Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
J Neurol Sci ; 460: 123020, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642488

RESUMO

INTRODUCTION: Brain calcifications are frequent findings on imaging. In a small proportion of cases, these calcifications are associated with pathogenic gene variants, hence termed primary familial brain calcification (PFBC). The clinical penetrance is incomplete and phenotypic variability is substantial. This paper aims to characterize a Swedish PFBC cohort including 25 patients: 20 from seven families and five sporadic cases. METHODS: Longitudinal clinical assessment and CT imaging were conducted, abnormalities were assessed using the total calcification score (TCS). Genetic analyses, including a panel of six known PFBC genes, were performed in all index and sporadic cases. Additionally, three patients carrying a novel pathogenic copy number variant in SLC20A2 had their cerebrospinal fluid phosphate (CSF-Pi) levels measured. RESULTS: Among the 25 patients, the majority (76%) displayed varying symptoms during the initial assessment including motor (60%), psychiatric (40%), and/or cognitive abnormalities (24%). Clinical progression was observed in most patients (78.6%), but there was no significant difference in calcification between the first and second scans, with mean scores of 27.3 and 32.8, respectively. In three families and two sporadic cases, pathogenic genetic variants were identified, including a novel finding, in the SLC20A2 gene. In the three tested patients, the CSF-Pi levels were normal. CONCLUSIONS: This report demonstrates the variable expressivity seen in PFBC and includes a novel pathogenic variant in the SLC20A2 gene. In four families and three sporadic cases, no pathogenic variants were found, suggesting that new PFBC genes remain to be discovered.


Assuntos
Calcinose , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III , Humanos , Masculino , Feminino , Calcinose/genética , Calcinose/diagnóstico por imagem , Suécia/epidemiologia , Pessoa de Meia-Idade , Estudos de Coortes , Adulto , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Idoso , Encefalopatias/genética , Encefalopatias/diagnóstico por imagem , Encefalopatias/líquido cefalorraquidiano , Tomografia Computadorizada por Raios X , Estudos Longitudinais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
2.
Nat Commun ; 15(1): 2269, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480682

RESUMO

Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning.


Assuntos
Encefalopatias , Humanos , Acetilação , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encefalopatias/genética , Padrões de Herança , Mutação , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
3.
Aging (Albany NY) ; 16(5): 4423-4444, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412319

RESUMO

BACKGROUND: SLC20A1, a prominent biomarker in several cancers, has been understudied in its predictive role in head and neck squamous cell carcinoma (HNSCC). METHODS: The Cancer Genome Atlas (TCGA) database was used to analyze HNSCC prognosis, SLC20A1 overexpression, and clinical characteristics. Quantitative real-time PCR and Western blot analysis confirmed SLC20A1 expression in HNSCC tissues. Cellular behaviors such as invasion, migration and proliferation were assessed using Transwell, wound healing and colony formation assays. Immune system data were obtained from the Tumor Immune Estimation Resource (TIMER) and CIBERSORT databases. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore biological parameters and pathways associated with SLC20A1 overexpression in HNSCC. RESULTS: In 499 HNSCC samples, SLC20A1 mRNA and protein expression were significantly higher than in 44 normal counterparts, confirmed by 24 paired samples. Patients were categorized based on SLC20A1 levels, survival status and overall survival. High SLC20A1 expression correlated with advanced T stage, increased risk scores and decreased survival. Stage, age and SLC20A1 expression emerged as independent predictive factors for HNSCC in univariate and multivariate analyses. SLC20A1 overexpression, which is associated with poor prognosis, may influence cell proliferation, migration, invasion, chemotherapy response, and the immune milieu. CONCLUSIONS: SLC20A1 overexpression in HNSCC, characterized by increased cellular invasion, migration and proliferation, is a potential prognostic biomarker and therapeutic response indicator.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Prognóstico , Neoplasias de Cabeça e Pescoço/genética , Estudos Prospectivos , Biomarcadores Tumorais/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III
4.
J Int Med Res ; 52(1): 3000605231222156, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180904

RESUMO

OBJECTIVE: This study aimed to examine the mechanism of hyperphosphatemia-induced vascular calcification (HPVC). METHODS: Primary human aortic smooth muscle cells and rat aortic rings were cultured in Dulbecco's modified Eagle's medium supplemented with 0.9 mM or 2.5 mM phosphorus concentrations. Type III sodium-dependent phosphate cotransporter-1 (Pit-1) small interfering RNA and phosphonoformic acid (PFA), a Pit-1 inhibitor, were used to investigate the effects and mechanisms of Pit-1 on HPVC. Calcium content shown by Alizarin red staining, expression levels of Pit-1, and characteristic molecules for phenotypic transition of vascular smooth muscle cells were examined. RESULTS: Hyperphosphatemia induced the upregulation of Pit-1 expression, facilitated phenotypic transition of vascular smooth muscle cells, and led to HPVC in cellular and organ models. Treatment with Pit-1 small interfering RNA or PFA significantly inhibited Pit-1 expression, suppressed phenotypic transition, and attenuated HPVC. CONCLUSIONS: Our findings suggest that Pit-1 plays a pivotal role in the development of HPVC. The use of PFA as a Pit-1 inhibitor has the potential for therapeutic intervention in patients with HPVC. However, further rigorous clinical investigations are required to ensure the safety and efficacy of PFA before it can be considered for widespread implementation in clinical practice.


Assuntos
Hiperfosfatemia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III , Calcificação Vascular , Animais , Humanos , Ratos , Aorta , Foscarnet , Hiperfosfatemia/complicações , RNA Interferente Pequeno/genética , Fatores de Transcrição , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/etiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/efeitos dos fármacos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
5.
Handb Exp Pharmacol ; 283: 285-317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36592227

RESUMO

Inorganic phosphate (Pi) is an essential component of many biologically important molecules such as DNA, RNA, ATP, phospholipids, or apatite. It is required for intracellular phosphorylation signaling events and acts as pH buffer in intra- and extracellular compartments. Intestinal absorption, uptake into cells, and renal reabsorption depend on a set of different phosphate transporters from the SLC20 (PiT transporters) and SLC34 (NaPi transporters) gene families. The physiological relevance of these transporters is evident from rare monogenic disorders in humans affecting SLC20A2 (Fahr's disease, basal ganglia calcification), SLC34A1 (idiopathic infantile hypercalcemia), SLC34A2 (pulmonary alveolar microlithiasis), and SLC34A3 (hereditary hypophosphatemic rickets with hypercalciuria). SLC34 transporters are inhibited by millimolar concentrations of phosphonoformic acid or arsenate while SLC20 are relatively resistant to these compounds. More recently, a series of more specific and potent drugs have been developed to target SLC34A2 to reduce intestinal Pi absorption and to inhibit SLC34A1 and/or SLC34A3 to increase renal Pi excretion in patients with renal disease and incipient hyperphosphatemia. Also, SLC20 inhibitors have been developed with the same intention. Some of these substances are currently undergoing preclinical and clinical testing. Tenapanor, a non-absorbable Na+/H+-exchanger isoform 3 inhibitor, reduces intestinal Pi absorption likely by indirectly acting on the paracellular pathway for Pi and has been tested in several phase III trials for reducing Pi overload in patients with renal insufficiency and dialysis.


Assuntos
Doenças dos Gânglios da Base , Calcinose , Pneumopatias , Animais , Humanos , Fosfatos/metabolismo , Transporte Biológico , Mamíferos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
6.
Sci Rep ; 13(1): 17429, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833387

RESUMO

Next to the skin, the peritoneum is the largest human organ, essentially involved in abdominal health and disease states, but information on peritoneal paracellular tight junctions and transcellular channels and transporters relative to peritoneal transmembrane transport is scant. We studied their peritoneal localization and quantity by immunohistochemistry and confocal microscopy in health, in chronic kidney disease (CKD) and on peritoneal dialysis (PD), with the latter allowing for functional characterizations, in a total of 93 individuals (0-75 years). Claudin-1 to -5, and -15, zonula occludens-1, occludin and tricellulin, SGLT1, PiT1/SLC20A1 and ENaC were consistently detected in mesothelial and arteriolar endothelial cells, with age dependent differences for mesothelial claudin-1 and arteriolar claudin-2/3. In CKD mesothelial claudin-1 and arteriolar claudin-2 and -3 were more abundant. Peritonea from PD patients exhibited increased mesothelial and arteriolar claudin-1 and mesothelial claudin-2 abundance and reduced mesothelial and arteriolar claudin-3 and arteriolar ENaC. Transperitoneal creatinine and glucose transport correlated with pore forming arteriolar claudin-2 and mesothelial claudin-4/-15, and creatinine transport with mesothelial sodium/phosphate cotransporter PiT1/SLC20A1. In multivariable analysis, claudin-2 independently predicted the peritoneal transport rates. In conclusion, tight junction, transcellular transporter and channel proteins are consistently expressed in peritoneal mesothelial and endothelial cells with minor variations across age groups, specific modifications by CKD and PD and distinct associations with transperitoneal creatinine and glucose transport rates. The latter deserve experimental studies to demonstrate mechanistic links.Clinical Trial registration: The study was performed according to the Declaration of Helsinki and is registered at www.clinicaltrials.gov (NCT01893710).


Assuntos
Insuficiência Renal Crônica , Insuficiência Renal , Humanos , Peritônio/metabolismo , Junções Íntimas/metabolismo , Claudina-1/metabolismo , Células Endoteliais/metabolismo , Claudina-2/metabolismo , Creatinina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal/metabolismo , Glucose/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
7.
Stem Cell Res ; 72: 103226, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37866220

RESUMO

Primary familial brain calcification (PFBC) is a rare neurological condition characterized by abnormal calcification commonly in basal ganglia and multiple other brain regions, leading to neuropsychiatric, cognitive, and motor symptoms. SLC20A2, one of the known causative genes for PFBC, contains the highest number of variants directly associated with the disease. Here, we established an iPSC line (METUi002-A) from the peripheral blood mononuclear cells of a clinically diagnosed PFBC patient carrying a SLC20A2 mutation (c.687dupT) using the integration-free Sendai reprogramming. METUi002-A can serve as a valuable tool to generate cellular models to investigate the mechanistic effects of this mutation in PFBC.


Assuntos
Encefalopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Encefalopatias/genética , Leucócitos Mononucleares/metabolismo , Mutação/genética , Encéfalo/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
8.
Sci Rep ; 13(1): 14794, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684281

RESUMO

Aortic dissection (AD) is a life-threatening condition in which the inner layer of the aorta tears. It has been reported that metabolic syndrome (MS) has a close linkage with aortic dissection. However, the inter-relational mechanisms between them were still unclear. This article explored the hub gene signatures and potential molecular mechanisms in AD and MS. We obtained five bulk RNA-seq datasets of AD, one single cell RNA-seq (scRNA-seq) dataset of ascending thoracic aortic aneurysm (ATAA), and one bulk RNA-seq dataset of MS from the gene expression omnibus (GEO) database. Identification of differentially expressed genes (DEGs) and key modules via weighted gene co-expression network analysis (WGCNA), functional enrichment analysis, and machine learning algorithms (Random Forest and LASSO regression) were used to identify hub genes for diagnosing AD with MS. XGBoost further improved the diagnostic performance of the model. The receiver operating characteristic (ROC) and precision-recall (PR) curves were developed to assess the diagnostic value. Then, immune cell infiltration and metabolism-associated pathways analyses were created to investigate immune cell and metabolism-associated pathway dysregulation in AD and MS. Finally, the scRNA-seq dataset was performed to confirm the expression levels of identified hub genes. 406 common DEGs were identified between the merged AD and MS datasets. Functional enrichment analysis revealed these DEGs were enriched for applicable terms of metabolism, cellular processes, organismal systems, and human diseases. Besides, the positively related key modules of AD and MS were mainly enriched in transcription factor binding and inflammatory response. In contrast, the negatively related modules were significantly associated with adaptive immune response and regulation of nuclease activity. Through machine learning, nine genes with common diagnostic effects were found in AD and MS, including MAD2L2, IMP4, PRPF4, CHSY1, SLC20A1, SLC9A1, TIPRL, DPYD, and MAPKAPK2. In the training set, the AUC of the hub gene on RP and RR curves was 1. In the AD verification set, the AUC of the Hub gene on RP and RR curves were 0.946 and 0.955, respectively. In the MS set, the AUC of the Hub gene on RP and RR curves were 0.978 and 0.98, respectively. scRNA-seq analysis revealed that the SLC20A1 was found to be relevant in fatty acid metabolic pathways and expressed in endothelial cells. Our study revealed the common pathogenesis of AD and MS. These common pathways and hub genes might provide new ideas for further mechanism research.


Assuntos
Dissecção Aórtica , Síndrome Metabólica , Humanos , Células Endoteliais , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/genética , Genes cdc , Algoritmos , Dissecção Aórtica/diagnóstico , Dissecção Aórtica/genética , Proteínas Mad2 , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III , Peptídeos e Proteínas de Sinalização Intracelular
9.
Brain Pathol ; 33(6): e13189, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37505935

RESUMO

Calcification of the cerebral microvessels in the basal ganglia in the absence of systemic calcium and phosphate imbalance is a hallmark of primary familial brain calcification (PFBC), a rare neurodegenerative disorder. Mutation in genes encoding for sodium-dependent phosphate transporter 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), platelet-derived growth factor B (PDGFB), platelet-derived growth factor receptor beta (PDGFRB), myogenesis regulating glycosidase (MYORG), and junctional adhesion molecule 2 (JAM2) are known to cause PFBC. Loss-of-function mutations in XPR1, the only known inorganic phosphate exporter in metazoans, causing dominantly inherited PFBC was first reported in 2015 but until now no studies in the brain have addressed whether loss of one functional allele leads to pathological alterations in mice, a commonly used organism to model human diseases. Here we show that mice heterozygous for Xpr1 (Xpr1WT/lacZ ) present with reduced inorganic phosphate levels in the cerebrospinal fluid and age- and sex-dependent growth of vascular calcifications in the thalamus. Vascular calcifications are surrounded by vascular basement membrane and are located at arterioles in the smooth muscle layer. Similar to previously characterized PFBC mouse models, vascular calcifications in Xpr1WT/lacZ mice contain bone matrix proteins and are surrounded by reactive astrocytes and microglia. However, microglial activation is not confined to calcified vessels but shows a widespread presence. In addition to vascular calcifications, we observed vessel tortuosity and transmission electron microscopy analysis revealed microangiopathy-endothelial swelling, phenotypic alterations in vascular smooth muscle cells, and thickening of the basement membrane.


Assuntos
Encefalopatias , Doenças Neurodegenerativas , Calcificação Vascular , Humanos , Animais , Camundongos , Encefalopatias/patologia , Fosfatos/metabolismo , Encéfalo/patologia , Receptor do Retrovírus Politrópico e Xenotrópico , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Doenças Neurodegenerativas/patologia , Mutação , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
10.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446066

RESUMO

Primary familial brain calcification (PFBC), also known as Fahr's disease, is a rare inherited disorder characterized by bilateral calcification in the basal ganglia according to neuroimaging. Other brain regions, such as the thalamus, cerebellum, and subcortical white matter, can also be affected. Among the diverse clinical phenotypes, the most common manifestations are movement disorders, cognitive deficits, and psychiatric disturbances. Although patients with PFBC always exhibit brain calcification, nearly one-third of cases remain clinically asymptomatic. Due to advances in the genetics of PFBC, the diagnostic criteria of PFBC may need to be modified. Hitherto, seven genes have been associated with PFBC, including four dominant inherited genes (SLC20A2, PDGFRB, PDGFB, and XPR1) and three recessive inherited genes (MYORG, JAM2, and CMPK2). Nevertheless, around 50% of patients with PFBC do not have pathogenic variants in these genes, and further PFBC-associated genes are waiting to be identified. The function of currently known genes suggests that PFBC could be caused by the dysfunction of the neurovascular unit, the dysregulation of phosphate homeostasis, or mitochondrial dysfunction. An improved understanding of the underlying pathogenic mechanisms for PFBC may facilitate the development of novel therapies.


Assuntos
Doenças dos Gânglios da Base , Encefalopatias , Humanos , Encefalopatias/genética , Encefalopatias/patologia , Doenças dos Gânglios da Base/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Fenótipo , Proteínas Proto-Oncogênicas c-sis/genética , Mutação , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética
12.
J Mol Neurosci ; 73(7-8): 563-565, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37420094

RESUMO

Primary familial brain calcification (PFBC), often called Fahr's disease, is a condition in which calcium phosphate accumulates in the brain, mainly in the basal ganglia, thalamus, and cerebellum, and without the association of any metabolic or infectious cause. Patients present a variety of neurological and psychiatric disorders, usually during adulthood. The disease is caused by autosomal dominant pathogenic variants in genes such as SLC20A2, PDGFRB, PDGFB, and XPR1. MYORG and JAM2 are the other genes linked to homozygous patterns of inheritance. Here, we briefly discuss the recent cases reported by Ceylan et al. (2022) and Al-Kasbi et al. (2022), which challenge the current association with two previous genes and a clear pattern of inheritance. Ceylan et al. report a new biallelic variant related to a pathogenic variant in the SLC20A2 gene, which is typically associated with a heterozygous mutation pattern. The affected siblings displayed a severe and early onset of the disease, revealing a phenotype similar to that seen in CMV infections, often named as pseudo-TORCH. Furthermore, a study of genes related to intellectual disability conducted by Al-Kasbi et al. demonstrated that the biallelic manifestation of the XPR1 gene was associated with early symptoms, leading to the belief that the homozygous pattern of genes responsible for causing PFBC with an autosomal dominant pattern may also be linked to early-onset manifestations of PFBC. Further studies might explore the variety of clinical presentations linked to PFBC genes, especially if we pay attention to complex patterns of inheritance, reinforcing the need for a more detailed bioinformatic analysis.


Assuntos
Doenças dos Gânglios da Base , Encefalopatias , Humanos , Adulto , Encefalopatias/metabolismo , Receptor do Retrovírus Politrópico e Xenotrópico , Encéfalo/metabolismo , Mutação , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
13.
J Cell Physiol ; 238(8): 1921-1936, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37269459

RESUMO

Podocytes are crucially involved in blood filtration in the glomerulus. Their proper function relies on efficient insulin responsiveness. The insulin resistance of podocytes, defined as a reduction of cell sensitivity to this hormone, is the earliest pathomechanism of microalbuminuria that is observed in metabolic syndrome and diabetic nephropathy. In many tissues, this alteration is mediated by the phosphate homeostasis-controlling enzyme nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). By binding to the insulin receptor (IR), NPP1 inhibits downstream cellular signaling. Our previous research found that hyperglycemic conditions affect another protein that is involved in phosphate balance, type III sodium-dependent phosphate transporter 1 (Pit 1). In the present study, we evaluated the insulin resistance of podocytes after 24 h of incubation under hyperinsulinemic conditions. Thereafter, insulin signaling was inhibited. The formation of NPP1/IR complexes was observed at that time. A novel finding in the present study was our observation of an interaction between NPP1 and Pit 1 after the 24 h stimulation of podocytes with insulin. After downregulation of the SLC20A1 gene, which encodes Pit 1, we established insulin resistance in podocytes that were cultured under native conditions, manifested as a lack of intracellular insulin signaling and the inhibition of glucose uptake via the glucose transporter type 4. These findings suggest that Pit 1 might be a major factor that participates in the NPP1-mediated inhibition of insulin signaling.


Assuntos
Nefropatias Diabéticas , Resistência à Insulina , Podócitos , Humanos , Insulina/farmacologia , Insulina/metabolismo , Podócitos/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Nefropatias Diabéticas/metabolismo , Fosfatos/metabolismo , Glucose/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
14.
Neurogenetics ; 24(3): 209-213, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37341843

RESUMO

Primary familial brain calcification (PFBC; formerly Fahr's disease) and early-onset Alzheimer's disease (EOAD) may share partially overlapping pathogenic principles. Although the heterozygous loss-of-function mutation c.1523 + 1G > T in the PFBC-linked gene SLC20A2 was detected in a patient with asymmetric tremor, early-onset dementia, and brain calcifications, CSF ß-amyloid parameters and FBB-PET suggested cortical ß-amyloid pathology. Genetic re-analysis of exome sequences revealed the probably pathogenic missense mutation c.235G > A/p.A79T in PSEN1. The SLC20A2 mutation segregated with mild calcifications in two children younger than 30 years. We thus describe the stochastically extremely unlikely co-morbidity of genetic PFBC and genetic EOAD. The clinical syndromes pointed to additive rather than synergistic effects of the two mutations. MRI data revealed the formation of PFBC calcifications decades before the probable onset of the disease. Our report furthermore exemplifies the value of neuropsychology and amyloid PET for differential diagnosis.


Assuntos
Doença de Alzheimer , Doenças dos Gânglios da Base , Encefalopatias , Criança , Humanos , Doença de Alzheimer/genética , Mutação , Doenças dos Gânglios da Base/patologia , Encéfalo/patologia , Morbidade , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Encefalopatias/patologia , Presenilina-1/genética
15.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240341

RESUMO

Many conditions can present with accumulation of calcium in the brain and manifest with a variety of neurological symptoms. Brain calcifications can be primary (idiopathic or genetic) or secondary to various pathological conditions (e.g., calcium-phosphate metabolism derangement, autoimmune disorders and infections, among others). A set of causative genes associated with primary familial brain calcification (PFBC) has now been identified, and include genes such as SLC20A2, PDGFB, PDGFRB, XPR1, MYORG, and JAM2. However, many more genes are known to be linked with complex syndromes characterized by brain calcifications and additional neurologic and systemic manifestations. Of note, many of these genes encode for proteins involved in cerebrovascular and blood-brain barrier functions, which both represent key anatomical structures related to these pathological phenomena. As a growing number of genes associated with brain calcifications is identified, pathways involved in these conditions are beginning to be understood. Our comprehensive review of the genetic, molecular, and clinical aspects of brain calcifications offers a framework for clinicians and researchers in the field.


Assuntos
Encefalopatias , Calcinose , Humanos , Encefalopatias/metabolismo , Receptor do Retrovírus Politrópico e Xenotrópico , Cálcio/metabolismo , Encéfalo/metabolismo , Calcinose/genética , Calcinose/metabolismo , Biologia Molecular , Mutação , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética
16.
Life Sci ; 327: 121726, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105441

RESUMO

AIMS: To identify alterations of specific gene expression, immune infiltration components, and potential biomarkers in liver ischemia-reperfusion injury (IRI) following liver transplantation (LT). MATERIALS AND METHODS: GSE23649 and GSE151648 datasets were obtained from the Gene Expression Omnibus (GEO) database. To determine the differentially expressed genes (DEGs), we utilized the R package "limma". We also identify the infiltration of different immune cells through single-sample gene-set enrichment analysis (ssGSEA). Furthermore, we utilized LASSO logistic regression to select feature genes and Spearman's rank correlation analysis to determine the correlation between these genes and infiltrating immune cells. Finally, the significance of these feature genes was confirmed using a mouse model of hepatic IRI. KEY FINDINGS: A total of 17 DEGs were acquired, most of which were associated with inflammation, apoptosis, cell proliferation, immune disorders, and cellular response. 28 immune cell types were determined using ssGSEA. 5 feature genes (ADM, KLF6, SERPINE1, SLC20A1, and HBB) were screened using LASSO analysis, but the HBB gene was ultimately excluded due to the lack of statistical significance in the GSE151648 dataset. These 4 feature genes were predominantly related to immune cells. Finally, 15 significantly distinctive types of immune cells between the control and IRI groups were verified. SIGNIFICANCE: We unveiled that macrophages, dendritic cells (DCs), neutrophils, CD4 T cells, and other immune cells infiltrated the IRI that occurred after LT. Moreover, we identified ADM, KLF6, SERPINE1, and SLC20A1 as potential biological biomarkers underlying IRI post-transplant, which may improve the diagnosis and prognosis of this condition.


Assuntos
Transplante de Fígado , Fígado , Humanos , Inflamação , Apoptose/genética , Biomarcadores , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III
17.
J Neurol ; 270(6): 3270-3277, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36862146

RESUMO

Primary familial brain calcification (PFBC), formerly known as Fahr's disease, is a rare neurodegenerative disease characterized by bilateral progressive calcification of the microvessels of the basal ganglia and other cerebral and cerebellar structures. PFBC is thought to be due to an altered function of the Neurovascular Unit (NVU), where abnormal calcium-phosphorus metabolism, functional and microanatomical alterations of pericytes and mitochondrial alterations cause a dysfunction of the blood-brain barrier (BBB) and the generation of an osteogenic environment with surrounding astrocyte activation and progressive neurodegeneration. Seven causative genes have been discovered so far, of which four with dominant (SLC20A2, PDGFB, PDGFRB, XPR1) and three with recessive inheritance (MYORG, JAM2, CMPK2). Clinical presentation ranges from asymptomatic subjects to movement disorders, cognitive decline and psychiatric disturbances alone or in various combinations. Radiological patterns of calcium deposition are similar in all known genetic forms, but central pontine calcification and cerebellar atrophy are highly suggestive of MYORG mutations and extensive cortical calcification has been associated with JAM2 mutations. Currently, no disease-modifying drugs or calcium-chelating agents are available and only symptomatic treatments can be offered.


Assuntos
Doenças dos Gânglios da Base , Encefalopatias , Doenças Neurodegenerativas , Humanos , Encefalopatias/diagnóstico por imagem , Encefalopatias/genética , Encefalopatias/metabolismo , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Cálcio/metabolismo , Mutação/genética , Barreira Hematoencefálica/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
19.
Biol Psychiatry ; 93(9): 770-779, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36759259

RESUMO

BACKGROUND: Neurodegenerative diseases are among the most prevalent and devastating neurological disorders, with few effective prevention and treatment strategies. We aimed to integrate genetic and proteomic data to prioritize drug targets for neurodegenerative diseases. METHODS: We screened human proteomes through Mendelian randomization to identify causal mediators of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, frontotemporal dementia, and Lewy body dementia. For instruments, we used brain and blood protein quantitative trait loci identified from one genome-wide association study with 376 participants and another with 3301 participants, respectively. Causal associations were subsequently validated by sensitivity analyses and colocalization. The safety and druggability of identified targets were also evaluated. RESULTS: Our analyses showed targeting BIN1, GRN, and RET levels in blood as well as ACE, ICA1L, MAP1S, SLC20A2, and TOM1L2 levels in brain might reduce Alzheimer's disease risk, while ICA1L, SLC20A2, and TOM1L2 were not recommended as prioritized drugs due to the identified potential side effects. Brain CD38, DGKQ, GPNMB, and SEC23IP were candidate targets for Parkinson's disease. Among them, GPNMB was the most promising target for Parkinson's disease with their causal relationship evidenced by studies on both brain and blood tissues. Interventions targeting FCRL3, LMAN2, and MAPK3 in blood and DHRS11, FAM120B, SHMT1, and TSFM in brain might affect multiple sclerosis risk. The risk of amyotrophic lateral sclerosis might be reduced by medications targeting DHRS11, PSMB3, SARM1, and SCFD1 in brain. CONCLUSIONS: Our study prioritized 22 proteins as targets for neurodegenerative diseases and provided preliminary evidence for drug development. Further studies are warranted to validate these targets.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Esclerose Múltipla , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Parkinson/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Estudo de Associação Genômica Ampla , Proteômica , Encéfalo/metabolismo , Esclerose Múltipla/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Glicoproteínas de Membrana/metabolismo , 17-Hidroxiesteroide Desidrogenases/metabolismo
20.
Gene ; 859: 147213, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36690225

RESUMO

Primary familial brain calcifications (PFBC) is characterized by bilateral and symmetrical deposition of inorganic phosphate, mainly in the basal ganglia, thalamus, cerebellum, and dentate nucleus. The symptoms resemble other neuropsychiatric conditions, such as Parkinsonism, dementia, migraine, and mood disorders. Pathogenic variants in six genes have been associated with this disorder, four linked to the autosomal dominant mode (SLC20A2, PDGFRB, PDGFB, and XPR1) and two linked to the recessive fashion (MYORG and JAM2). Herein, we report a young 24-year-old patient with a medical history of bilateral and symmetrical brain calcification and neuropsychiatric symptoms that include movement disturbances (chorea and dystonia), chronic migraine, unexplained tinnitus, and mood swings. After whole-exome sequencing, she was diagnosed with a novel homozygous MYORG variant (c.912_914del; p.(Ser305del)). In silico analysis showed that the variant is located on the extracellular domain of MYORG protein and is predicted to be disease-causing (likely pathogenic), implying that protein features might be affected. This study describes the second Brazilian case of MYORG PFBC-causative gene. Furthermore, it highlights the early age and onset of symptoms of the proband, especially in regard to movement disorders.


Assuntos
Encefalopatias , Calcinose , Transtornos Mentais , Doenças Neurodegenerativas , Feminino , Humanos , Adulto Jovem , Adulto , Encefalopatias/genética , Encefalopatias/metabolismo , Encefalopatias/patologia , Família , Calcinose/genética , Doenças Neurodegenerativas/genética , Cerebelo/metabolismo , Mutação , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Encéfalo/metabolismo , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA