Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
1.
J Chromatogr A ; 1727: 464948, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38759460

RESUMO

Immobilization of functional protein, especially G protein-coupled receptors (GPCRs), is particularly significant in various fields such as the development of assays for diagnosis, lead compound screening, as well as drug-protein interaction analysis. However, there are still some challenges with the immobilized proteins such as undefined loads, orientations, and the loss of activity. Herein, we introduced a DNA conjugation strategy into the immobilization of Cysteinyl leukotriene receptor 1(CysLTR1) which enables exquisite molecular control and higher activity of the receptor. We used the bacterial relaxases VirD2 as an immobilized tag fused at the C terminus of CysLTR1. Tyrosine residue(Y29) at the core binding site of the VirD2 tag can react with the single-strand piece of DNA(T-DNA) in the form of a covalent bond. Inspired by this strategy, we developed a new immobilization method by mixing the T-DNA-modified silica gel with the cell lysate containing the expressed VirD2-tagged CysLTR1 for 1 hour. We found that the successful formation of DNA-protein conjugate enables the immobilization of CysLTR1 fast, site-specific, and with minimal loss of activity. The feasibility of the immobilized CysLTR1 was evaluated in drug-protein binding interaction by frontal analysis and adsorption energy distribution analysis. The binding of pranlukast, zafirlukast, and MK571 to the immobilized CysLTR1 was realized, and the association constants presented good agreement between the two methods. Rosmarinic acid was retained in the immobilized CysLTR1 column, and the in-vitro test revealed that the compound binds to the receptor in one type of binding site mode. Despite these results, we concluded that the DNA-protein conjugate strategy will probably open up the possibilities for capturing other functional proteins in covalent and site-specific modes from the complex matrices and the immobilized receptor preserves the potential in fishing out lead compounds from natural products.


Assuntos
Proteínas Imobilizadas , Receptores de Leucotrienos , Receptores de Leucotrienos/metabolismo , Receptores de Leucotrienos/química , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Humanos , DNA/química , DNA/metabolismo , Sítios de Ligação , Ligação Proteica
2.
Nat Commun ; 13(1): 341, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039540

RESUMO

Robust regulatory signals in the cell often depend on interactions between short linear motifs (SLiMs) and globular proteins. Many of these interactions are poorly characterized because the binding proteins cannot be produced in the amounts needed for traditional methods. To address this problem, we developed a single-molecule off-rate (SMOR) assay based on microscopy of fluorescent ligand binding to immobilized protein partners. We used it to characterize substrate binding to the Anaphase-Promoting Complex/Cyclosome (APC/C), a ubiquitin ligase that triggers chromosome segregation. We find that SLiMs in APC/C substrates (the D box and KEN box) display distinct affinities and specificities for the substrate-binding subunits of the APC/C, and we show that multiple SLiMs in a substrate generate a high-affinity multivalent interaction. The remarkably adaptable substrate-binding mechanisms of the APC/C have the potential to govern the order of substrate destruction in mitosis.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Saccharomyces cerevisiae/metabolismo , Imagem Individual de Molécula , Motivos de Aminoácidos , Sequência de Aminoácidos , Anisotropia , Humanos , Proteínas Imobilizadas/metabolismo , Ligantes , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Proteólise , Especificidade por Substrato
3.
Cells ; 10(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944004

RESUMO

The hedgehog (Hh) and Wnt pathways, crucial for the embryonic development and stem cell proliferation of Metazoa, have long been known to have similarities that argue for their common evolutionary origin. A surprising additional similarity of the two pathways came with the discovery that WIF1 proteins are involved in the regulation of both the Wnt and Hh pathways. Originally, WIF1 (Wnt Inhibitory Factor 1) was identified as a Wnt antagonist of vertebrates, but subsequent studies have shown that in Drosophila, the WIF1 ortholog serves primarily to control the distribution of Hh. In the present, work we have characterized the interaction of the human WIF1 protein with human sonic hedgehog (Shh) using Surface Plasmon Resonance spectroscopy and reporter assays monitoring the signaling activity of human Shh. Our studies have shown that human WIF1 protein binds human Shh with high affinity and inhibits its signaling activity efficiently. Our observation that the human WIF1 protein is a potent antagonist of human Shh suggests that the known tumor suppressor activity of WIF1 may not be ascribed only to its role as a Wnt inhibitor.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Hedgehog/antagonistas & inibidores , Animais , Linhagem Celular , Proteínas Hedgehog/metabolismo , Humanos , Proteínas Imobilizadas/metabolismo , Cinética , Camundongos , Células NIH 3T3 , Ligação Proteica , Transdução de Sinais
4.
Nucleic Acids Res ; 49(19): 11211-11223, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34614173

RESUMO

Binding and unbinding of transcription factors to DNA are kinetically controlled to regulate the transcriptional outcome. Control of the release of the transcription factor NF-κB from DNA is achieved through accelerated dissociation by the inhibitor protein IκBα. Using single-molecule FRET, we observed a continuum of conformations of NF-κB in free and DNA-bound states interconverting on the subseconds to minutes timescale, comparable to in vivo binding on the seconds timescale, suggesting that structural dynamics directly control binding kinetics. Much of the DNA-bound NF-κB is partially bound, allowing IκBα invasion to facilitate DNA dissociation. IκBα induces a locked conformation where the DNA-binding domains of NF-κB are too far apart to bind DNA, whereas a loss-of-function IκBα mutant retains the NF-κB conformational ensemble. Overall, our results suggest a novel mechanism with a continuum of binding modes for controlling association and dissociation of transcription factors.


Assuntos
DNA/genética , Interferons/genética , Inibidor de NF-kappaB alfa/genética , Fator de Transcrição RelA/genética , Transcrição Gênica , Animais , Avidina/química , Sítios de Ligação , Biotina/química , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/genética , Proteínas Imobilizadas/metabolismo , Interferons/química , Interferons/metabolismo , Sequências Repetidas Invertidas , Camundongos , Simulação de Dinâmica Molecular , Inibidor de NF-kappaB alfa/química , Inibidor de NF-kappaB alfa/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Imagem Individual de Molécula/métodos , Fator de Transcrição RelA/química , Fator de Transcrição RelA/metabolismo
5.
Nat Protoc ; 16(7): 3522-3546, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34089021

RESUMO

Cellular heterogeneity is pervasive and of paramount importance in biology. Single-cell analysis techniques are indispensable for understanding the heterogeneity and functions of cells. Low-copy-number proteins (fewer than 1,000 molecules per cell) perform multiple crucial functions such as gene expression, cellular metabolism and cell signaling. The expression level of low-copy-number proteins of individual cells provides key information for the in-depth understanding of biological processes and diseases. However, the quantitative analysis of low-copy-number proteins in a single cell still remains challenging. To overcome this, we developed an approach called single-cell plasmonic immunosandwich assay (scPISA) for the quantitative measurement of low-copy-number proteins in single living cells. scPISA combines in vivo microextraction for specific enrichment of target proteins from cells and a state-of-the-art technique called plasmon-enhanced Raman scattering for ultrasensitive detection of low-copy-number proteins. Plasmon-enhanced Raman scattering detection relies on the plasmonic coupling effect (hot-spot) between silver-based plasmonic nanotags and a gold-based extraction microprobe, which dramatically enhances the signal intensity of the surface-enhanced Raman scattering of the nanotags and thereby enables sensitivity at the single-molecule level. scPISA is a straightforward and minimally invasive technique, taking only ~6-15 min (from in vivo extraction to Raman spectrum readout). It is generally applicable to all freely floating intracellular proteins provided that appropriate antibodies or alternatives (for example, molecularly imprinted polymers or aptamers) are available. The entire protocol takes ~4-7 d to complete, including material fabrication, single-cell manipulation, protein labeling, signal acquisition and data analysis.


Assuntos
Dosagem de Genes , Imunoensaio/métodos , Proteínas/metabolismo , Análise de Célula Única , Anticorpos/metabolismo , Calibragem , Linhagem Celular Tumoral , Sobrevivência Celular , Análise de Dados , Ouro/química , Humanos , Proteínas Imobilizadas/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Coloração e Rotulagem
6.
Carbohydr Polym ; 266: 118138, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044952

RESUMO

Targeting cell surface receptors for specific drug delivery in cancer has garnered lot of attention. Urokinase plasminogen activator receptor (uPAR), a surface biomarker, is overexpressed on many tumours including breast, colorectal, prostate, and ovarian cancers. Binding of growth factor domain (GFD) of urokinase plasminogen activator (uPA) with uPAR lead to its close conformation, and allow somatomedin B domain (SMB) of vitronectin binding by allosteric modulation. In-silico docking of uPAR with GFD and SMB peptides was performed to identify potential binding affinity. Herein, we report fluorescently labeled peptide functionalized AuNPs with a mixed self-assembled monolayer of intercalating chitosan polymer for efficient targeting and imaging of uPAR-positive cells. The biophysical characterization of nanoconjugates and uPAR-specific targeting was assessed by FACS, cell adhesion, and fluorescence imaging. AuNPs/chitosan/GFD+SMB peptides showed higher uptake as compared to AuNPs/chitosan/GFD, and AuNPs/chitosan/SMB that can be utilized as a tool for molecular targeting and imaging in metastasis.


Assuntos
Quitosana/química , Nanopartículas Metálicas/química , Neoplasias/diagnóstico por imagem , Peptídeos/química , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Linhagem Celular Tumoral , Quitosana/toxicidade , Ouro/química , Ouro/toxicidade , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Proteínas Imobilizadas/toxicidade , Nanopartículas Metálicas/toxicidade , Microscopia de Fluorescência , Simulação de Acoplamento Molecular , Neoplasias/metabolismo , Peptídeos/metabolismo , Peptídeos/toxicidade , Ligação Proteica
7.
Nat Commun ; 12(1): 1359, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649336

RESUMO

Modulating effector immune cells via monoclonal antibodies (mAbs) and facilitating the co-engagement of T cells and tumor cells via chimeric antigen receptor- T cells or bispecific T cell-engaging antibodies are two typical cancer immunotherapy approaches. We speculated that immobilizing two types of mAbs against effector cells and tumor cells on a single nanoparticle could integrate the functions of these two approaches, as the engineered formulation (immunomodulating nano-adaptor, imNA) could potentially associate with both cells and bridge them together like an 'adaptor' while maintaining the immunomodulatory properties of the parental mAbs. However, existing mAbs-immobilization strategies mainly rely on a chemical reaction, a process that is rough and difficult to control. Here, we build up a versatile antibody immobilization platform by conjugating anti-IgG (Fc specific) antibody (αFc) onto the nanoparticle surface (αFc-NP), and confirm that αFc-NP could conveniently and efficiently immobilize two types of mAbs through Fc-specific noncovalent interactions to form imNAs. Finally, we validate the superiority of imNAs over the mixture of parental mAbs in T cell-, natural killer cell- and macrophage-mediated antitumor immune responses in multiple murine tumor models.


Assuntos
Anticorpos Monoclonais/metabolismo , Imunomodulação , Imunoterapia , Nanopartículas/química , Neoplasias/imunologia , Neoplasias/terapia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Feminino , Proteínas Imobilizadas/metabolismo , Imunidade , Células Matadoras Naturais/imunologia , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Linfócitos T/imunologia
8.
Sci Rep ; 11(1): 2141, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495508

RESUMO

In response to the drawbacks of autograft donor-site morbidity and bone morphogenetic protein type 2 (BMP2) carcinogenesis and ectopic bone formation, there has been an increased research focus towards developing alternatives capable of achieving spatial control over bone formation. Here we show for the first time both osteogenic differentiation and mineralization (from solution or mediated by cells) occurring within predetermined microscopic patterns. Our results revealed that both PEGylated BMP2 and nacre proteins induced stem cell osteodifferentiation in microscopic patterns when these proteins were covalently bonded in patterns onto polyethylene glycol diacrylate (PEGDA) hydrogel substrates; however, only nacre proteins induced mineralization localized to the micropatterns. These findings have broad implications on the design and development of orthopedic biomaterials and drug delivery.


Assuntos
Biomineralização , Proteínas Imobilizadas/metabolismo , Microtecnologia , Nácar/química , Fosfatase Alcalina/metabolismo , Animais , Osso e Ossos/fisiologia , Linhagem Celular , Hidrogéis/química , Camundongos , Microesferas , Osteogênese , Ostreidae , Polietilenoglicóis/química
9.
J Biochem ; 169(1): 35-42, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32706869

RESUMO

Recently, there has been an increasing interest in site-specific modifications of antibodies used in immunoassays for disease diagnosis and as antibody therapeutics, such as antibody-drug conjugates. Previously, we established a site-specific chemical conjugation system using an IgG-Fc binding chemical conjugation affinity peptide (CCAP). CCAP could be used only for the modification of human IgG owing to the lack of affinity of CCAP to rodent IgG molecules. In this study, novel CCAP reagents are proposed, which can be used for both human and mouse IgG, based on the Staphylococcus aureus protein A domain-derived affinity peptides Z34C and Z33. Compared with the activity of a conventional randomly modified antibody, mouse IgG modified using this method had favourable features in two immunoassays, demonstrating the advantages of the proposed CCAP method in preserving antibody functionality during conjugation.


Assuntos
Imunoensaio/métodos , Imunoconjugados/química , Imunoglobulina G/química , Peptídeos/química , Animais , Anticorpos Monoclonais/química , Eletroforese em Gel de Poliacrilamida/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Proteínas Imobilizadas/metabolismo , Imunoconjugados/metabolismo , Testes de Fixação do Látex/métodos , Camundongos , Ligação Proteica
10.
Anal Chem ; 92(20): 13750-13758, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32894935

RESUMO

Protein immobilization is particularly significant in proteomics, interactomics, and in vitro drug screening. It is an essential primary step for numerous biological techniques that rely on immobilized proteins with controlled orientation, high conformational stability, and high activity (CHH). These have challenged the current immobilization strategy and demanded increasing efforts for an efficient method to meet the CHH immobilization in a single step. Herein, we proposed a covalent inhibitor-based, one-step method for G protein-coupled receptor (GPCR) immobilization inspired by the covalent reaction between an epidermal growth factor receptor (EGFR)-tag and its inhibitor ibrutinib. We immobilized endothelin receptor A (ETA) containing a fusion EGFR tag onto an ibrutinib-coated macroporous silica gel. The immobilized ETA proved to have demonstrable ligand-binding activity and specificity, thus resulting in a chromatographic technology allowing receptor-ligand interaction analysis and lead identification. Such immobilization method is attractable, owing to the properties of mild reacting conditions, fast rate, high yield, and good stability of the conjugated protein. It will be applicable to biochips, biosensors, and biocatalysts.


Assuntos
Adenina/análogos & derivados , Piperidinas/química , Receptores de Endotelina/química , Adenina/química , Técnicas Biossensoriais/métodos , Cromatografia Líquida , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Ligantes , Porosidade , Receptores de Endotelina/genética , Receptores de Endotelina/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Sílica Gel/química
11.
Sci Rep ; 10(1): 9265, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518229

RESUMO

The cytokine tumor necrosis factor-alpha (TNF-α) readily forms homotrimers at sub-nM concentrations to promote inflammation. For the treatment of inflammatory diseases with upregulated levels of TNF-α, a number of therapeutic antibodies are currently used as scavengers to reduce the active TNF-α concentration in patients. Despite their clinical success, the mode-of-action of different antibody formats with regard to a stabilization of the trimeric state is not entirely understood. Here, we use a biosensor with dynamic nanolevers to analyze the monomeric and trimeric states of TNF-α together with the binding kinetics of therapeutic biologics. The intrinsic trimer-to-monomer decay rate k = 1.7 × 10-3 s-1 could be measured directly using a microfluidic system, and antibody binding affinities were analyzed in the pM range. Trimer stabilization effects are quantified for Adalimumab, Infliximab, Etanercept, Certolizumab, Golimumab for bivalent and monovalent binding formats. Clear differences in trimer stabilization are observed, which may provide a deeper insight into the mode-of-action of TNF-α scavengers.


Assuntos
Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Adalimumab/metabolismo , Anticorpos Monoclonais/metabolismo , Técnicas Biossensoriais , Etanercepte/metabolismo , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Fragmentos Fab das Imunoglobulinas/metabolismo , Infliximab/metabolismo , Imagem Molecular , Multimerização Proteica , Estabilidade Proteica , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/genética
12.
Biotechnol Bioeng ; 117(9): 2741-2748, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32572957

RESUMO

Neural progenitor cells (NPCs) are considered to be a promising source for stem cell-based regenerative therapy for central nervous disorders. However, the widespread clinical application of NPCs requires another technology that permits the efficient production of pure NPCs in large quantities. In this study, culture substrates were designed by immobilizing epidermal growth factor (EGF) onto the substrate and evaluated for their feasibility of expanding NPCs obtained through the neurosphere culture of induced pluripotent stem (iPS) cells. After three passages we obtained neurospheres that contained cells abundantly expressing an EGF receptor. The neurospheres were dissociated into single cells and seeded onto the EGF-immobilized substrates. It was observed that neurosphere-forming cells seeded and cultured on the EGF-immobilized surface formed a two-dimensional cellular network characteristic of NPCs. These cells were found to be capable of being subcultured, while remaining their proliferation potential. Furthermore, a majority of cells (~99% of total cells) on the substrate was shown to express an NPC marker, nestin, whereas a limited number of cells (~1% of total cells) expressed neuronal marker, ß-tubulin III. These results as a whole demonstrate that the EGF-immobilized substrate allows for iPS cell-derived NPCs to efficiently proliferate while maintaining the undifferentiated state.


Assuntos
Técnicas Citológicas/métodos , Fator de Crescimento Epidérmico/metabolismo , Proteínas Imobilizadas/metabolismo , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Animais , Proliferação de Células , Células Cultivadas , Fator de Crescimento Epidérmico/química , Receptores ErbB/química , Receptores ErbB/metabolismo , Proteínas Imobilizadas/química , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células-Tronco Neurais/química , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
13.
Glycoconj J ; 37(4): 457-470, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32367478

RESUMO

The Thomsen-Friedenreich-antigen, Gal(ß1-3)GalNAc(α1-O-Ser/Thr (TF-antigen), is presented on the surface of most human cancer cell types. Its interaction with galectin 1 and galectin 3 leads to tumor cell aggregation and promotes cancer metastasis and T-cell apoptosis in epithelial tissue. To further explore multivalent binding between the TF-antigen and galectin-3, the TF-antigen was enzymatically synthesized in high yields with GalNAc(α1-EG3-azide as the acceptor substrate by use of the glycosynthase BgaC/Glu233Gly. Subsequently, it was coupled to alkynyl-functionalized bovine serum albumin via a copper(I)-catalyzed alkyne-azide cycloaddition. This procedure yielded neo-glycoproteins with tunable glycan multivalency for binding studies. Glycan densities between 2 and 53 glycan residues per protein molecule were obtained by regulated alkynyl-modification of the lysine residues of BSA. The number of coupled glycans was quantified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and a trinitrobenzene sulfonic acid assay. The binding efficiency of the neo-glycoproteins with human galectin-3 and the effect of multivalency was investigated and assessed using an enzyme-linked lectin assay. Immobilized neo-glycoproteins of all modification densities showed binding of Gal-3 with increasing glycan density. However, multivalent glycan presentation did not result in a higher binding affinity. In contrast, inhibition of Gal-3 binding to asialofetuin was effective. The relative inhibitory potency was increased by a factor of 142 for neo-glycoproteins displaying 10 glycans/protein in contrast to highly decorated inhibitors with only 2-fold increase. In summary, the functionality of BSA-based neo-glycoproteins presenting the TF-antigen as multivalent inhibitors for Gal-3 was demonstrated.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Antígenos Glicosídicos Associados a Tumores/metabolismo , Proteínas Sanguíneas/metabolismo , Galectinas/metabolismo , Glicoproteínas/síntese química , Ligação Competitiva , Proteínas Sanguíneas/genética , Catálise , Cobre/química , Reação de Cicloadição , Galectinas/genética , Glicoproteínas/metabolismo , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Técnicas Imunoenzimáticas/métodos , Soroalbumina Bovina/química , beta-Galactosidase/metabolismo
14.
Anal Chim Acta ; 1116: 53-61, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32389189

RESUMO

We designed an electrode that has the ability to sense a target cell. This new electrode is intended for use in cell recognition via electron-transfer and cross-linker peptide immobilization. Myelopeptide-4 (MP-4:FRPRIMTP) is a marrow-origin peptide that interacts with receptors of the human leukemia cell line (K562 cells), and allows their differentiation. The YYYYC electron-transfer peptide improves the electron-transfer accessibility from an electroactive compound to an electrode. Oligoalanine plays the role of a cross-linker that immobilizes a peptide series (Ac-FRPRIMTPYYYYCAAAAA) to collagen, which then allows it to be cast onto an electrode. Use of the electrode with a peptide increased the peak currents of [Fe(CN)6]4-/3- and also improved the reversibility of redox. These improvements are due to the interaction between [Fe(CN)6]4-/3- and the peptide. When electrochemical impedance spectroscopy (EIS) measurements were carried out using a collagen/peptide probe-immobilized electrode, the electron transfer resisitance was lower than that without the peptide. The detection of K562 cells was based on an increase in resistance, because MP-4 was bound to the receptors on the cell surface. The responses were linear and ranged in number from 27 to 2,000 cells/mLwith a detection limit of 8 cells/mL. Recoveries of 50 and 1,000 cells/mL in human serum were accomplished at rates of 98 and 101%, respectively. Consequently, the proposed procedure is a powerful new concept for cytosensing.


Assuntos
Separação Celular/métodos , Espectroscopia Dielétrica/métodos , Proteínas Imobilizadas/química , Oligopeptídeos/química , Sequência de Aminoácidos , Separação Celular/instrumentação , Colágeno/química , Espectroscopia Dielétrica/instrumentação , Eletrodos , Humanos , Proteínas Imobilizadas/metabolismo , Células K562 , Proteínas de Neoplasias/metabolismo , Oligopeptídeos/metabolismo , Receptores de Superfície Celular/metabolismo
15.
Anal Chim Acta ; 1113: 26-35, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32340666

RESUMO

Biophysical techniques that enable the screening and identification of weak affinity fragments against a target protein are at the heart of Fragment Based Drug Design approaches. In the case of membrane proteins, the crucial criteria for fragment screening are low protein consumption, unbiased conformational states and rapidity because of the difficulties in obtaining sufficient amounts of stable and functionally folded proteins. Here we show for the first time that lipid-nanodisc systems (membrane-mimicking environment) and miniaturized affinity chromatography can be combined to identify specific small molecule ligands that bind to an integral membrane protein. The approach was exemplified using the AA2AR GPCR. Home-made affinity nano-columns modified with nanodiscs-embedded AA2AR (only about 1 µg of protein per column) were fully characterized by frontal chromatographic experiments. This method allows (i) to distinguish specific and unspecific ligand/receptor interactions, (ii) to assess dissociation constants, (iii) to identify the binding pocket of uncharacterized ligands using a reference compound (whose binding site is known) with competition experiments. Weak affinity ligands with Kd in the low to high micromolar range can be detected. At last, the applicability of this method was demonstrated with 6 fragments recently identified as ligands or non-ligands of AA2AR.


Assuntos
Proteínas Imobilizadas/metabolismo , Nanopartículas/química , Compostos Orgânicos/análise , Receptor A2A de Adenosina/metabolismo , Cromatografia de Afinidade/métodos , Descoberta de Drogas , Humanos , Proteínas Imobilizadas/química , Ligantes , Membranas Artificiais , Compostos Orgânicos/metabolismo , Estudo de Prova de Conceito , Ligação Proteica , Receptor A2A de Adenosina/química
16.
Nat Commun ; 11(1): 2060, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345978

RESUMO

Single-molecule methods using recombinant proteins have generated transformative hypotheses on how mechanical forces are generated and sensed in biological tissues. However, testing these mechanical hypotheses on proteins in their natural environment remains inaccesible to conventional tools. To address this limitation, here we demonstrate a mouse model carrying a HaloTag-TEV insertion in the protein titin, the main determinant of myocyte stiffness. Using our system, we specifically sever titin by digestion with TEV protease, and find that the response of muscle fibers to length changes requires mechanical transduction through titin's intact polypeptide chain. In addition, HaloTag-based covalent tethering enables examination of titin dynamics under force using magnetic tweezers. At pulling forces < 10 pN, titin domains are recruited to the unfolded state, and produce 41.5 zJ mechanical work during refolding. Insertion of the HaloTag-TEV cassette in mechanical proteins opens opportunities to explore the molecular basis of cellular force generation, mechanosensing and mechanotransduction.


Assuntos
Conectina/metabolismo , Endopeptidases/genética , Especificidade de Órgãos , Animais , Fenômenos Biomecânicos , Conectina/química , Feminino , Proteínas Imobilizadas/metabolismo , Magnetismo , Camundongos , Músculos/metabolismo , Músculos/ultraestrutura , Pinças Ópticas , Fenótipo , Dobramento de Proteína , Análise Espectral
17.
J Vis Exp ; (156)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32091003

RESUMO

Chemical and bio-conjugation techniques have been developed rapidly in recent years and allow the building of protein polymers. However, a controlled protein polymerization process is always a challenge. Here, we have developed an enzymatic methodology for constructing polymerized protein step by step in a rationally-controlled sequence. In this method, the C-terminus of a protein monomer is NGL for protein conjugation using OaAEP1 (Oldenlandia affinis asparaginyl endopeptidases) 1) while the N-terminus was a cleavable TEV (tobacco etch virus) cleavage site plus an L (ENLYFQ/GL) for temporary N-terminal protecting. Consequently, OaAEP1 was able to add only one protein monomer at a time, and then the TEV protease cleaved the N-terminus between Q and G to expose the NH2-Gly-Leu. Then the unit is ready for next OaAEP1 ligation. The engineered polyprotein is examined by unfolding individual protein domain using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS). Therefore, this study provides a useful strategy for polyprotein engineering and immobilization.


Assuntos
Cisteína Endopeptidases/metabolismo , Proteínas Imobilizadas/metabolismo , Oldenlandia/enzimologia , Polimerização , Biossíntese de Proteínas , Imagem Individual de Molécula/métodos , Cisteína Endopeptidases/química , Endopeptidases/química , Endopeptidases/metabolismo , Microscopia de Força Atômica , Potyvirus/enzimologia , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Espectrofotometria Ultravioleta
18.
J Biol Chem ; 295(11): 3719-3733, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31949047

RESUMO

Selectins are key to mediating interactions involved in cellular adhesion and migration, underlying processes such as immune responses, metastasis, and transplantation. Selectins are composed of a lectin domain, an epidermal growth factor (EGF)-like domain, multiple short consensus repeats (SCRs), a transmembrane domain, and a cytoplasmic tail. It is well-established that the lectin and EGF domains are required to mediate interactions with ligands; however, the contributions of the other domains in mediating these interactions remain obscure. Using various E-selectin constructs produced in a newly developed silkworm-based expression system and several assays performed under both static and physiological flow conditions, including flow cytometry, glycan array analysis, surface plasmon resonance, and cell-rolling assays, we show here that a reduction in the number of SCR domains is correlated with a decline in functional E-selectin binding to hematopoietic cell E- and/or L-selectin ligand (HCELL) and P-selectin glycoprotein ligand-1 (PSGL-1). Moreover, the binding was significantly improved through E-selectin dimerization and by a substitution (A28H) that mimics an extended conformation of the lectin and EGF domains. Analyses of the association and dissociation rates indicated that the SCR domains, conformational extension, and dimerization collectively contribute to the association rate of E-selectin-ligand binding, whereas just the lectin and EGF domains contribute to the dissociation rate. These findings provide the first evidence of the critical role of the association rate in functional E-selectin-ligand interactions, and they highlight that the SCR domains have an important role that goes beyond the structural extension of the lectin and EGF domains.


Assuntos
Selectina E/química , Selectina E/metabolismo , Animais , Bombyx , Linhagem Celular Tumoral , Selectina E/isolamento & purificação , Humanos , Proteínas Imobilizadas/metabolismo , Cinética , Ligantes , Camundongos , Polissacarídeos/metabolismo , Domínios Proteicos , Multimerização Proteica , Relação Estrutura-Atividade
19.
Food Chem ; 307: 125514, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31639576

RESUMO

The thermodynamics and kinetics of binding between human serum albumin (HSA) and resveratrol (RES) or its analog (RESAn1) were investigated by surface plasmon resonance (SPR). The binding constant and the kinetic constants of association and dissociation indicated that RESAn1 has higher affinity toward HSA than does RES. The formation of these complexes was entropically driven ( [Formula: see text] , [Formula: see text]  KJ mol-1). However, for both polyphenols, the activation energy (Eact) of association (a) of free molecules was higher than that for dissociation (d) of the stable complex ( [Formula: see text]  KJ mol-1), and the rate of association was faster than that of dissociation since the activation Gibbs free energy (ΔG‡) was lower for the former (ΔGaHSA-RES‡â‰…54.73,ΔGdHSA-RES‡â‰…73.83,ΔGaHSA-RESAn1‡â‰…54.14,ΔGdHSA-RESAn1‡â‰…73.97 KJ mol-1). This study showed that small differences in the structure of polyphenols such as RES and RESAn1 influenced the thermodynamics and kinetics of the complex formation with HSA.


Assuntos
Fenóis/química , Resveratrol/metabolismo , Albumina Sérica Humana/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Cinética , Ligação Proteica , Resveratrol/química , Albumina Sérica Humana/química , Ressonância de Plasmônio de Superfície , Temperatura , Termodinâmica
20.
Mater Sci Eng C Mater Biol Appl ; 107: 110335, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761211

RESUMO

In order to stimulate the cellular response to implant materials, extracellular matrix (ECM) proteins, such as collagen and fibronectin (FN), are immobilized on the implant surface. Amongst all ECM proteins used for biomimetic materials for medical applications, FN is one of the most investigated proteins thanks to its ability to promote cell adhesion and its contribution to important physiological processes. However, its conformation and hence its bioactivity strongly depend on the hydrophilic/hydrophobic nature of the surface as well as on immobilization strategies. This work investigates the effect of these two parameters, as well as the effect of the crosslinker length. FN was grafted onto silicon wafers using eights different linking arms presenting different lengths, hydrophilic/hydrophobic characters and binding sites. The protein was linked through either its amino groups (lysine amino acids) or sulfhydryl functionalities (cysteine amino acids). The grafting of each crosslinker and subsequent FN conjugation onto the surfaces was evidenced by X-ray photoelectron spectroscopy, while the surface hydrophilicity was determined by contact angle measurements. Moreover, atomic force microscopy images revealed that the conformation of surface conjugated FN only depends on the hydrophilicity of the linking arm. The FN conformation was also probed by enzyme-linked immunosorbent assays (ELISA). ELISA data demonstrated that all of the three investigated parameters linking arm parameter (length, hydrophobic/hydrophilic character, and terminal end-group) somewhat influence the RGD accessibility.


Assuntos
Fibronectinas/química , Proteínas Imobilizadas/química , Oligopeptídeos/química , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , Ensaio de Imunoadsorção Enzimática , Fibronectinas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas Imobilizadas/metabolismo , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA