movimento Celular , Dietilnitrosamina/toxicidade , Camundongos Endogâmicos C57BL
3.
Transl Vis Sci Technol ; 13(4): 29, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38656313

RESUMO

Purpose: To describe the ocular findings of murine pseudoxanthoma elasticum (PXE) models with ATP-binding cassette subfamily C member 6 (Abcc6) gene knockout. Methods: This experiment was conducted in four Abcc6-/- rats and compared with six wild-type Abcc6+/+ control rats. The animals underwent necropsy at 6 months of age. Histological examination of the eyes was performed. Results: Histological examination of eight eyes from four Abcc6-/- rats revealed multiple nodular foci of calcification in the uvea, sclera, and conjunctiva, focally in perivascular distribution, as well as linear and nodular calcification of Bruch's membrane. Calcific foci were not associated with inflammation in the knockout rats. There was no evidence of calcification in control eyes. Discussion: The Abcc6-/- rat model shows that PXE can affect multiple ocular tissues beyond the calcification in Bruch's membrane noted in human eyes. Nodular calcific foci probably correspond to comet lesions seen in patients with PXE. The presence of ectopic calcium without inflammation distinguishes it from inflammatory calcium deposition in atherosclerosis. Further studies are needed to determine why PXE does not cause inflammatory infiltration. Translational Relevance: The Abcc6-/- murine model may be suitable for studying ocular PXE pathophysiology and ectopic calcification and developing effective therapies.


Assuntos
Modelos Animais de Doenças , Pseudoxantoma Elástico , Animais , Masculino , Ratos , Lâmina Basilar da Corioide/patologia , Lâmina Basilar da Corioide/metabolismo , Calcinose/patologia , Calcinose/genética , Técnicas de Inativação de Genes , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/deficiência , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Pseudoxantoma Elástico/genética , Pseudoxantoma Elástico/patologia , Pseudoxantoma Elástico/metabolismo
4.
Biomolecules ; 14(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38672415

RESUMO

The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins. These active transporters are involved in the export of different substances such as xenobiotics. ABC transporters from subfamily C (ABCC) have also been described as functional receptors for different insecticidal proteins from Bacillus thuringiensis (Bt) in several lepidopteran species. Numerous studies have characterized the relationship between the ABCC2 transporter and Bt Cry1 proteins. Although other ABCC transporters sharing structural and functional similarities have been described, little is known of their role in the mode of action of Bt proteins. For Heliothis virescens, only the ABCC2 transporter and its interaction with Cry1A proteins have been studied to date. Here, we have searched for paralogs to the ABCC2 gene in H. virescens, and identified two new ABC transporter genes: HvABCC3 and HvABCC4. Furthermore, we have characterized their gene expression in the midgut and their protein topology, and compared them with that of ABCC2. Finally, we discuss their possible interaction with Bt proteins by performing protein docking analysis.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Animais , Toxinas de Bacillus thuringiensis/metabolismo , Endotoxinas/metabolismo , Endotoxinas/genética , Endotoxinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Mariposas/metabolismo , Mariposas/genética , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/genética , Simulação de Acoplamento Molecular , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química
5.
Int J Biol Macromol ; 266(Pt 2): 131006, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522696

RESUMO

Malignant tumors contribute significantly to human mortality. Chemotherapy is a commonly used treatment for tumors. However, due to the low selectivity of chemotherapeutic drugs, immune cells can be damaged during antitumor treatment, resulting in toxicity. Lipopolysaccharide (LPS) can stimulate immune cells to respond to foreign substances. Here, we found that 10 ng/mL LPS could induce tolerance to antitumor drugs in macrophages without altering the effect of the drugs on tumor cells. Differentially expressed genes (DEGs) were identified between cells before and after LPS administration using transcriptome sequencing and found to be mainly associated with ATP-binding cassette (ABC)-resistant transporters and glutathione S-transferase (GST). LPS was shown by qRT-PCR and western blotting to promote the expression of ABCC1, GSTT1, and GSTP1 by 38.3 %, 194.8 %, and 27.0 %. Furthermore, three inhibitors (inhibitors of GST, glutathione synthesis, and ABCC1) were used for further investigation, showing that these inhibitors reduced macrophage survival rates by 44.0 %, 52.3 %, and 43.3 %, while the intracellular adriamycin content increased by 28.9 %, 42.9 %, and 51.3 %, respectively. These findings suggest that the protective mechanism of LPS on macrophages is associated with increased GST activity, the consumption of glutathione, and increased expression of ABCC1 protein. Therefore, LPS has a potential role in enhancing immunity.


Assuntos
Lipopolissacarídeos , Macrófagos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos , Animais , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Células RAW 264.7 , Humanos , Glutationa/metabolismo , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Sobrevivência Celular/efeitos dos fármacos
6.
Drug Resist Updat ; 73: 101062, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330827

RESUMO

Multidrug resistance protein 7 (MRP7), also known as ATP-binding cassette (ABC) transporter subfamily C10 (ABCC10), is an ABC transporter that was first identified in 2001. ABCC10/MRP7 is a 171 kDa protein located on the basolateral membrane of cells. ABCC10/MRP7 consists of three transmembrane domains and two nucleotide binding domains. It mediates multidrug resistance of tumor cells to a variety of anticancer drugs by increasing drug efflux and results in reducing intracellular drug accumulation. The transport substrates of ABCC10/MRP7 include antineoplastic drugs such as taxanes, vinca alkaloids, and epothilone B, as well as endobiotics such as leukotriene C4 (LTC4) and estradiol 17 ß-D-glucuronide. A variety of ABCC10/MRP7 inhibitors, including cepharanthine, imatinib, erlotinib, tariquidar, and sildenafil, can reverse ABCC10/MRP7-mediated MDR. Additionally, the presence or absence of ABCC10/MRP7 is also closely related to renal tubular dysfunction, obesity, and other diseases. In this review, we discuss: 1) Structure and functions of ABCC10/MRP7; 2) Known substrates and inhibitors of ABCC10/MRP7 and their potential therapeutic applications in cancer; and 3) Role of ABCC10/MRP7 in non-cancerous diseases.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Resistência a Múltiplos Medicamentos/genética , Mesilato de Imatinib/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética
7.
Biol Pharm Bull ; 47(2): 427-433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38369341

RESUMO

It has recently been reported that cholangiocyte organoids can be established from primary human hepatocytes. The purpose of this study was to culture the organoids in monolayers on inserts to investigate the biliary excretory capacity of drugs. Cholangiocyte organoids prepared from hepatocytes had significantly higher mRNA expression of CK19, a bile duct epithelial marker, compared to hepatocytes. The organoids also expressed mRNA for efflux transporters involved in biliary excretion of drugs, P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP). The subcellular localization of each protein was observed. These results suggest that the membrane-cultured cholangiocyte organoids are oriented with the upper side being the apical membrane side (A side, bile duct lumen side) and the lower side being the basolateral membrane side (B side, hepatocyte side), and that each efflux transporter is localized to the apical membrane side. Transport studies showed that the permeation rate from the B side to the A side was faster than from the A side to the B side for the substrates of each efflux transporter, but this directionality disappeared in the presence of inhibitor of each transporter. In conclusion, the cholangiocyte organoid monolayer system has the potential to quantitatively evaluate the biliary excretion of drugs. The results of the present study represent an unprecedented system using human cholangiocyte organoids, which may be useful as a screening model to directly quantify the contribution of biliary excretion to the clearance of drugs.


Assuntos
Eliminação Hepatobiliar , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Hepatócitos/metabolismo , RNA Mensageiro/metabolismo
8.
Antimicrob Agents Chemother ; 68(2): e0100123, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38231535

RESUMO

Endogenous transporters protect Staphylococcus aureus against antibiotics and also contribute to bacterial defense from environmental toxins. We evaluated the effect of overexpression of four efflux pumps, NorA, NorB, NorC, and Tet38, on S. aureus survival following exposure to pyocyanin (PYO) of Pseudomonas aeruginosa, using a well diffusion assay. We measured the PYO-created inhibition zone and found that only an overexpression of NorA reduced S. aureus susceptibility to pyocyanin killing. The MICPYO of the NorA overexpressor increased threefold compared to that of wild-type RN6390 and was reduced 2.5-fold with reserpine, suggesting that increased NorA efflux caused PYO resistance. The PYO-created inhibition zone of a ΔnorA mutant was consistently larger than that of a plasmid-borne NorA overexpressor. PYO also produced a modest increase in norA expression (1.8-fold at 0.25 µg/mL PYO) that gradually decreased with increasing PYO concentrations. Well diffusion assays carried out using P. aeruginosa showed that ΔnorA mutant was less susceptible to killing by PYO-deficient mutants PA14phzM and PA14phzS than to killing by PA14. NorA overexpression led to reduced killing by all tested P. aeruginosa. We evaluated the NorA-PYO interaction using a collection of 22 clinical isolates from adult and pediatric cystic fibrosis (CF) patients, which included both S. aureus (CF-SA) and P. aeruginosa (CF-PA). We found that when isolated alone, CF-PA and CF-SA expressed varying levels of PYO and norA transcripts, but all four CF-PA/CF-SA pairs isolated concurrently from CF patients produced a low level of PYO and low norA transcript levels, respectively, suggesting a partial adaptation of the two bacteria in circumstances of persistent co-colonization.


Assuntos
Infecções por Pseudomonas , Infecções Estafilocócicas , Humanos , Criança , Staphylococcus aureus , Pseudomonas aeruginosa/metabolismo , Piocianina/farmacologia , Proteínas de Bactérias/metabolismo , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Testes de Sensibilidade Microbiana
9.
Neurochem Res ; 49(1): 66-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37603214

RESUMO

The Multidrug Resistance Protein 1 (Mrp1) is an ATP-dependent efflux transporter and a major facilitator of drug resistance in mammalian cells during cancer and HIV therapy. In brain, Mrp1-mediated GSH export from astrocytes is the first step in the supply of GSH precursors to neurons. To reveal potential mechanisms underlying the drug-induced modulation of Mrp1-mediated transport processes, we investigated the effects of the antiviral drug ritonavir on cultured rat primary astrocytes. Ritonavir strongly stimulated the Mrp1-mediated export of glutathione (GSH) by decreasing the Km value from 200 nmol/mg to 28 nmol/mg. In contrast, ritonavir decreased the export of the other Mrp1 substrates glutathione disulfide (GSSG) and bimane-glutathione. To give explanation for these apparently contradictory observations, we performed in silico docking analysis and molecular dynamics simulations using a homology model of rat Mrp1 to predict the binding modes of ritonavir, GSH and GSSG to Mrp1. The results suggest that ritonavir binds to the hydrophilic part of the bipartite binding site of Mrp1 and thereby differently affects the binding and transport of the Mrp1 substrates. These new insights into the modulation of Mrp1-mediated export processes by ritonavir provide a new model to better understand GSH-dependent detoxification processes in brain cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Astrócitos , Ratos , Animais , Dissulfeto de Glutationa/metabolismo , Astrócitos/metabolismo , Ritonavir/farmacologia , Ritonavir/metabolismo , Antivirais/metabolismo , Antivirais/farmacologia , Células Cultivadas , Glutationa/metabolismo , Transporte Biológico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mamíferos/metabolismo
10.
Breast Cancer Res Treat ; 204(1): 133-149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38057687

RESUMO

PURPOSE: Breast cancer is one of the leading types of cancer diagnosed in women. Despite the improvements in chemotherapeutic cure strategies, drug resistance is still an obstacle leading to disease aggressiveness. The small non-coding RNA molecules, miRNAs, have been implicated recently to be involved as regulators of gene expression through the silencing of mRNA targets that contributed to several cellular processes related to cancer metastasis. Hence, the present study aimed to investigate the beneficial role and mechanism of miRNA-34a-based gene therapy as a novel approach for conquering drug resistance mediated by ATP-binding cassette (ABC) transporters in breast cancer cells, besides exploring the associated invasive behaviors. MATERIAL AND METHODS: Bioinformatics tools were used to predict miRNA ABC transporter targets by tracking the ABC transporter pathway. After the establishment of drug-resistant breast cancer MCF-7 and MDA-MB-231 sublines, cells were transfected with the mimic or inhibitor of miRNA-34a-5p. The quantitative expression of genes involved in drug resistance was performed by QRT-PCR, and the exact ABC transporter target specification interaction was confirmed by dual-luciferase reporter assay. Furthermore, flow cytometric analysis was utilized to determine the ability of miRNA-34a-treated cells against doxorubicin uptake and accumulation in cell cycle phases. The spreading capability was examined by colony formation, migration, and wound healing assays. The apoptotic activity was estimated as well. RESULTS: Our findings firstly discovered the mechanism of miRNA-34a-5p restoration as an anti-drug-resistant molecule that highly significantly attenuates the expression of ABCC1 via the direct targeting of its 3'- untranslated regions in resistant breast cancer cell lines, with a significant increase of doxorubicin influx by MDA-MB-231/Dox-resistant cells. Additionally, the current data validated a significant reduction of metastatic potentials upon miRNA-34a-5p upregulation in both types of breast cancer-resistant cells. CONCLUSION: The ectopic expression of miRNA-34a ameliorates the acquired drug resistance and the migration properties that may eventually lead to improved clinical strategies and outcomes for breast cancer patients. Additionally, miRNA-34a could be monitored as a diagnostic/prognostic biomarker for resistant conditions.


Assuntos
Neoplasias da Mama , MicroRNAs , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Progressão da Doença , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Células MCF-7 , MicroRNAs/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/uso terapêutico
11.
Chem Biol Drug Des ; 103(1): e14396, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38054583

RESUMO

Patients with advanced liver cancer may benefit from 5-fluorouracil (5-FU) therapy. However, most of them eventually faced drug resistance, resulting in a poor prognosis. The present study aims to explore the potential mechanism of let-7g/ABCC10 axis in the regulation of 5-FU resistance in liver cancer cells. Huh-7 cells were used to construct 5-FU resistant Huh-7/4X cells. CCK8, flow cytometry, and TUNEL staining were used to detect the characterization of Huh-7 cells and Huh-7/4X cells. Double luciferase report, PCR, and western blot analyses were used to detect the regulatory effects between let-7g and ABCC10. The levels of biomarkers related to cell cycle progression and apoptosis were detected by western blot assays. The role of let-7g in 5-FU sensitivity of liver cancer cells was evaluated in nude mice. Compared with LX-2 cells, the expression of let-7g was decreased in Hep3B, HepG2, Huh-7, and SK-Hep1 cells, with the lowest expression in Huh-7 cells. The sensitivity of Huh-7 cell to 5-FU was positively correlated with let-7g expression. Transfection of let-7g mimics inhibited the viability of Huh-7/4X cells by prolonging the G1 phase, with the downregulation of ABCC10, PCNA, Cyclin D1, and CDK4. Meanwhile, let-7g promoted apoptosis to increase 5-FU sensitivity of Huh-7/4X by downregulating ABCC10, Bcl-XL as well as upregulating Bax, C-caspase 3, and C-PARP. Dual-luciferase assay further confirmed that let-7g inhibited ABCC10 expression by binding to the ABCC10 3'-UTR region. Furthermore, let-7g increased the sensitivity of Huh-7/4X to 5-FU in vitro and in vivo, which can be reversed by ABCC10 overexpression. In conclusion, let-7g sensitized liver cancer cells to 5-FU by downregulating ABCC10 expression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Camundongos , Humanos , Fluoruracila/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/tratamento farmacológico , Apoptose , Luciferases , Linhagem Celular Tumoral , Proliferação de Células , Carcinoma Hepatocelular/tratamento farmacológico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
12.
Drug Resist Updat ; 72: 101017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37988981

RESUMO

The role of ABCC4, an ATP-binding cassette transporter, in the process of platelet formation, megakaryopoiesis, is unknown. Here, we show that ABCC4 is highly expressed in megakaryocytes (MKs). Mining of public genomic data (ATAC-seq and genome wide chromatin interactions, Hi-C) revealed that key megakaryopoiesis transcription factors (TFs) interacted with ABCC4 regulatory elements and likely accounted for high ABCC4 expression in MKs. Importantly these genomic interactions for ABCC4 ranked higher than for genes with known roles in megakaryopoiesis suggesting a role for ABCC4 in megakaryopoiesis. We then demonstrate that ABCC4 is required for optimal platelet formation as in vitro differentiation of fetal liver derived MKs from Abcc4-/- mice exhibited impaired proplatelet formation and polyploidization, features required for optimal megakaryopoiesis. Likewise, a human megakaryoblastic cell line, MEG-01 showed that acute ABCC4 inhibition markedly suppressed key processes in megakaryopoiesis and that these effects were related to reduced cAMP export and enhanced dissociation of a negative regulator of megakaryopoiesis, protein kinase A (PKA) from ABCC4. PKA activity concomitantly increased after ABCC4 inhibition which was coupled with significantly reduced GATA-1 expression, a TF needed for optimal megakaryopoiesis. Further, ABCC4 protected MKs from 6-mercaptopurine (6-MP) as Abcc4-/- mice show a profound reduction in MKs after 6-MP treatment. In total, our studies show that ABCC4 not only protects the MKs but is also required for maximal platelet production from MKs, suggesting modulation of ABCC4 function might be a potential therapeutic strategy to regulate platelet production.


Assuntos
Plaquetas , Megacariócitos , Animais , Humanos , Camundongos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Plaquetas/metabolismo , Diferenciação Celular , Megacariócitos/metabolismo , Mercaptopurina/farmacologia , Mercaptopurina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
13.
Biol Pharm Bull ; 46(12): 1737-1744, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044132

RESUMO

Ectopic calcification in the cardiovascular system adversely affects life prognosis. DBA/2 mice experience calcification owing to low expression of Abcc6 as observed in pseudoxanthoma elasticum (PXE) patients; however, little is known about its characteristics as a calcification model. In this study, we explore the suitability of a DBA/2 sub-strain as a PXE-like tissue calcification model, and the effect of a bisphosphonate which prevents calcification of soft tissues in hypercalcemic models was evaluated. The incidence of calcification of the heart was compared among several sub-strains and between both sexes of DBA/2 mice. mRNA expression of calcification-related genes was compared with DBA/2 sub-strains and other mouse strains. In addition, progression of calcification and calciprotein particle formation in serum were examined. Among several sub-strains of DBA/2 mice, male DBA/2CrSlc mice showed the most remarkable cardiac calcification. In DBA/2CrSlc mice, expression of the anti-calcifying genes Abcc6, Enpp1 and Spp1 was lower than that in C57BL/6J, and expression of Enpp1 and Spp1 was lower compared with other sub-strains. Calcification was accompanied by accelerated formation of calciprotein particle, which was prevented by daily treatment with bisphosphonate. A model suitable for ectopic calcification was identified by choosing a sub-strain of DBA/2 mice, in which genetic characteristics would contribute to extended calcification.


Assuntos
Calcinose , Pseudoxantoma Elástico , Humanos , Feminino , Masculino , Camundongos , Animais , Pseudoxantoma Elástico/genética , Pseudoxantoma Elástico/complicações , Pseudoxantoma Elástico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Calcinose/complicações , Calcinose/genética , Calcinose/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Difosfonatos
14.
Circ Res ; 133(11): 902-923, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37850368

RESUMO

BACKGROUND: 3', 5'-cyclic AMP (cAMP) regulates numerous cardiac functions. Various hormones and neurotransmitters elevate intracellular cAMP (i[cAMP]) in cardiomyocytes through activating GsPCRs (stimulatory-G-protein-coupled-receptors) and membrane-bound ACs (adenylyl cyclases). Increasing evidence has indicated that stimulating different GsPCRs and ACs exhibits distinct, even opposite effects, on cardiomyocyte viability. However, the underlying mechanisms are not fully understood. METHODS: We used molecular and pharmacological approaches to investigate how different GsPCR/cAMP signaling differentially regulate cardiomyocyte viability with in vitro, ex vivo, and in vivo models. RESULTS: For prodeath GsPCRs, we explored ß1AR (beta1-adrenergic receptor) and H2R (histamine-H2-receptor). We found that their prodeath effects were similarly dependent on AC5 activation, ATP release to the extracellular space via PANX1 (pannexin-1) channel, and extracellular ATP (e[ATP])-mediated signaling involving in P2X7R (P2X purinoceptor 7) and CaMKII (Ca2+/calmodulin-dependent protein kinase II). PANX1 phosphorylation at Serine 206 by cAMP-dependent-PKA (protein-kinase-A) promoted PANX1 activation, which was critical in ß1AR- or H2R-induced cardiomyocyte death in vitro and in vivo. ß1AR or H2R was localized proximately to PANX1, which permits ATP release. For prosurvival GsPCRs, we explored adenosine-A2-receptor (A2R), CGRPR (calcitonin-gene-related-peptide-receptor), and RXFP1 (relaxin-family peptide-receptor 1). Their prosurvival effects were dependent on AC6 activation, cAMP efflux via MRP4 (multidrug resistance protein 4), extracellular cAMP metabolism to adenosine (e[cAMP]-to-e[ADO]), and e[ADO]-mediated signaling. A2R, CGRPR, or RXFP1 was localized proximately to MRP4, which enables cAMP efflux. Interestingly, exogenously increasing e[cAMP] levels by membrane-impermeable cAMP protected against cardiomyocyte death in vitro and in ex vivo and in vivo mouse hearts with ischemia-reperfusion injuries. CONCLUSIONS: Our findings indicate that the functional diversity of different GsPCRs in cardiomyocyte viability could be achieved by their ability to form unique signaling complexes (signalosomes) that determine the fate of cAMP: either stimulate ATP release by activating PKA or directly efflux to be e[cAMP].


Assuntos
AMP Cíclico , Miócitos Cardíacos , Camundongos , Animais , AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Adenosina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/farmacologia , Peptídeos/metabolismo
15.
Structure ; 31(11): 1407-1418.e6, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37683641

RESUMO

Multidrug resistance-associated protein 4 (MRP4) is an ATP-binding cassette (ABC) transporter expressed at multiple tissue barriers where it actively extrudes a wide variety of drug compounds. Overexpression of MRP4 provides resistance to clinically used antineoplastic agents, making it a highly attractive therapeutic target for countering multidrug resistance. Here, we report cryo-EM structures of multiple physiologically relevant states of lipid bilayer-embedded human MRP4, including complexes between MRP4 and two widely used chemotherapeutic agents and a complex between MRP4 and its native substrate. The structures display clear similarities and distinct differences in the coordination of these chemically diverse substrates and, in combination with functional and mutational analysis, reveal molecular details of the transport mechanism. Our study provides key insights into the unusually broad substrate specificity of MRP4 and constitutes an important contribution toward a general understanding of multidrug transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Antineoplásicos , Humanos , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos , Proteínas de Membrana Transportadoras , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(32): e2219905120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527341

RESUMO

Plasmodium falciparum multidrug resistance protein 1 (PfMDR1), an adenosine triphosphate (ATP)-binding cassette (ABC) transporter on the digestive vacuole (DV) membrane of the parasite, is associated with the resistance to antimalarial drugs. To understand the mechanisms of PfMDR1, we determined the cryo-electron microscopy structures of this transporter in different states. The transporter in the apo state shows an inward-facing conformation with a large cavity opening to the cytoplasm. Upon ATP binding and dimerization of the nucleotide-binding domains (NBDs), PfMDR1 displays an outward-facing conformation with a cavity toward the DV lumen. Drug resistance-associated mutations were investigated in both structures for their effects, and Y184F was identified as an allosteric activity-enhancing mutation. The amphiphilic substrate-binding site of PfMDR1 was revealed by the complex structure with the antimalarial drug mefloquine and confirmed by mutagenesis studies. Remarkably, a helical structure was found to hinder NBD dimerization and inhibit PfMDR1 activity. The location of this regulatory domain in the N terminus is different from the well-studied R domain in the internal linker region of other ABC transporter family members. The lack of the phosphorylation site of this domain also suggests a different regulation mechanism.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Microscopia Crioeletrônica , Antimaláricos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Resistência a Medicamentos/genética , Malária Falciparum/parasitologia
17.
Drug Metab Dispos ; 51(8): 904-922, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438132

RESUMO

Over the past two decades, technological advances in membrane protein structural biology have provided insight into the molecular mechanisms that transporters use to move diverse substrates across the membrane. However, the plasticity of these proteins' ligand binding pockets, which allows them to bind a range of substrates, also poses a challenge for drug development. Here we highlight the structure, function, and transport mechanism of ATP-binding cassette/solute carrier transporters that are related to several diseases and multidrug resistance: ABCB1, ABCC1, ABCG2, SLC19A1, and SLC29A1. SIGNIFICANCE STATEMENT: ATP-binding cassette transporters and solute carriers play vital roles in clinical chemotherapeutic outcomes. This paper describes the current understanding of the structure of five pharmacologically relevant transporters and how they interact with their ligands.


Assuntos
Proteínas de Membrana Transportadoras , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Microscopia Crioeletrônica , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos
18.
Genes (Basel) ; 14(5)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37239445

RESUMO

Antipsychotic (AP)-induced adverse drug reactions (ADRs) are a current problem of biological and clinical psychiatry. Despite the development of new generations of APs, the problem of AP-induced ADRs has not been solved and continues to be actively studied. One of the important mechanisms for the development of AP-induced ADRs is a genetically-determined impairment of AP efflux across the blood-brain barrier (BBB). We present a narrative review of publications in databases (PubMed, Springer, Scopus, Web of Science E-Library) and online resources: The Human Protein Atlas; GeneCards: The Human Gene Database; US National Library of Medicine; SNPedia; OMIM Online Mendelian Inheritance in Man; The PharmGKB. The role of 15 transport proteins involved in the efflux of drugs and other xenobiotics across cell membranes (P-gp, TAP1, TAP2, MDR3, BSEP, MRP1, MRP2, MRP3, MRP4, MRP5, MRP6, MRP7, MRP8, MRP9, BCRP) was analyzed. The important role of three transporter proteins (P-gp, BCRP, MRP1) in the efflux of APs through the BBB was shown, as well as the association of the functional activity and expression of these transport proteins with low-functional and non-functional single nucleotide variants (SNVs)/polymorphisms of the ABCB1, ABCG2, ABCC1 genes, encoding these transport proteins, respectively, in patients with schizophrenia spectrum disorders (SSDs). The authors propose a new pharmacogenetic panel "Transporter protein (PT)-Antipsychotic (AP) Pharmacogenetic test (PGx)" (PTAP-PGx), which allows the evaluation of the cumulative contribution of the studied genetic biomarkers of the impairment of AP efflux through the BBB. The authors also propose a riskometer for PTAP-PGx and a decision-making algorithm for psychiatrists. Conclusions: Understanding the role of the transportation of impaired APs across the BBB and the use of genetic biomarkers for its disruption may make it possible to reduce the frequency and severity of AP-induced ADRs, since this risk can be partially modified by the personalized selection of APs and their dosing rates, taking into account the genetic predisposition of the patient with SSD.


Assuntos
Antipsicóticos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Estados Unidos , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Antipsicóticos/efeitos adversos , Barreira Hematoencefálica/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Biomarcadores/metabolismo
19.
Allergol Int ; 72(4): 564-572, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37147165

RESUMO

BACKGROUND: Chronic rhinosinusitis is a common disease of the nasal cavity and is classified into two major endotypes, which are neutrophilic and eosinophilic. Some patients with neutrophilic and eosinophilic chronic rhinosinusitis are refractory to treatment, and the mechanism of drug resistance is not completely understood. METHODS: Nasal polyp samples were collected from patients with non-eosinophilic chronic rhinosinusitis (nECRS) and eosinophilic chronic rhinosinusitis (ECRS). Transcriptomic and proteomic analyses were performed simultaneously. Gene Ontology (GO) analysis was conducted to extract genes involved in drug resistance. Then, GO analysis results were validated via real-time polymerase chain reaction and immunohistochemistry analysis. RESULTS: The nasal polyps of patients with ECRS were enriched with 110 factors in the genes and 112 in the proteins, unlike in those of patients with nECRS. GO analysis on the combined results of both showed that the factors involved in extracellular transportation were enriched. Our analysis focused on multidrug resistance protein 1-5 (MRP1-5). Real-time polymerase chain reaction revealed that the MRP4 expression was significantly upregulated in ECRS polyps. Immunohistochemical staining showed that the MRP3 and MRP4 expressions significantly increased in nECRS and ECRS, respectively. MRP3 and MRP4 expressions were positively correlated with the number of neutrophil and eosinophil infiltrates in polyps and associated with the tendency to relapse in patients with ECRS. CONCLUSIONS: MRP is associated with treatment resistance and is expressed in nasal polyps. The expression pattern had different features based on chronic rhinosinusitis endotype. Therefore, drug resistance factors can be associated with therapeutic outcomes.


Assuntos
Pólipos Nasais , Rinite , Humanos , Rinite/complicações , Pólipos Nasais/metabolismo , Proteômica , Eosinófilos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Doença Crônica
20.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108784

RESUMO

Chemoresistance is a major health concern affecting cancer patients. Resistance is multifactorial, with one mechanism being the increased expression of ABC transporters (such as MDR1 and MRP1), which are drug efflux transporters capable of preventing intracellular accumulation of drugs and cell death. Our lab showed that the loss of Adenomatous Polyposis Coli (APC) caused an intrinsic resistance to doxorubicin (DOX), potentially through an enhanced tumor-initiating cell (TIC) population and the increased activation of STAT3 mediating the expression of MDR1 in the absence of WNT being activated. Here, in primary mouse mammary tumor cells, the loss of APC decreased the accumulation of DOX while increasing the protein levels of MDR1 and MRP1. We demonstrated decreased APC mRNA and protein levels in breast cancer patients compared with normal tissue. Using patient samples and a panel of human breast cancer cell lines, we found no significant trend between APC and either MDR1 or MRP1. Since the protein expression patterns did not show a correlation between the ABC transporters and the expression of APC, we evaluated the drug transporter activity. In mouse mammary tumor cells, the pharmacological inhibition or genetic silencing of MDR1 or MRP1, respectively, decreased the TIC population and increased DOX-induced apoptosis, supporting the use of ABC transporter inhibitors as therapeutic targets in APC-deficient tumors.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Morte Celular , Linhagem Celular Tumoral , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA