Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Cell Signal ; 115: 111030, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38163577

RESUMO

Sine oculis homeobox homolog 1 (Six1) is a developmentally important transcription factor that regulates cellular proliferation, apoptosis, and dissemination during embryogenesis. Six1 overexpression as reported in multiple cancers modulates expression of a repertoire of its target genes causing an increase in proliferation, metastasis and survival of cancer cells. Six1 exists as a cell cycle regulated nuclear phosphoprotein and its cellular turnover is regulated by APC/C (Anaphase promoting complex / Cyclosome) complex mediated proteolysis. However, the kinases that regulate Six1 proteolysis have not been identified and the mechanistic details that cause its overproduction in various cancers are lacking. Here, we report that Six1 is a physiological GSK3ß substrate. GSK3ß interacts with Six1 and phosphorylates it at Ser221 within the conserved consensus sequence in its carboxy terminus. Using pharmacological inhibition, siRNA mediated knockdown and protein overexpression of GSK3ß; we show that GSK3ß regulates Six1 protein stability. Pulse chase analysis of Six1 revealed that GSK3ß regulates its ubiquitin proteolysis such that Six1 phosphomimicking mutant (Six1S221E) for Ser221 site had dramatically increased half-life than its phosphodeficient (Six1S221A) and wild type variants. Furthermore, we demonstrate that GSK3ß rescues Six1 from APC dependent proteolysis by regulating its binding with APC/C co-activator protein Cdh1. Importantly, strong positive correlation exists between GSK3ß and Six1 protein levels throughout the cell cycle and in multiple cancers indicating that GSK3ß activation may in part contribute to Six1 overproduction in a subset of human cancers.


Assuntos
Proteínas de Ciclo Celular , Fatores de Transcrição , Humanos , Glicogênio Sintase Quinase 3 beta , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas Cdh1/metabolismo
2.
Cancer Res ; 83(18): 3059-3076, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37326469

RESUMO

The therapeutic options for treating pancreatic ductal adenocarcinoma (PDAC) are limited, and resistance to gemcitabine, a cornerstone of PDAC chemotherapy regimens, remains a major challenge. N6-methyladenosine (m6A) is a prevalent modification in mRNA that has been linked to diverse biological processes in human diseases. Herein, by characterizing the global m6A profile in a panel of gemcitabine-sensitive and gemcitabine-insensitive PDAC cells, we identified a key role for elevated m6A modification of the master G0-G1 regulator FZR1 in regulating gemcitabine sensitivity. Targeting FZR1 m6A modification augmented the response to gemcitabine treatment in gemcitabine-resistant PDAC cells both in vitro and in vivo. Mechanistically, GEMIN5 was identified as a novel m6A mediator that specifically bound to m6A-modified FZR1 and recruited the eIF3 translation initiation complex to accelerate FZR1 translation. FZR1 upregulation maintained the G0-G1 quiescent state and suppressed gemcitabine sensitivity in PDAC cells. Clinical analysis further demonstrated that both high levels of FZR1 m6A modification and FZR1 protein corresponded to poor response to gemcitabine. These findings reveal the critical function of m6A modification in regulating gemcitabine sensitivity in PDAC and identify the FZR1-GEMIN5 axis as a potential target to enhance gemcitabine response. SIGNIFICANCE: Increased FZR1 translation induced by m6A modification engenders a gemcitabine-resistant phenotype by inducing a quiescent state and confers a targetable vulnerability to improve treatment response in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proteínas Cdh1 , Linhagem Celular Tumoral , Gencitabina/farmacologia , Gencitabina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , RNA Mensageiro/genética , Neoplasias Pancreáticas
3.
Biochim Biophys Acta Rev Cancer ; 1878(3): 188883, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972769

RESUMO

The intricate molecular interactions leading to the oncogenic pathway are the consequence of cell cycle modification controlled by a bunch of cell cycle regulatory proteins. The tumor suppressor and cell cycle regulatory proteins work in coordination to maintain a healthy cellular environment. The integrity of this cellular protein pool is perpetuated by heat shock proteins/chaperones, which assist in proper protein folding during normal and cellular stress conditions. Among these versatile groups of chaperone proteins, Hsp90 is one of the significant ATP-dependent chaperones that aid in stabilizing many tumor suppressors and cell cycle regulator protein targets. Recently, studies have revealed that in cancerous cell lines, Hsp90 stabilizes mutant p53, 'the guardian of the genome.' Hsp90 also has a significant impact on Fzr, an essential regulator of the cell cycle having an important role in the developmental process of various organisms, including Drosophila, yeast, Caenorhabditis elegans, and plants. During cell cycle progression, p53 and Fzr coordinately regulate the Anaphase Promoting Complex (APC/C) from metaphase to anaphase transition up to cell cycle exit. APC/C mediates proper centrosome function in the dividing cell. The centrosome acts as the microtubule organizing center for the correct segregation of the sister chromatids to ensure perfect cell division. This review examines the structure of Hsp90 and its co-chaperones, which work in synergy to stabilize proteins such as p53 and Fizzy-related homolog (Fzr) to synchronize the Anaphase Promoting Complex (APC/C). Dysfunction of this process activates the oncogenic pathway leading to the development of cancer. Additionally, an overview of current drugs targeting Hsp90 at various phases of clinical trials has been included.


Assuntos
Proteínas de Drosophila , Proteína Supressora de Tumor p53 , Animais , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular/genética , Drosophila/genética , Drosophila/metabolismo
4.
Life Sci Alliance ; 6(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36450448

RESUMO

Mitotic kinase Aurora A (AURKA) diverges from other kinases in its multiple active conformations that may explain its interphase roles and the limited efficacy of drugs targeting the kinase pocket. Regulation of AURKA activity by the cell is critically dependent on destruction mediated by the anaphase-promoting complex (APC/CFZR1) during mitotic exit and G1 phase and requires an atypical N-terminal degron in AURKA called the "A-box" in addition to a reported canonical D-box degron in the C-terminus. Here, we find that the reported C-terminal D-box of AURKA does not act as a degron and instead mediates essential structural features of the protein. In living cells, the N-terminal intrinsically disordered region of AURKA containing the A-box is sufficient to confer FZR1-dependent mitotic degradation. Both in silico and in cellulo assays predict the QRVL short linear interacting motif of the A-box to be a phospho-regulated D-box. We propose that degradation of full-length AURKA also depends on an intact C-terminal domain because of critical conformational parameters permissive for both activity and mitotic degradation of AURKA.


Assuntos
Aurora Quinase A , Bioensaio , Humanos , Aurora Quinase A/genética , Núcleo Celular , Proteínas Cdh1
5.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36548081

RESUMO

Ubiquitin-conjugating enzyme E2C (UBE2C) mediates ubiquitylation chain formation via the K11 linkage. While previous in vitro studies showed that UBE2C plays a growth-promoting role in cancer cell lines, the underlying mechanism remains elusive. Still unknown is whether and how UBE2C plays a promoting role in vivo. Here we report that UBE2C was indeed essential for growth and survival of lung cancer cells harboring Kras mutations, and UBE2C was required for KrasG12D-induced lung tumorigenesis, since Ube2c deletion significantly inhibited tumor formation and extended the lifespan of mice. Mechanistically, KrasG12D induced expression of UBE2C, which coupled with APC/CCDH1 E3 ligase to promote ubiquitylation and degradation of DEPTOR, leading to activation of mTORC signaling. Importantly, DEPTOR levels fluctuated during cell cycle progression in a manner dependent on UBE2C and CDH1, indicating their physiological connection. Finally, Deptor deletion fully rescued the tumor inhibitory effect of Ube2c deletion in the KrasG12D lung tumor model, indicating a causal role of Deptor. Taken together, our study shows that the UBE2C/CDH1/DEPTOR axis forms an oncogene and tumor suppressor cascade that regulates cell cycle progression and autophagy and validates UBE2C an attractive target for lung cancer associated with Kras mutations.


Assuntos
Neoplasias Pulmonares , Proteínas Supressoras de Tumor , Enzimas de Conjugação de Ubiquitina , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Oncogenes , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas Cdh1/metabolismo
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(11): 1279-1282, 2022 Nov 10.
Artigo em Chinês | MEDLINE | ID: mdl-36317219

RESUMO

OBJECTIVE: To assess the association of genomic instability of epithelial cadherin 1 (CDH1) gene and clinicopathological characteristics of gastric cancer. METHODS: In total 120 paraffin-embedded gastric cancer tissue specimen were prepared, and genomic DNA was extracted. The genomic instability of the CDH1 gene was analyzed by immunohistochemistry and silver staining PCR-single-strand conformation polymorphism. RESULTS: The number of information individuals (heterozygotes) was 98 for the D16S752 locus. The detection rates for microsatellite instability (MSI) and loss of heterozygosity (LOH) at the D16S752 locus and the positive rate of CDH1 protein were 19.39%, 16.33% and 51.02%, respectively. The detection rate of MSI in TNM stages I or II was significantly higher than that in stages III or IV (P<0.05) while the detection rate of LOH was significantly lower than that in stages III or IV (P<0.05). The positive rate of CDH1 protein in TNM stages III or IV was significantly lower than that in stages I or II (P<0.05). The detection rate of MSI of cases with lymph node metastasis was significantly lower than that of without lymph node metastasis (P<0.05) while the detection rate of LOH was significantly higher than that without lymph node metastasis (P<0.05). The positive rate of CDH1 protein in patients with lymph node metastasis was significantly lower than that in patients without lymph node metastasis (P<0.05). The positive rate of CDH1 protein in MSI-positive group was significantly higher than that in MSI-negative group (P<0.05), and the positive rate of CDH1 protein in the LOH-positive group was significantly lower than that the LOH-negative group (P<0.05). CONCLUSION: The genomic instability of the CDH1 gene is associated with the progression of gastric cancer. MSI at the D16S752 locus may be used as a molecular marker for early gastric cancer, while LOH at this locus mostly occurs in advanced gastric cancer and can be regarded as an effective indicators for malignancy evaluation and prognosis.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Metástase Linfática , Proteínas Cdh1/genética , Instabilidade de Microssatélites , Perda de Heterozigosidade , Instabilidade Genômica , Repetições de Microssatélites , Antígenos CD/genética , Caderinas/genética
7.
Sci Rep ; 12(1): 10489, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729193

RESUMO

The APC/C-Cdh1 ubiquitin ligase complex drives proteosomal degradation of cell cycle regulators and other cellular proteins during the G1 phase of the cycle. The complex serves as an important modulator of the G1/S transition and prevents premature entry into S phase, genomic instability, and tumor development. Additionally, mounting evidence supports a role for this complex in cell differentiation, but its relevance in erythropoiesis has not been addressed so far. Here we show, using mouse models of Cdh1 deletion, that APC/C-Cdh1 activity is required for efficient terminal erythroid differentiation during fetal development as well as postnatally. Consistently, Cdh1 ablation leads to mild but persistent anemia from birth to adulthood. Interestingly, loss of Cdh1 seems to affect both, steady-state and stress erythropoiesis. Detailed analysis of Cdh1-deficient erythroid populations revealed accumulation of DNA damage in maturing erythroblasts and signs of delayed G2/M transition. Moreover, through direct assessment of replication dynamics in fetal liver cells, we uncovered slow fork movement and increased origin usage in the absence of Cdh1, strongly suggesting replicative stress to be the underlying cause of DNA lesions and cell cycle delays in erythroblasts devoid of Cdh1. In turn, these alterations would restrain full maturation of erythroblasts into reticulocytes and reduce the output of functional erythrocytes, leading to anemia. Our results further highlight the relevance of APC/C-Cdh1 activity for terminal differentiation and underscore the need for precise control of replication dynamics for efficient supply of red blood cells.


Assuntos
Proteínas de Ciclo Celular , Eritroblastos , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Proteínas Cdh1/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Eritroblastos/citologia , Eritroblastos/metabolismo , Fase G1 , Camundongos
8.
Leukemia ; 36(3): 834-846, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34635784

RESUMO

FZR1 has been implicated as a master regulator of the cell cycle and quiescence, but its roles and molecular mechanisms in the pathogenesis of severe aplastic anemia (SAA) are unclear. Here, we report that FZR1 is downregulated in SAA HSCs compared with healthy control and is associated with decreased quiescence of HSC. Haploinsufficiency of Fzr1 shows impaired quiescence and self-renewal ability of HSC in two Fzr1 heterozygous knockout mouse models. Mechanistically, FZR1 insufficiency inhibits the ubiquitination of RUNX1 protein at lysine 125, leading to the accumulation of RUNX1 protein, which disturbs the quiescence of HSCs in SAA patients. Moreover, downregulation of Runx1 reversed the loss of quiescence and impaired long-term self-renew ability in Fzr1+/- HSCs in vivo and impaired repopulation capacity in BM from SAA patients in vitro. Our findings, therefore, raise the possibility of a decisive role of the FZR1-RUNX1 pathway in the pathogenesis of SAA via deregulation of HSC quiescence.


Assuntos
Anemia Aplástica/metabolismo , Proteínas Cdh1/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Adulto , Idoso , Anemia Aplástica/genética , Animais , Proteínas Cdh1/genética , Células Cultivadas , Senescência Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação para Baixo , Feminino , Haploinsuficiência , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteólise , Ubiquitina/metabolismo , Ubiquitinação , Adulto Jovem
9.
Electron. j. biotechnol ; 53: 54-60, Sep.2021. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1451272

RESUMO

BACKGROUND Cancer is a life-threatening disease that affects approximately 18 million individuals worldwide. Breast cancer is the most common female neoplasm globally with more than 276,480 new cases of invasive breast cancer expected to be diagnosed in women in the U.S. alone in 2020. Genetic and epigenetic factors play role in the carcinogenesis and progression of this disease. In this study, MCF-7 adenocarcinoma cells were transfected with CRISPR/Cas9 plasmid to either knock out CDK11 or to activate CDH1. Treated cells were allografted into the mammary glands of female rats (150­190 g, 6­8 weeks) to evaluate the capability of these cells to control cancer progression and metastasis. RESULTS qPCR data revealed a significant downregulation of CDK11 and upregulation of CDH1. Cell cycle analysis and apoptosis assays indicated the knockout of CDK11 and simultaneous activation of CDH1 resulted in cell cycle arrest at G2/M phase and accumulation of cells at G2. Meanwhile, the percentage of cells that underwent late apoptosis increased in both genome editing hits. Histopathological sectioning data indicated that untransfected MCF-7 cells were capable of developing tumors in the mammary gland and initiation g angiogenesis. Transfected cells significantly restricted cancer cell infiltration/invasion by minimally localizing tumors and inhibiting angiogenesis. CONCLUSIONS Although further investigation is needed, the present data indicate the potentiality of using CRISPR/Cas9-based therapy as a promising approach to treat breast cancer. Impact: these data indicate targeting cancer-related genes via any genome editing tool might represent a novel approach to combat cancer.


Assuntos
Animais , Feminino , Ratos , Neoplasias da Mama/genética , Adenocarcinoma/genética , Proteínas Cdh1/genética , Proteína 9 Associada à CRISPR/genética , Neoplasias da Mama/secundário , Ratos Sprague-Dawley
10.
Kaohsiung J Med Sci ; 37(11): 991-999, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34370374

RESUMO

The aim of the study was to investigate the role of NSUN2 (NOP2/Sun RNA Methyltransferase Family Member 2) in hepatocellular carcinoma (HCC). The expressions of NSUN2 and FZR1 were measured. Cell viability, proliferation, and apoptosis were assessed. HCC xenograft in nude mouse model was established. Tumor weight and volume were examined. Tumor tissues were collected for immunohistochemistry (IHC). TCGA database analysis and clinical sample testing suggested that the transcript levels of NSUN2 and FZR1 were increased in HCC tissues. NSUN2 knockdown inhibited HCC cell viability and proliferation, and promoted cell apoptosis. Moreover, the effects of NSUN2 could be countered by overexpressing FZR1. In animal experiment, NSUN2 silencing suppressed tumor growth in nude mice by downregulating FZR1. In conclusion, NSUN2 has a regulatory effect on HCC cell proliferation and apoptosis. NSUN2 knockout could inhibit cellular processes in HCC and tumor growth, likely via FZR1 inhibition. This finding has not only revealed the role of NSUN2 in HCC growth, but also suggests a promising target for HCC treatment.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas Cdh1/genética , Neoplasias Hepáticas/genética , Metiltransferases/genética , Animais , Apoptose/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas Cdh1/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell Signal ; 86: 110087, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34271087

RESUMO

NADPH is a cofactor used by reactive oxygen species (ROS) scavenging enzymes to block ROS produced in cells. Recently, it was shown that in cancer cells, ROS progressively increases in tune to cell cycle leading to a peak in mitosis. Loss of IDH2 is known to cause severe oxidative stress in cell and mouse models as ROS increases in mitochondria. Therefore, we hypothesized that IDH2, a major NADPH-producing enzyme in mitochondria is ubiquitinated for ROS to increase in mitosis. To test this hypothesis, in cancer cells we examined IDH2 ubiquitination in mitosis and measured the ROS produced. We found that IDH2 is ubiquitinated in mitosis and on inhibiting anaphase-promoting complex/Cyclosome (APC/C) IDH2 was stabilized. Further, we observed that overexpressing APC/C coactivator CDH1 decreased IDH2, whereas depleting CDH1 decreased IDH2 ubiquitination. To understand the link between IDH2 ubiquitination and ROS produced in mitosis, we show that overexpressing mitochondria-targeted-IDH1 decreased ROS by increasing NADPH in IDH2 ubiquitinated cells. We conclude that APC/C CDH1 ubiquitinates IDH2, a major NADPH-producing enzyme in mitochondria contributing to ROS increase in mitosis. Based on our results, we suggest that mitosis can be a therapeutic window in mutant IDH2-linked pathologies.


Assuntos
Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular , Mitose , Ciclossomo-Complexo Promotor de Anáfase , Animais , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Camundongos , Espécies Reativas de Oxigênio
12.
Exp Cell Res ; 404(2): 112632, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33971196

RESUMO

Retinoblastoma protein (pRB) regulates cell cycle by utilizing different regions of its pocket domain for interacting with E2F family of transcription factors and with cellular and viral proteins containing an LxCxE motif. An LxCxE-like motif, LxCxD, is present in FZR1, an adaptor protein of the multi-subunit E3 ligase complex anaphase-promoting complex/cyclosome (APC/C). The APC/CFZR1 complex regulates the timely degradation of multiple cell cycle proteins for mitotic exit and maintains G1 state. We report that FZR1 interacts with pRB via its LxCxD motif. By using point mutations, we found that the cysteine residue in the FZR1 LxCxD motif is critical for direct interaction with pRb. The direct binding of the LxCxD motif of FZR1 to the pRB LxCxE binding pocket is confirmed by using human papillomavirus protein E7 as a competitor, both in vitro and in vivo. While mutation of the cysteine residue significantly disrupts FZR1 interaction with pRB, this motif does not affect FZR1 and core APC/C association. Expression of the FZR1 point mutant results in accumulation of S-phase kinase-associated protein 2 (SKP2) and Polo-like kinase 1 (PLK1), while p27Kip1 and p21Cip1 proteins are downregulated, indicating a G1 cell cycle defect. Consistently, cells containing point mutant FZR1 enter the S phase prematurely. Together our results suggest that the LxCxD motif of FZR1 is a critical determinant for the interaction between FZR1 and pRB and is important for G1 restriction.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdh1/metabolismo , Ciclo Celular/fisiologia , Proteína do Retinoblastoma/metabolismo , Sequência de Aminoácidos/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/genética , Proteínas de Ciclo Celular/genética , Divisão Celular/fisiologia , Humanos , Proteína do Retinoblastoma/genética , Fatores de Transcrição/metabolismo
13.
Biochim Biophys Acta Mol Cell Res ; 1868(3): 118929, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33310066

RESUMO

Error-free progression through mitosis is critical for proper cell division and accurate distribution of the genetic material. The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase regulates the progression from metaphase to anaphase and its activation is controlled by the cofactors Cdc20 and Cdh1. Additionally, genome stability is maintained by the spindle assembly checkpoint (SAC), which monitors proper attachment of chromosomes to spindle microtubules prior to cell division. We had shown a role for Tank Binding Kinase 1 (TBK1) in microtubule dynamics and mitosis and here we describe a novel role of TBK1 in regulating SAC in breast and lung cancer cells. TBK1 interacts with and phosphorylates Cdc20 and Cdh1 and depletion of TBK1 elevates SAC components. TBK1 inhibition increases the association of Cdc20 with APC/C and BubR1 indicating inactivation of APC/C; similarly, interaction of Cdh1 with APC/C is also enhanced. TBK1 and TTK inhibition reduces cell viability and enhances centrosome amplification and micronucleation. These results indicate that alterations in TBK1 will impede mitotic progression and combining TBK1 inhibitors with other regulators of mitosis might be effective in eliminating cancer cells.


Assuntos
Antígenos CD/metabolismo , Neoplasias da Mama/metabolismo , Proteínas Cdc20/metabolismo , Proteínas Cdh1/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células A549 , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Pontos de Checagem da Fase M do Ciclo Celular , Mitose , Fosforilação , Proteínas Serina-Treonina Quinases/genética
14.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218190

RESUMO

Fumarylacetoacetate hydrolase (FAH) is the last enzyme in the degradation pathway of the amino acids tyrosine and phenylalanine in mammals that catalyzes the hydrolysis of 4-fumarylacetoacetate into acetoacetate and fumarate. Mutations of the FAH gene are associated with hereditary tyrosinemia type I (HT1), resulting in reduced protein stability, misfolding, accelerated degradation and deficiency in functional proteins. Identifying E3 ligases, which are necessary for FAH protein stability and degradation, is essential. In this study, we demonstrated that the FAH protein level is elevated in liver cancer tissues compared to that in normal tissues. Further, we showed that the FAH protein undergoes 26S proteasomal degradation and its protein turnover is regulated by the anaphase-promoting complex/cyclosome-Cdh1 (APC/C)Cdh1 E3 ubiquitin ligase complex. APC/CCdh1 acts as a negative stabilizer of FAH protein by promoting FAH polyubiquitination and decreases the half-life of FAH protein. Thus, we envision that Cdh1 might be a key factor in the maintenance of FAH protein level to regulate FAH-mediated physiological functions.


Assuntos
Antígenos CD/genética , Proteínas Cdh1/genética , Hidrolases/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antígenos CD/metabolismo , Proteínas Cdh1/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Hidrolases/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
15.
Cell Death Dis ; 11(9): 804, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978372

RESUMO

The concept of breast-conserving surgery is a remarkable achievement of breast cancer therapy. Neoadjuvant chemotherapy is being used increasingly to shrink the tumor prior to surgery. Neoadjuvant chemotherapy is reducing the tumor size to make the surgery with less damaging to surrounding tissue and downstage locally inoperable disease to operable. However, non-effective neoadjuvant chemotherapy could increase the risks of delaying surgery, develop unresectable disease and metastatic tumor spread. The biomarkers for predicting the neoadjuvant chemotherapy effect are scarce in breast cancer treatment. In this study, we identified that FZR1 can be a novel biomarker for breast cancer neoadjuvant chemotherapy according to clinical patient cohort evaluation and molecular mechanism investigation. Transcriptomic data analysis indicated that the expression of FZR1 is correlated with the effect of neoadjuvant chemotherapy. Mechanistically, we demonstrate that FZR1 is pivotal to the chemotherapy drugs induced apoptosis and cell cycle arrest. FZR1 is involved in the stability of p53 by impairing the phosphorylation at ser15 site. We demonstrate that the expression of FZR1 detected by quantification of IHC can be an effective predictor of neoadjuvant chemotherapy in animal experiment and clinical patient cohort. To obtain more benefit for breast cancer patient, we propose that the FZR1 IHC score using at the clinical to predict the effect of neoadjuvant chemotherapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Proteínas Cdh1/metabolismo , Terapia Neoadjuvante/métodos , Adulto , Idoso , Animais , Proteínas Cdh1/genética , Feminino , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Transfecção
16.
Ann Pathol ; 40(2): 78-84, 2020 Apr.
Artigo em Francês | MEDLINE | ID: mdl-32241645

RESUMO

Breast cancers occurring in the context of a hereditary mutation of a predisposition gene represent 5 to 10% of all breast cancers, 20 to 25% of which being due to a mutation in the BRCA1 or BRCA2 genes. Authorization to market PARP inhibitors for breast cancer patients with hereditary BRCA1 and 2 mutations has recently been obtained. Given the annual frequency of breast cancer, morphological identification could facilitate the patient care process to limit the search for BRCA1 and 2 mutations to patients whose tumors have very specific characteristics. However, only a few morphological features have been recognized and differ depending on the mutated genes. Breast cancer occurring as part of a mutation in the BRCA1 gene is in 85% of cases of high-grade non-specific type invasive carcinomas with very limited contours, contain numerous lymphocytes in the stroma and are of triple-negative phenotype. Carcinomas associated with mutations in the BRCA2 genes and genes more recently recognized as associated with a risk of development of breast cancer (CHECK2, BMPR1A, BRIP1, PALB2, MUTYH) are most often non-specific invasive carcinomas, although other histological types are possible, grade III, luminal B phenotype. Breast cancer occurring in the context of a constitutional mutation of TP53 occurs in women under 35 years old are of non-specific histological type and with an amplification of HER2 in two thirds of the cases. Those associated with a PTEN mutation are readily of the apocrine type. Finally, very rarely, certain lobular-type breast cancers can occur in the context of a constitutional mutation of the CDH1 gene, which codes for the protein E-cadherin. The morphological and phenotypic characteristics may suggest to the pathologist a carcinoma of the breast occurring in a context of hereditary mutation. However, at the present time the only situations where a morphological sorting makes it possible to accelerate the genetic analysis are those of an invasive carcinoma of non-specific type of triple-negative phenotype in a woman of less than 50 years or that of a diagnosis of HER2 breast cancer amplified in a woman under 31 years of age (Chompret criteria). Family background and personal history are of great importance in the genetic counseling indication decision trees. Unfortunately, to date, no quality antibody has been developed against BRCA1 and 2 to help the pathologist identify hereditary cases. The immunohistochemical analysis of RAD51 could facilitate the identification of tumors possibly sensitive to PARP inhibitors. Progress to identify hereditary cancers is expected thanks to the development of artificial intelligence algorithms from digitized histological slides.


Assuntos
Neoplasias da Mama , Predisposição Genética para Doença , Síndromes Neoplásicas Hereditárias , Proteínas Oncogênicas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Fatores Etários , Inteligência Artificial , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Lobular/tratamento farmacológico , Carcinoma Lobular/genética , Carcinoma Lobular/patologia , Proteínas Cdh1/genética , Feminino , Genes BRCA1 , Genes BRCA2 , Genes erbB-2 , Genes p53 , Aconselhamento Genético , Testes Genéticos , Técnicas Histológicas , Humanos , Mutação , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
17.
Semin Cancer Biol ; 67(Pt 2): 80-91, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165320

RESUMO

The anaphase promoting complex/ cyclosome (APC/C), is an evolutionarily conserved protein complex essential for cellular division due to its role in regulating the mitotic transition from metaphase to anaphase. In this review, we highlight recent work that has shed light on our understanding of the role of APC/C coactivators, Cdh1 and Cdc20, in cancer initiation and development. We summarize the current state of knowledge regarding APC/C structure and function, as well as the distinct ways Cdh1 and Cdc20 are dysregulated in human cancer. We also discuss APC/C inhibitors, novel approaches for targeting the APC/C as a cancer therapy, and areas for future work.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antígenos CD/metabolismo , Antineoplásicos/farmacologia , Proteínas Cdc20/metabolismo , Proteínas Cdh1/metabolismo , Neoplasias/patologia , Ciclossomo-Complexo Promotor de Anáfase/antagonistas & inibidores , Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/genética , Antígenos CD/genética , Carbamatos/farmacologia , Proteínas Cdc20/genética , Proteínas Cdh1/genética , Diaminas/farmacologia , Instabilidade Genômica , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias/genética
18.
J Cell Physiol ; 235(3): 2521-2531, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31489637

RESUMO

Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a member of the immunoglobulin superfamily and is expressed by hematopoietic and endothelial cells (ECs). Recent studies have shown that PECAM-1 plays a crucial role in promoting the development of the EC inflammatory response in the context of disturbed flow. However, the mechanistic pathways that control PECAM-1 protein stability remain largely unclear. Here, we identified PECAM-1 as a novel substrate of the APC/Cdh1 E3 ubiquitin ligase. Specifically, lentivirus-mediated Cdh1 depletion stabilized PECAM-1 in ECs. Conversely, overexpression of Cdh1 destabilized PECAM-1. The proteasome inhibitor MG132 blocked Cdh1-mediated PECAM-1 degradation. In addition, Cdh1 promoted K48-linked polyubiquitination of PECAM-1 in a destruction box-dependent manner. Furthermore, we demonstrated that compared with pulsatile shear stress (PS), oscillatory shear stress decreased the expression of Cdh1 and the ubiquitination of PECAM-1, therefore stabilizing PECAM-1 to promote inflammation in ECs. Hence, our study revealed a novel mechanism by which fluid flow patterns regulate EC homeostasis via Cdh1-dependent ubiquitination and subsequent degradation of PECAM-1.


Assuntos
Antígenos CD/genética , Proteínas Cdh1/genética , Inflamação/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Ubiquitina-Proteína Ligases/genética , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclo Celular/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células HeLa , Humanos , Fosforilação/genética , Proteólise , Ubiquitinação/genética
19.
Exp Cell Res ; 386(2): 111720, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31738907

RESUMO

CHK1 and WEE1 play pivotal roles in G2/M checkpoint following exogenous DNA damage and regulation of DNA replication under normal cellular conditions. Here, we monitored and compared the cell cycle kinetics of mitosis-associated events after CHK1 and WEE1 inhibitor treatments in a human tongue cancer cell line (SAS). A fluorescent ubiquitination-based cell cycle indicator (Fucci) that reflects SCFSKP2 and APCCDH1 E3 ligase activities was used to monitor cell cycle progression. Numerous γH2AX-positive cells were observed within the S phase population of cells following CHK1 inhibitor treatment, and polyploid cells exhibiting DNA damage emerged via abortive mitosis (endomitosis) at 24 h post treatment. While WEE1 inhibitor-treated cells exhibited similar polyploidy via endomitosis at later time points, they possessed fewer γH2AX foci during S phase, and polyploid cells exhibiting DNA damage were scarce. Instead, mitosis duration greatly extended and was accompanied by an abnormal emission of Fucci red fluorescence. Kinetic analysis of Fucci fluorescence revealed that abnormal emission occurred at early M phase in a manner independent of green fluorescence degradation as a marker of APCCDH1 activation. When an inhibitor of the essential spindle checkpoint factor MPS1 was co-treated with a WEE1 inhibitor, the elongated mitosis duration and abnormal red fluorescence were abrogated, and WEE1-induced reduction of clonogenic survival was offset. We demonstrate novel differential effects on mitosis-associated events following CHK1 and WEE1 inhibitor treatments.


Assuntos
Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem/genética , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/genética , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Citometria de Fluxo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Genes Reporter , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Mitose/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Fase S/efeitos dos fármacos , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais , Imagem com Lapso de Tempo
20.
Nat Commun ; 10(1): 5807, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862931

RESUMO

Transient interactions between the anaphase-promoting complex/cyclosome (APC/C) and its activator subunit Cdc20 or Cdh1 generate oscillations in ubiquitylation activity necessary to maintain the order of cell cycle events. Activator binds the APC/C with high affinity and exhibits negligible dissociation kinetics in vitro, and it is not clear how the rapid turnover of APC/C-activator complexes is achieved in vivo. Here, we describe a mechanism that controls APC/C-activator interactions based on the availability of substrates. We find that APC/C-activator dissociation is stimulated by abundant cellular polyanions such as nucleic acids and polyphosphate. Polyanions also interfere with substrate ubiquitylation. However, engagement with high-affinity substrate blocks the inhibitory effects of polyanions on activator binding and APC/C activity. We propose that this mechanism amplifies the effects of substrate affinity on APC/C function, stimulating processive ubiquitylation of high-affinity substrates and suppressing ubiquitylation of low-affinity substrates.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/imunologia , Proteínas Cdc20/metabolismo , Proteínas Cdh1/metabolismo , Proteínas Fúngicas/metabolismo , Polímeros/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/isolamento & purificação , Proteínas Cdc20/isolamento & purificação , Proteínas Cdh1/isolamento & purificação , Ciclo Celular , Proteínas Fúngicas/isolamento & purificação , Ácidos Nucleicos/metabolismo , Polieletrólitos , Polifosfatos/metabolismo , Saccharomycetales/metabolismo , Especificidade por Substrato , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA