Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci China Life Sci ; 65(3): 500-514, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34505970

RESUMO

The Hedgehog (Hh) signaling is one of the essential signaling pathways during embryogenesis and in adults. Hh signal transduction relies on primary cilium, a specialized cell surface organelle viewed as the hub of cell signaling. Protein kinase A (PKA) has been recognized as a potent negative regulator of the Hh pathway, raising the question of how such a ubiquitous kinase specifically regulates one signaling pathway. We reviewed recent genetic, molecular and biochemical studies that have advanced our mechanistic understanding of PKA's role in Hh signaling in vertebrates, focusing on the compartmentalized PKA at the centrosome and in the primary cilium. We outlined the recently developed genetic and optical tools that can be harvested to study PKA activities during the course of Hh signal transduction.


Assuntos
Cílios/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Proteínas Hedgehog/fisiologia , Animais , Centrossomo/fisiologia , Humanos , Transdução de Sinais/fisiologia , Proteína GLI1 em Dedos de Zinco/fisiologia
2.
ESMO Open ; 6(6): 100284, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34689002

RESUMO

BACKGROUND: Smoothened (SMO) inhibitors, blocking the sonic hedgehog pathway, have been approved for advanced basal cell carcinoma (aBCC). Safety analyses reveal a high rate of adverse events (AEs) and, most of the time, vismodegib is most commonly stopped when the best overall response is reached. The long-term evolution of aBCC after vismodegib discontinuation is poorly described. The aim of this study is to evaluate the efficacy and safety of the SMO inhibitors (SMOis) available (vismodegib and sonidegib) following rechallenge after complete response (CR) following an initial treatment by vismodegib. MATERIALS AND METHODS: This real-life, retrospective, multicenter and descriptive study is based on an extraction from the CARADERM accredited database, including 40 French regional hospitals, of patients requiring BCC systemic treatment. RESULTS: Of 303 patients treated with vismodegib, 110 achieved an initial CR. The vast majority of these patients (98.2%) stopped vismodegib, notably due to poorly tolerated AEs. The CARADERM database provided a median follow-up of 21 months (13.5-36.0 months) after CR. Of the 110 patients, 48.1% relapsed after a median relapse-free survival of 24 months (13.0-38.0 months). Among them, 35 patients were retreated by an SMOi and the overall response rate was 65.7% (34.3% of CR and 31.4% of partial response). The median duration of retreatment was 6.0 months (4.0-9.5 months). CONCLUSION: Our real-life study, carried out on patients with complex clinical pictures, shows that after treatment discontinuation, 48.1% of patients achieved CR relapse within an average of 24 months (13.0-38.0 months). It emphasized that even though rechallenge can be considered as a therapeutic option, efficacy seems to decrease, suggesting the development of resistance mechanisms.


Assuntos
Antineoplásicos , Carcinoma Basocelular , Neoplasias Cutâneas , Antineoplásicos/efeitos adversos , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/patologia , Proteínas Hedgehog/fisiologia , Proteínas Hedgehog/uso terapêutico , Humanos , Recidiva Local de Neoplasia/induzido quimicamente , Recidiva Local de Neoplasia/tratamento farmacológico , Estudos Retrospectivos , Neoplasias Cutâneas/tratamento farmacológico
3.
Future Oncol ; 17(31): 4185-4206, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34342489

RESUMO

Triple-negative breast cancer (TNBC) is the most complex, aggressive and fatal subtype of breast cancer. Owing to the lack of targeted therapy and heterogenic nature of TNBC, chemotherapy remains the sole treatment option for TNBC, with taxanes and anthracyclines representing the general chemotherapeutic regimen in TNBC therapy. But unfortunately, patients develop resistance to the existing chemotherapeutic regimen, resulting in approximately 90% treatment failure. Breast cancer stem cells (BCSCs) are one of the major causes for the development of chemoresistance in TNBC patients. After surviving the chemotherapy damage, the presence of BCSCs results in relapse and recurrence of TNBC. Several pathways are known to regulate BCSCs' survival, such as the Wnt/ß-catenin, Hedgehog, JAK/STAT and HIPPO pathways. Therefore it is imperative to target these pathways in the context of eliminating chemoresistance. In this review we will discuss the novel strategies and various preclinical and clinical studies to give an insight into overcoming TNBC chemoresistance. We present a detailed account of recent studies carried out that open an exciting perspective in relation to the mechanisms of chemoresistance.


Assuntos
Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/fisiologia , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , Feminino , Proteínas Hedgehog/fisiologia , Via de Sinalização Hippo , Humanos , NF-kappa B/fisiologia , Receptores Notch/fisiologia , Neoplasias de Mama Triplo Negativas/patologia , Via de Sinalização Wnt
4.
Neural Plast ; 2021: 8706400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221003

RESUMO

Neuroinflammation plays important roles in the pathogenesis and progression of altered neurodevelopment, sensorineural hearing loss, and certain neurodegenerative diseases. Hyperoside (quercetin-3-O-ß-D-galactoside) is an active compound isolated from Hypericum plants. In this study, we investigate the protective effect of hyperoside on neuroinflammation and its possible molecular mechanism. Lipopolysaccharide (LPS) and hyperoside were used to treat HT22 cells. The cell viability was measured by MTT assay. The cell apoptosis rate was measured by flow cytometry assay. The mRNA expression levels of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) were determined by quantitative reverse transcription polymerase chain reaction. The levels of oxidative stress indices superoxide dismutase (SOD), reactive oxygen species (ROS), catalase (CAT), glutathione (GSH), and malondialdehyde (MDA) were measured by the kits. The expression of neurotrophic factor and the relationship among hyperoside, silent mating type information regulation 2 homolog-1 (SIRT1) and Wnt/ß-catenin, and sonic hedgehog was examined by western blotting. In the LPS-induced HT22 cells, hyperoside promotes cell survival; alleviates the level of IL-1ß, IL-6, IL-8, TNF-α, ROS, MDA, Bax, and caspase-3; and increases the expression of CAT, SOD, GSH, Bcl-2, BDNF, TrkB, and NGF. In addition, hyperoside upregulated the expression of SIRT1. Further mechanistic investigation showed that hyperoside alleviated LPS-induced inflammation, oxidative stress, and apoptosis by upregulating SIRT1 to activate Wnt/ß-catenin and sonic hedgehog pathways. Taken together, our data suggested that hyperoside acts as a protector in neuroinflammation.


Assuntos
Neurônios/efeitos dos fármacos , Quercetina/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/biossíntese , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Citocinas/sangue , Avaliação Pré-Clínica de Medicamentos , Proteínas Hedgehog/fisiologia , Inflamação , Lipopolissacarídeos/farmacologia , Camundongos , Fatores de Crescimento Neural/fisiologia , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Sirtuína 1/genética , Regulação para Cima/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
5.
Sci Rep ; 11(1): 14880, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290270

RESUMO

Prostate cancer is the second most frequent cancer diagnosed in men worldwide. Localized disease can be successfully treated, but advanced cases are more problematic. After initial effectiveness of androgen deprivation therapy, resistance quickly occurs. Therefore, we aimed to investigate the role of Hedgehog-GLI (HH-GLI) signaling in sustaining androgen-independent growth of prostate cancer cells. We found various modes of HH-GLI signaling activation in prostate cancer cells depending on androgen availability. When androgen was not deprived, we found evidence of non-canonical SMO signaling through the SRC kinase. After short-term androgen deprivation canonical HH-GLI signaling was activated, but we found little evidence of canonical HH-GLI signaling activity in androgen-independent prostate cancer cells. We show that in androgen-independent cells the pathway ligand, SHH-N, non-canonically binds to the androgen receptor through its cholesterol modification. Inhibition of this interaction leads to androgen receptor signaling downregulation. This implies that SHH-N activates the androgen receptor and sustains androgen-independence. Targeting this interaction might prove to be a valuable strategy for advanced prostate cancer treatment. Also, other non-canonical aspects of this signaling pathway should be investigated in more detail and considered when developing potential therapies.


Assuntos
Androgênios/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/fisiologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Regulação para Baixo/genética , Humanos , Masculino , Terapia de Alvo Molecular , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/fisiologia
6.
Pharmacol Res ; 168: 105595, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823219

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant lethal disease due to its asymptomatic at its early lesion of the disease and drug resistance. Target therapy associated with molecular pathways so far seems not to produce reasonable outcomes. Understanding of the molecular mechanisms underlying inflammation-initiated tumorigenesis may be helpful for development of an effective therapy of the disease. A line of studies showed that pancreatic tumorigenesis was resulted from pancreatitis, which was caused synergistically by various pancreatic cells. This review focuses on those players and their possible clinic implications, such as exocrine acinar cells, ductal cells, and various stromal cells, including pancreatic stellate cells (PSCs), macrophages, lymphocytes, neutrophils, mast cells, adipocytes and endothelial cells, working together with each other in an inflammation-mediated microenvironment governed by a myriad of cellular signaling networks towards PDAC.


Assuntos
Carcinoma Ductal Pancreático/etiologia , Neoplasias Pancreáticas/etiologia , Pancreatite/complicações , Células Acinares/fisiologia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteínas Hedgehog/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Macrófagos/fisiologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamento farmacológico , Células Estreladas do Pâncreas/fisiologia , Transdução de Sinais , Microambiente Tumoral
7.
Can J Physiol Pharmacol ; 99(9): 910-920, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33617370

RESUMO

The present study evaluated whether epigallocatechin-3-gallate (EGCG) effectively attenuates tumor growth in colon cancer cells and in the xenografts of nude mice and investigated the underlying mechanisms by focusing on the sonic hedgehog (Shh) and phosphoinositide 3-kinase (PI3K) pathways. Three kinds of colon cancer cells and BALB/c nude mice were used to evaluate the antiproliferative effect of EGCG. The apoptosis, migration, and invasion of colon cancer cells were analyzed to explore the toxicity effect of EGCG on colon cancer cells. Western blotting was used to demonstrate the expression levels of related proteins. The results showed that EGCG exhibited an antiproliferative effect against colon cancer cells in a dose-dependent manner with low toxicity against normal colon epithelial cells. Administration of EGCG caused significant apoptosis and inhibited the migration and invasion of colon cancer cells. The toxic effect of EGCG on colon cancer cells was accompanied by downregulation of the Shh and PI3K/Akt pathways. In addition, EGCG reduced tumor volume and weight without affecting the body weight of nude mice and inhibited the activation of the Shh and PI3K/AKT pathways in tumor tissue. Further study showed that purmorphamine (smoothened (Smo) agonist) or insulin like growth factor-1 (IGF-1, PI3K agonist) partly abolished the effect of EGCG on cell proliferation, migration, and apoptosis. Cyclopamine (Smo inhibitor) and LY294002 (PI3K inhibitor) showed the similar toxic effects as EGCG on colon cancer cells. In conclusion, EGCG inhibited colon tumor growth via downregulation of the Shh and PI3K pathways and may be a potential chemotherapeutic agent against colon cancer.


Assuntos
Catequina/análogos & derivados , Neoplasias do Colo/tratamento farmacológico , Proteínas Hedgehog/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Apoptose/efeitos dos fármacos , Catequina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/efeitos dos fármacos
8.
Clin Cancer Res ; 27(7): 2023-2037, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33495315

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease characterized by an extensive fibroinflammatory stroma, which includes abundant cancer-associated fibroblast (CAF) populations. PDAC CAFs are heterogeneous, but the nature of this heterogeneity is incompletely understood. The Hedgehog pathway functions in PDAC in a paracrine manner, with ligands secreted by cancer cells signaling to stromal cells in the microenvironment. Previous reports investigating the role of Hedgehog signaling in PDAC have been contradictory, with Hedgehog signaling alternately proposed to promote or restrict tumor growth. In light of the newly discovered CAF heterogeneity, we investigated how Hedgehog pathway inhibition reprograms the PDAC microenvironment. EXPERIMENTAL DESIGN: We used a combination of pharmacologic inhibition, gain- and loss-of-function genetic experiments, cytometry by time-of-flight, and single-cell RNA sequencing to study the roles of Hedgehog signaling in PDAC. RESULTS: We found that Hedgehog signaling is uniquely activated in fibroblasts and differentially elevated in myofibroblastic CAFs (myCAF) compared with inflammatory CAFs (iCAF). Sonic Hedgehog overexpression promotes tumor growth, while Hedgehog pathway inhibition with the smoothened antagonist, LDE225, impairs tumor growth. Furthermore, Hedgehog pathway inhibition reduces myCAF numbers and increases iCAF numbers, which correlates with a decrease in cytotoxic T cells and an expansion in regulatory T cells, consistent with increased immunosuppression. CONCLUSIONS: Hedgehog pathway inhibition alters fibroblast composition and immune infiltration in the pancreatic cancer microenvironment.


Assuntos
Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/patologia , Proteínas Hedgehog/fisiologia , Neoplasias Pancreáticas/patologia , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Transdução de Sinais/fisiologia , Microambiente Tumoral
9.
Neurobiol Dis ; 150: 105236, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33383187

RESUMO

Development of the forebrain critically depends on the Sonic Hedgehog (Shh) signaling pathway, as illustrated in humans by the frequent perturbation of this pathway in holoprosencephaly, a condition defined as a defect in the formation of midline structures of the forebrain and face. The Shh pathway requires functional primary cilia, microtubule-based organelles present on virtually every cell and acting as cellular antennae to receive and transduce diverse chemical, mechanical or light signals. The dysfunction of cilia in humans leads to inherited diseases called ciliopathies, which often affect many organs and show diverse manifestations including forebrain malformations for the most severe forms. The purpose of this review is to provide the reader with a framework to understand the developmental origin of the forebrain defects observed in severe ciliopathies with respect to perturbations of the Shh pathway. We propose that many of these defects can be interpreted as an imbalance in the ratio of activator to repressor forms of the Gli transcription factors, which are effectors of the Shh pathway. We also discuss the complexity of ciliopathies and their relationships with forebrain disorders such as holoprosencephaly or malformations of cortical development, and emphasize the need for a closer examination of forebrain defects in ciliopathies, not only through the lens of animal models but also taking advantage of the increasing potential of the research on human tissues and organoids.


Assuntos
Encéfalo/anormalidades , Cílios/genética , Ciliopatias/embriologia , Anormalidades Craniofaciais/embriologia , Proteínas Hedgehog/fisiologia , Prosencéfalo/embriologia , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/genética , Encéfalo/embriologia , Cerebelo/anormalidades , Cerebelo/embriologia , Transtornos da Motilidade Ciliar/embriologia , Transtornos da Motilidade Ciliar/genética , Ciliopatias/genética , Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Encefalocele/embriologia , Encefalocele/genética , Anormalidades do Olho/embriologia , Anormalidades do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Holoprosencefalia/embriologia , Holoprosencefalia/genética , Humanos , Doenças Renais Císticas/embriologia , Doenças Renais Císticas/genética , Doenças Renais Policísticas/embriologia , Doenças Renais Policísticas/genética , Retina/anormalidades , Retina/embriologia , Retinose Pigmentar/embriologia , Retinose Pigmentar/genética , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/genética
10.
Oncogene ; 40(2): 396-407, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33159168

RESUMO

The immune microenvironment of tumors can play a critical role in promoting or inhibiting tumor progression depending on the context. We present evidence that tumor-associated macrophages/microglia (TAMs) can promote tumor progression in the sonic hedgehog subgroup of medulloblastoma (SHH-MB). By combining longitudinal manganese-enhanced magnetic resonance imaging (MEMRI) and immune profiling of a sporadic mouse model of SHH-MB, we found the density of TAMs is higher in the ~50% of tumors that progress to lethal disease. Furthermore, reducing regulatory T cells or eliminating B and T cells in Rag1 mutants does not alter SHH-MB tumor progression. As TAMs are a dominant immune component in tumors and are normally dependent on colony-stimulating factor 1 receptor (CSF1R), we treated mice with a CSF1R inhibitor, PLX5622. Significantly, PLX5622 reduces a subset of TAMs, prolongs mouse survival, and reduces the volume of most tumors within 4 weeks of treatment. Moreover, concomitant with a reduction in TAMs the percentage of infiltrating cytotoxic T cells is increased, indicating a change in the tumor environment. Our studies in an immunocompetent preclinical mouse model demonstrate TAMs can have a functional role in promoting SHH-MB progression. Thus, CSF1R inhibition could have therapeutic potential for a subset of SHH-MB patients.


Assuntos
Neoplasias Cerebelares/prevenção & controle , Modelos Animais de Doenças , Proteínas Hedgehog/fisiologia , Meduloblastoma/prevenção & controle , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Macrófagos Associados a Tumor/imunologia , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proliferação de Células , Neoplasias Cerebelares/etiologia , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Feminino , Humanos , Masculino , Meduloblastoma/etiologia , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prognóstico , Células Tumorais Cultivadas , Microambiente Tumoral
11.
Brain Res ; 1751: 147204, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189691

RESUMO

BACKGROUND: Peripheral nerve injuries are a common clinical problem which may result in permanent loss of motor or sensory function. A better understanding of the signaling pathways that lead to successful nerve regeneration may help in discovering new therapeutic targets. The Hedgehog (Hh) signaling pathway plays significant roles in nerve development and regeneration. In a mouse model of facial nerve injury, Hedgehog-responsive fibroblasts increase in number both at the site of injury and within the distal nerve. However, the role of these cells in facial nerve regeneration is not fully understood. We hypothesize that the Hh pathway plays an angiogenic and pro-migratory role following facial nerve injury. METHODS: Hedgehog pathway modulators were applied to murine endoneurial fibroblasts isolated from the murine facial nerve. The impact of pathway modulation on endoneurial fibroblast migration and cell proliferation was assessed. Gene expression changes of known Hedgehog target genes and the key angiogenic factor Vegf-A were determined by qPCR. In vivo, mice were treated with pathway agonist (SAG21k) and injured facial nerve specimens were analyzed via immunofluorescence and in situ hybridization. RESULTS: Hedgehog pathway activation in facial nerve fibroblasts via SAG21k treatment increases Gli1 and Ptch1 expression, the rate of cellular migration, and Vegf-A expression in vitro. In vivo, expression of Gli1 and Vegf-A expression appears to increase after injury, particularly at the site of nerve injury and the distal nerve, as detected by immunofluorescence and in situ hybridization. Additionally, Gli1 transcripts co-localize with Vegf-A following transection injury to the facial nerve. DISCUSSION: These findings describe an angiogenic and pro-migratory role for the Hedgehog pathway mediated through effects on nerve fibroblasts. Given the critical role of Vegf-A in nerve regeneration, modulation of this pathway may represent a potential therapeutic target to improve facial nerve regeneration following injury.


Assuntos
Traumatismos do Nervo Facial/metabolismo , Proteínas Hedgehog/metabolismo , Regeneração Nervosa/fisiologia , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Nervo Facial/metabolismo , Traumatismos do Nervo Facial/terapia , Feminino , Fibroblastos/metabolismo , Proteínas Hedgehog/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo
12.
Life Sci ; 257: 118027, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32622951

RESUMO

AIM: Glioblastoma is an extremely aggressive glioma, resistant to radio and chemotherapy usually performed with temozolomide. One of the main reasons for glioblastoma resistance to conventional therapies is due to the presence of cancer stem-like cells. These cells could recapitulate some signaling pathways important for embryonic development, such as Sonic hedgehog. Here, we investigated if the inhibitor of the Sonic hedgehog pathway, cyclopamine, could potentiate the temozolomide effect in cancer stem-like cells and glioblastoma cell lines in vitro. MAIN METHODS: The viability of glioblastoma cells exposed to cyclopamine and temozolomide treatment was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay while the induction of apoptosis was assessed by western blot. The stemness properties of glioma cells were verified by clonogenic and differentiation assay and the expression of stem cell markers were measured by fluorescence microscopy and western blot. KEY FINDINGS: The glioblastoma viability was reduced by cyclopamine treatment. Cyclopamine potentiated temozolomide treatment in glioblastoma cell lines by inducing apoptosis through activation of caspase-3 cleaved. Conversely, the combined treatment of cyclopamine and temozolomide potentiated the stemness properties of glioblastoma cells by inducing the expression of SOX-2 and OCT-4. SIGNIFICANCE: Cyclopamine plays an effect on glioblastoma cell lines but also sensibilize them to temozolomide treatment. Thus, first-line treatment with Sonic hedgehog inhibitor followed by temozolomide could be used as a new therapeutic strategy for glioblastoma patients.


Assuntos
Glioblastoma/metabolismo , Proteínas Hedgehog/metabolismo , Alcaloides de Veratrum/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Proteínas Hedgehog/efeitos dos fármacos , Proteínas Hedgehog/fisiologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero , Fatores de Transcrição SOXB1 , Transdução de Sinais/efeitos dos fármacos , Temozolomida/farmacologia , Alcaloides de Veratrum/metabolismo
13.
Pediatr Neonatol ; 61(5): 498-505, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32564932

RESUMO

BACKGROUND: Hyperoxia increases Sonic hedgehog (Shh) expression in neonatal rat lungs. The effect of mesenchymal stem cells (MSCs) on the hedgehog signaling pathway in hyperoxia-induced lung injury is unknown. This study evaluated whether MSCs could inhibit hedgehog signaling and improve established hyperoxia-induced lung injury in newborn rats. METHODS: Newborn rats were assigned to room air (RA) or hyperoxia (85% O2) groups from postnatal day 4-15, and some received intravenous injection of human MSCs (9 × 105 cells) in 90 µL of normal saline (NS) through the tail vein on postnatal day 15. We obtained four study groups as follows: RA + NS, RA + MSCs, O2 + NS, and O2 + MSCs. Pups from each group were sacrificed on postnatal days 15 and 29, and lungs were removed for histological and Western blot analyses. RESULTS: Neonatal hyperoxia on postnatal days 4-15 reduced the body weight, increased the mean linear intercept, and decreased the vascular density of the rats, and these effects were associated with increased Shh and Smoothened (Smo) expression and decreased Patched expression. By contrast, the MSC-treated hyperoxic pups exhibited improved alveolarization, increased vascularization, and decreased Shh and Smo expression on postnatal day 29. CONCLUSION: Human MSC treatment reversed established hyperoxia-induced lung injury in newborn rats, probably through suppression of the hedgehog pathway.


Assuntos
Hiperóxia/complicações , Lesão Pulmonar/terapia , Transplante de Células-Tronco Mesenquimais , Placenta/citologia , Animais , Animais Recém-Nascidos , Feminino , Proteínas Hedgehog/fisiologia , Humanos , Gravidez , Ratos , Ratos Sprague-Dawley , Receptor Smoothened/fisiologia
14.
Diabetes ; 69(7): 1549-1561, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32345752

RESUMO

Diabetic keratopathy, a sight-threatening corneal disease, comprises several symptomatic conditions including delayed epithelial wound healing, recurrent erosions, and sensory nerve (SN) neuropathy. We investigated the role of neuropeptides in mediating corneal wound healing, including epithelial wound closure and SN regeneration. Denervation by resiniferatoxin severely impaired corneal wound healing and markedly upregulated proinflammatory gene expression. Exogenous neuropeptides calcitonin gene-related peptide (CGRP), substance P (SP), and vasoactive intestinal peptide (VIP) partially reversed resiniferatoxin's effects, with VIP specifically inducing interleukin-10 expression. Hence, we focused on VIP and observed that wounding induced VIP and VIP type 1 receptor (VIPR1) expression in normal (NL) corneas, but not corneas from mice with diabetes mellitus (DM). Targeting VIPR1 in NL corneas attenuated corneal wound healing, dampened wound-induced expression of neurotrophic factors, and exacerbated inflammatory responses, while exogenous VIP had the opposite effects in DM corneas. Remarkably, wounding and diabetes also affected the expression of Sonic Hedgehog (Shh) in a VIP-dependent manner. Downregulating Shh expression in NL corneas decreased while exogenous Shh in DM corneas increased the rates of corneal wound healing. Furthermore, inhibition of Shh signaling dampened VIP-promoted corneal wound healing. We conclude that VIP regulates epithelial wound healing, inflammatory response, and nerve regeneration in the corneas in an Shh-dependent manner, suggesting a therapeutic potential for these molecules in treating diabetic keratopathy.


Assuntos
Doenças da Córnea/fisiopatologia , Diabetes Mellitus Experimental/complicações , Epitélio Corneano/fisiopatologia , Proteínas Hedgehog/fisiologia , Regeneração Nervosa/fisiologia , Peptídeo Intestinal Vasoativo/fisiologia , Cicatrização/fisiologia , Animais , Citocinas/análise , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/fisiologia , Transdução de Sinais/fisiologia
15.
Dev Biol ; 463(1): 26-38, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32151560

RESUMO

Non-syndromic mitral valve prolapse (MVP) is the most common heart valve disease affecting 2.4% of the population. Recent studies have identified genetic defects in primary cilia as causative to MVP, although the mechanism of their action is currently unknown. Using a series of gene inactivation approaches, we define a paracrine mechanism by which endocardially-expressed Desert Hedgehog (DHH) activates primary cilia signaling on neighboring valve interstitial cells. High-resolution imaging and functional assays show that DHH de-represses smoothened at the primary cilia, resulting in kinase activation of RAC1 through the RAC1-GEF, TIAM1. Activation of this non-canonical hedgehog pathway stimulates α-smooth actin organization and ECM remodeling. Genetic or pharmacological perturbation of this pathway results in enlarged valves that progress to a myxomatous phenotype, similar to valves seen in MVP patients. These data identify a potential molecular origin for MVP as well as establish a paracrine DHH-primary cilium cross-talk mechanism that is likely applicable across developmental tissue types.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Valva Mitral/embriologia , Actinas/metabolismo , Animais , Matriz Extracelular/metabolismo , Doenças das Valvas Cardíacas , Proteínas Hedgehog/fisiologia , Camundongos , Prolapso da Valva Mitral/genética , Prolapso da Valva Mitral/metabolismo , Músculo Liso/metabolismo , Músculo Liso/fisiologia , Miócitos de Músculo Liso/metabolismo , Neuropeptídeos/metabolismo , Fenótipo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
16.
FASEB J ; 34(5): 6791-6807, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32223017

RESUMO

The frontal craniofacial skeleton derived from neural crest cells is vital for facial structure and masticatory functions. The exact role of Indian hedgehog (Ihh) in facial and masticatory development has not been fully explored. In this study, we generated craniofacial neural crest cells-specific Ihh deletion mice (Wnt1-Cre;Ihhfl/fl ;Tomatofl/+ ) and found the gradual dwarfism without perinatal lethality. Morphological and histological analyses revealed unambiguous craniofacial phenotypes in mutants, where we observed skeletal malocclusion accompanied by markedly hypoplastic nasomaxillary complex and reversed incisor occlusion. Both the replacement of nasal concha cartilage by turbinate bones and the endochondral ossification of nasal septum ethmoid bone were substantially delayed. We also observed hypoplastic mandibles in mutants where the mandibular ramus was unexpectedly the most affected. Both the condylar process and mandibular angle cartilages were distorted. However, dental examination showed no significant changes in teeth and dentition. Finally, a comprehensive RNA sequence analysis utilizing condylar cartilage identified Ihh-associated gene network including several cell cycle genes and 16 genes related to the extracellular matrix, sulfate transporters, transcription factors, receptors, a ciliogenesis factor, and an adhesion molecule. Our data provide direct in vivo evidence that Ihh plays crucial roles in midface and masticatory system formation, likely by activating key genes.


Assuntos
Osso e Ossos/patologia , Cartilagem/patologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/fisiologia , Má Oclusão/patologia , Crista Neural/patologia , Proteína Wnt1/fisiologia , Animais , Osso e Ossos/metabolismo , Cartilagem/metabolismo , Condrogênese , Anormalidades Craniofaciais , Feminino , Masculino , Má Oclusão/genética , Má Oclusão/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Crista Neural/metabolismo , Fenótipo
17.
J Cardiothorac Surg ; 15(1): 18, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931858

RESUMO

INTRODUCTION: Lung cancer is the leading causes of cancer-related deaths globally. The most frequent histologic type of lung cancer is non-small-cell lung cancer (NSCLC). NSCLC often undergo epithelial-mesenchymal transition (EMT). The components that control this process are thus promising therapeutic targets. MATERIALS AND METHODS: Gli/EMT protein expression levels were examined by western blot in paired NSCLC patient tissues and NSCLC cell lines. Functional analyses were performed to investigate SHH/Gli signaling and EMT in NSCLC cell lines. MTS cell viability, luciferase reporter, and western blot assays were performed to analyze pathway activity, while wound healing and transwell assays were executed to measure cell migration and invasion. RESULTS: Higher Gli1 expressions were detected in tumor samples than in paired normal tissues. Differential expression of EMT biomarkers and activation of p-AKT were observed in tumor tissues. N-Shh stimulation of cells significantly increased reporter activity in NSCLC cell lines, while Gli-i treatment of transfected cells showed less relative reporter activity. When subjected to both Gli-i and N-Shh treatment, NSCLC cell lines continued to demonstrate decreased Gli transcriptional activity. Gli inhibition is associated with decreased expression level of p-AKT, N-cadherin and Vimentin. Knockdown of both Gli1 and Gli2 showed decreased EMT, migrative and invasive ability. Cells stimulated by N-Shh demonstrated greater mobility. In addition, AKT-i treated cells also demonstrated inhibited EMT activity. CONCLUSIONS: This study provides evidence for aberrant upregulation of the Gli signaling pathway and a strong association between expression of Gli versus AKT and EMT markers in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias Pulmonares/metabolismo , Proteína GLI1 em Dedos de Zinco/fisiologia , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral/metabolismo , Movimento Celular/efeitos dos fármacos , Proteínas Hedgehog/fisiologia , Humanos , Transdução de Sinais/fisiologia , Proteína GLI1 em Dedos de Zinco/metabolismo
18.
World Neurosurg ; 135: 16-18, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31809895

RESUMO

BACKGROUND: Medulloblastoma (MB) with myogenic differentiation is a rare histologic variant. CASE DESCRIPTION: We report a case of a 7-year-old female child who presented with a left cerebellar mass. Histopathologic examination showed a cellular neoplasm comprising undifferentiated cells along with foci of bizarre giant cells. Immunohistochemistry revealed that the tumor corresponded to the MB, sonic hedgehog-activated subgroup. CONCLUSIONS: The case is being reported to document this rare variant of MB that had myogenic differentiation. Molecular characterization of this variant has been analyzed in few cases so far.


Assuntos
Transformação Celular Neoplásica/patologia , Neoplasias Cerebelares/patologia , Proteínas Hedgehog/fisiologia , Meduloblastoma/patologia , Criança , Feminino , Proteínas Hedgehog/metabolismo , Humanos , Imageamento por Ressonância Magnética , Mioblastos/patologia
19.
Reg Anesth Pain Med ; 45(2): 137-144, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792027

RESUMO

BACKGROUND: Many patients with pancreatic cancer (PC) suffer from abdominal pain and back pain. However, the cause of pain associated with PC is largely unclear. In this study, we tested the potential influence of the sonic hedgehog (sHH) signaling pathway on PC pain. METHODS: Substance P (SP) and calcitonin gene-related peptide (CGRP) expression was measured in cultured PC cells and dorsal root ganglions (DRG) by real-time PCR, western blotting analysis and ELISA. Small interfering RNA transfection and plasmid constructs were used to regulate the expression of sHH in the AsPc-1 and Panc-1 cell lines. Pain-related behavior was observed in an orthotopic tumor model in nude mice. RESULTS: In this study, the results show that sHH increased the expression of SP and CGRP in DRGs in a concentration and time-dependent manner. Additionally, sHH secretion from PC cells could activate the sHH signaling pathway and, in turn, increase the expression of nerve growth factor (NGF), P75, and TrkA in DRGs. Furthermore, the sHH signaling pathway and NGF/NGF receptor contributed to pain sensitivity in a nude mouse model. CONCLUSION: Our results demonstrate that PC pain originates from the sHH signaling pathway, and NGF mediates the pain mechanism via regulating SP and CGRP.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dor do Câncer/metabolismo , Proteínas Hedgehog/fisiologia , Fator de Crescimento Neural/metabolismo , Neoplasias Pancreáticas/metabolismo , Dor Abdominal , Animais , Linhagem Celular Tumoral , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Nus , Receptores de Fator de Crescimento Neural , Transdução de Sinais , Substância P/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA