Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Chem Biol Interact ; 397: 111092, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38825053

RESUMO

The cyclin-dependent kinase inhibitor 3 (CDKN3) gene, is over expressed in renal cell carcinoma (RCC). However, the cell biology functions of RCC are not well understood. The present study aimed to verify the ability of CDKN3 to promote the proliferation and migration of RCC through in vitro experiments. Subsequently, the clinical prognostic effects were analyzed using The Cancer Genome Atlas (TCGA; https://www.cancer.gov/) and Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/). The chelators, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), an analogue of the anti-tumor agent, were screened through bioinformatics analysis. The expression of CDKN3 is positively correlated with the IC50 of Dp44mT. In two RCC cell lines, 786-0 and Caki-1, we conducted small interfering RNA (siRNA) knockdown of CDKN3 and overexpression of CDKN3 by transfection plasmid. Subsequently, we administered Dp44mT to examine the resulting alterations in cell proliferation, migration, and apoptosis, thereby elucidating the role of CDKN3 and Dp44mT in these processes. The results of the experiment revealed a positive association between CDKN3 expression and the proliferation of RCC cell lines. Down-regulating CDKN3 significantly increased the apoptosis rate and inhibited cell migration in 786-0 and Caki-1 cells. Furthermore, bioinformatics analysis revealed a high expression of CDKN3 in RCC and a negative association between CDKN3 expression and survival. Gene set enrichment analysis (GSEA) revealed a significant association between high CDKN3 expression and the cell cycle pathway. Furthermore, we identified Dp44mT as a drug highly correlated with CDKN3 through the database. Subsequent addition of Dp44mT resulted in similar findings to those observed upon CDKN3 knockdown. Our findings have important implications for the diagnosis and treatment of CDKN3 in RCC. Additionally, Dp44mT is likely to be a promising candidate for future clinical applications.


Assuntos
Carcinoma de Células Renais , Movimento Celular , Proliferação de Células , Proteínas Inibidoras de Quinase Dependente de Ciclina , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Linhagem Celular Tumoral , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Tiossemicarbazonas/farmacologia , RNA Interferente Pequeno/metabolismo , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fosfatases de Especificidade Dupla
2.
Eur J Med Res ; 29(1): 272, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720365

RESUMO

BACKGROUND: Cell cycle protein-dependent kinase inhibitor protein 3 (CDKN3), as a member of the protein kinase family, has been demonstrated to exhibit oncogenic properties in several tumors. However, there are no pan-carcinogenic analyses for CDKN3. METHODS: Using bioinformatics tools such as The Cancer Genome Atlas (TCGA) and the UCSC Xena database, a comprehensive pan-cancer analysis of CDKN3 was conducted. The inverstigation encompassed the examination of CDKN3 function actoss 33 different kinds of tumors, as well as the exploration of gene expressions, survival prognosis status, clinical significance, DNA methylation, immune infiltration, and associated signal pathways. RESULTS: CDKN3 was significantly upregulated in most of tumors and correlated with overall survival (OS) of patients. Methylation levels of CDKN3 differed significantly between tumors and normal tissues. In addition, infiltration of CD4 + T cells, cancer-associated fibroblasts, macrophages, and endothelial cells were associated with CDKN3 expression in various tumors. Mechanistically, CDKN3 was associated with P53, PI3K-AKT, cell cycle checkpoints, mitotic spindle checkpoint, and chromosome maintenance. CONCLUSION: Our pan-cancer analysis conducted in the study provides a comprehensive understanding of the involvement of CDKN3 gene in tumorigenesis. The findings suggest that targeting CDKN3 may potentially lead to novel therapeutic strategies for the treatment of tumors.


Assuntos
Biomarcadores Tumorais , Proteínas Inibidoras de Quinase Dependente de Ciclina , Neoplasias , Humanos , Neoplasias/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Prognóstico , Regulação Neoplásica da Expressão Gênica , Metilação de DNA , Biologia Computacional/métodos , Fosfatases de Especificidade Dupla
3.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 161-169, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38814199

RESUMO

Endometrial cancer (EC) is a common malignant tumor in the female reproductive system. Circular RNAs (circRNAs) and N6-methyladenosine (m6A) modification are widely involved in cancer progression. Nevertheless, the cross-talk between circ-NAB1 and m6A as well as the biological functions of circ-NAB1 in EC remain unclear. Circ-NAB1 was observed to be upregulated in EC tissues and cells by RT-qPCR. MeRIP and RNA pull-down assays were utilized for detecting the m6A modification of circ-NAB1. The interaction between circ-NAB1 and RNAs was also detected. Colony formation, transwell, flow cytometry, and western blot were utilized for measuring EC cell behaviors. Mechanically, we proved the m6A demethylase alkylation repair homolog protein 5 (ALKBH5) can mediate circ-NAB1 expression through an m6A-YTHDF2-dependent manner. Circ-NAB1 overexpression can promote cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) process, and cell cycle through functional assays. Circ-NAB1 knockdown exerts the opposite function on EC cells. Furthermore, we proved that circ-NAB1 can sponge miR-876-3p to upregulate the target gene cyclin-dependent kinase inhibitor 3 (CDKN3) in EC cells. CDKN3 overexpression can reverse the impacts of circ-NAB1 depletion on EC cell behaviors. Collectively, we proved that ALKBH5-mediated m6A modification of circ-NAB1 promoted EMT process and cell cycle in EC via targeting the miR-876-3p/CDKN3 axis.


Assuntos
Adenosina , Ciclo Celular , Proliferação de Células , Neoplasias do Endométrio , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , RNA Circular , Feminino , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/metabolismo , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
4.
Sci Rep ; 13(1): 22942, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135704

RESUMO

Gliomas with CDKN2A mutations are known to have worse prognosis but imaging features of these gliomas are unknown. Our goal is to identify CDKN2A specific qualitative imaging biomarkers in glioblastomas using a new informatics workflow that enables rapid analysis of qualitative imaging features with Visually AcceSAble Rembrandtr Images (VASARI) for large datasets in PACS. Sixty nine patients undergoing GBM resection with CDKN2A status determined by whole-exome sequencing were included. GBMs on magnetic resonance images were automatically 3D segmented using deep learning algorithms incorporated within PACS. VASARI features were assessed using FHIR forms integrated within PACS. GBMs without CDKN2A alterations were significantly larger (64 vs. 30%, p = 0.007) compared to tumors with homozygous deletion (HOMDEL) and heterozygous loss (HETLOSS). Lesions larger than 8 cm were four times more likely to have no CDKN2A alteration (OR: 4.3; 95% CI 1.5-12.1; p < 0.001). We developed a novel integrated PACS informatics platform for the assessment of GBM molecular subtypes and show that tumors with HOMDEL are more likely to have radiographic evidence of pial invasion and less likely to have deep white matter invasion or subependymal invasion. These imaging features may allow noninvasive identification of CDKN2A allele status.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Homozigoto , Deleção de Sequência , Glioma/patologia , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Informática , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Mutação
5.
Cancer Gene Ther ; 30(8): 1072-1083, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37037907

RESUMO

Proteasome 26S subunit, non-ATPase 12 (PSMD12) genes have been implicated in several types of malignancies but the role of PSMD12 in pancreatic cancer (PC) remains elusive. Bioinformatics analysis showed that PSMD12 was highly expressed in PC patients and was associated with shorter overall survival. PSMD12 was also shown to be highly expressed in PC tissues and cell lines. Upregulated PSMD12 showed enhanced cell viability, increased colony formation rate and upregulated levels of PCNA and c-Myc, while the inhibition of PSMD12 abated these levels. PSMD12 knockdown promoted cell apoptosis. The results of xenografts in nude mice confirmed that PSMD12 promoted PC tumor growth in vivo. Protein‒protein interaction network and functional enrichment analyses implied that PSMD12 may have a connection with cyclin-dependent kinase inhibitor 3 (CDKN3). Co­immunoprecipitation and western blot results confirmed that PSMD12 could interact with and abate the ubiquitination level of CDKN3, thus stabilizing the CDKN3 protein. Rescue assays showed that PSMD12 overexpression caused cell proliferation and that knockdown-induced cell apoptosis could be reversed by CDKN3 regulation. This work reveals the essential roles of PSMD12 in the proliferation and apoptosis of PC development. PSMD12 may regulate CDKN3 expression by interacting with and abating the ubiquitination level of CDKN3, thereby participating in the malignant behavior of PC.


Assuntos
Proteínas Inibidoras de Quinase Dependente de Ciclina , Neoplasias Pancreáticas , Complexo de Endopeptidases do Proteassoma , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Neoplasias Pancreáticas/genética , Complexo de Endopeptidases do Proteassoma/genética , Neoplasias Pancreáticas
6.
Aging (Albany NY) ; 15(6): 2136-2157, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36961395

RESUMO

Cyclin-dependent kinase inhibitor 2A (CDKN2A) encodes the cell senescence regulator protein p16. The expression of p16 raises in cell senescence and has a nuclear regulation in cell aging. Meanwhile, it's also reported to inhibit the aggression of several cancers. But its clinical application and role in cancer immunotherapy needs further investigation. We collected the transcriptional data of pan-cancer and normal human tissues from The Cancer Genome Atlas and the Genotype-Tissue Expression databases. CBioPortal webtool was employed to mine the genomic alteration status of CDKN2A across cancers. Kaplan-Meier method and univariate Cox regression were performed for prognostic assessments across cancers, respectively. Gene Set Enrichment Analysis is the main method used to search the associated cancer hallmarks associated with CDKN2A. TIMER2.0 was used to analyze the immune cell infiltration relevance with CDKN2A in pan-cancer. The associations between CDKN2A and immunotherapy biomarkers or regulators were performed by spearman correlation analysis. We found CDKN2A is overexpressed in most cancers and exhibits prognosis predictive ability in various cancers. In addition, it is significantly correlated with immune-activated hallmarks, cancer immune cell infiltrations and immunoregulators. The most interesting finding is that CDKN2A can significantly predict anti-PDL1 therapy response. Finally, specific inhibitors which correlated with CDKN2A expression in different cancer types were also screened by using Connectivity Map (CMap) tool. The results revealed that CDKN2A acts as a robust cancer prognostic and immunotherapy biomarker. Its function in the regulation of cancer cell senescence might shape the tumor microenvironment and contribute to its predictive ability of immunotherapy.


Assuntos
Neoplasias , Humanos , Prognóstico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Genes p16 , Biomarcadores , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Senescência Celular/genética , Microambiente Tumoral/genética
7.
Lab Invest ; 103(6): 100122, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828188

RESUMO

Dysregulation of deubiquitinase or ubiquitinase-mediated protein expression contributes to various diseases, including cancer. In the present study, we identified GID2, a subunit of the glucose-induced degradation-deficient (GID) complex that functions as an E3 ubiquitin ligase, as a potential key candidate gene in pancreatic cancer (PC) progression. The functional role and potential mechanism of GID2 in PC progression were investigated. Integrated bioinformatics analysis was performed to identify differentially expressed genes in PC based on the Gene Expression Profiling Interactive Analysis data sets. We found that GID2 was upregulated in PC tissues and that a high level of GID2 expression in clinical PC samples was positively associated with tumor stage and poor survival. Functional assays elucidated that GID2 expression promoted cell growth in vitro and accelerated tumor growth in vivo. GID2 knockdown effectively attenuated the malignant behaviors of PC cells and tumor formation. Furthermore, the protein network that interacted with the GID2 protein was constructed based on the GeneMANIA website. Cyclin-dependent kinase inhibitor 3 (CDKN3), a cell cycle regulator, was identified as a potential target of the GID2 protein. We revealed that GID2 positively regulated CDKN3 expression and inhibited CDKN3 ubiquitination. Furthermore, CDKN3 downregulation reversed the promoting effects of GID2 on PC progression. Therefore, the present study demonstrated that GID2 might regulate PC progression by maintaining the stability of the CDKN3 protein. These findings highlight the potential roles of the GID2/CDKN3 axis as a potential therapeutic target in PC.


Assuntos
Genes cdc , Neoplasias Pancreáticas , Humanos , Proliferação de Células/genética , Ciclo Celular , Neoplasias Pancreáticas/genética , Apoptose/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Fosfatases de Especificidade Dupla/genética , Neoplasias Pancreáticas
8.
JCO Precis Oncol ; 6: e2200145, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36409970

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a component of familial melanoma due to germline pathogenic variants (GPVs) in CDKN2A. However, it is unclear what role this gene or other genes play in its etiology. MATERIALS AND METHODS: We analyzed 189 cancer predisposition genes using parametric rare-variant association (RVA) tests and nonparametric permutation tests to identify gene-level associations in PDAC for patients with (CDKN2A+) and without (CDKN2A-) GPV. Exome sequencing was performed on 84 patients with PDAC, 47 CDKN2A+ and 37 CDKN2A-. After variant filtering, various RVA tests and permutation tests were run separately by CDKN2A status. Genes with the strongest nominal associations were evaluated in patients with PDAC from The Cancer Genome Atlas and the UK Biobank (UKB). A secondary analysis including only GPV from UKB was also performed. RESULTS: In RVA tests, ERCC4 and RET showed the most compelling evidence as plausible PDAC candidate genes for CDKN2A+ patients. In contrast, the findings in CDKN2A- patients provided evidence for HMBS, EPCAM, and MRE11 as potential new candidate genes and confirmed ATM, BRCA2, and PALB2 as PDAC genes, consistent with findings in The Cancer Genome Atlas and the UKB. As expected, CDKN2A- patients were more likely to harbor GPVs from the 189 genes investigated. When including only GPVs from UKB, significant associations with PDAC were seen for ATM, BRCA2, and CDKN2A. CONCLUSION: These results suggest that variants in other genes likely play a role in PDAC in all patients and that PDAC in CDKN2A+ patients has a distinct etiology from PDAC in CDKN2A- patients.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Predisposição Genética para Doença/genética , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Células Germinativas/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias Pancreáticas
9.
Biosci Rep ; 42(7)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35771229

RESUMO

The INK4 family is an important family of cyclin-dependent kinase inhibitors (CDKIs) and consists of CDKN2A, CDKN2B, CDKN2, and CDKN2D. Abnormal expression of CDKN2A has been reported in hepatocellular carcinoma (HCC) and is associated with the prognosis of patients and infiltration of immune cells. However, there is a lack of systematic research on the roles of the other INK4 family members in the diagnosis, prognosis, and immune regulation of HCC. Using online public databases and clinical samples, we comprehensively analyzed the INK4 family in HCC. All four INK4 proteins were overexpressed in HCC and correlated with advanced cancer stage and poor prognosis. INK4 expression accurately distinguished tumor from normal tissue, particularly CDKN2A and CDKN2C. The INK4 family participated in cell-cycle regulation and the DNA damage repair pathway, which inhibited genotoxic-induced apoptosis in tumorigenesis. INK4 proteins were positively correlated with the infiltration of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells) and immune checkpoints (CTLA-4, PD1, and PD-L1). CDKN2D had the highest correlation (correlation coefficient >0.3) with all the above-mentioned infiltrating immune cells and immune checkpoints, indicating that it may be useful as an immunotherapy target. The INK4 family was valuable for diagnosis and predicting the prognosis of HCC and participated in the occurrence, progression, and immune regulation of HCC, demonstrating its potential as a diagnostic and prognostic biomarker and therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Prognóstico
10.
Anticancer Res ; 42(5): 2277-2288, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35489754

RESUMO

BACKGROUND/AIM: The TP53-signature is a multi-gene signature that can predict TP53 structural mutations. It has presented remarkable ability to predict the prognosis of early-stage breast cancer. However, some samples presented discordance with the signature status and structure status. We aimed to investigate whether the mRNA expression levels or copy number variation (CNV) of MDM2 and CDKN2A influence the TP53-signature-score, subtype classification, and prognosis prediction in TP53 wild-type, luminal type early-stage breast cancer samples. MATERIALS AND METHODS: We selected TP53 wild-type, luminal type early-stage breast cancer samples from The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohorts. Then, we analyzed the correlation between the TP53-signature-score and mRNA expression levels or CNV of MDM2 and CDKN2A. RESULTS: The samples with MDM2 copy number (CN) amplification or those with CDKN2A CN deep deletion presented higher TP53-signature-score. Moreover, samples with MDM2 CN amplification or those with CDKN2A CN deep deletion had more characteristics of the luminal B type. In addition, they showed lower estrogen response early score, which correlated with response to endocrine therapy in breast cancer. However, MDM2 and CDKN2A mRNA expression did not present the same tendency. Furthermore, samples with MDM2 CN amplification or those with CDKN2A CN deep deletion had a worse prognosis in METABRIC cohort. CONCLUSION: The MDM2 or CDKN2A CNV may be useful for classifying subtypes and predicting prognosis more accurately in TP53 wild-type, luminal type early-stage breast cancer patients.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Variações do Número de Cópias de DNA , Feminino , Genes p16 , Humanos , Prognóstico , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Mensageiro/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
PLoS One ; 17(4): e0265184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35446856

RESUMO

Gastric cancer (GC) is considered lethal aggressive cancer. In Egypt, GC has a low incidence but unfortunately, it is mostly diagnosed at an advanced stage with a poor prognosis. Assessment of novel markers that can be used in the early detection of GC is an urgent need. The present study was performed to assess the association of the Pleckstrin homology domain-containing S1 (PLEKHS1)، arylacetamide deacetylase (AADAC, and Cyclin-dependent kinase inhibitor 3 (CDKN3) genes with GC and to correlate their gene expression levels with tumor stage, grade, and other clinicopathological features. The current work was performed on forty gastric tissue samples; twenty in Group 1 with GC tissues at different stages, and grades and twenty in Group 2 (control group) with non-tumorous tissue. PLEKHS1, AADAC, and CDKN3 gene expression were assessed by RT-qPCR. AADAC, CDKN3 genes were significantly (p<0.001) upregulated, while PLEKHS1 gene was significantly (p<0.001) downregulated in the GC group than the control group. AADAC gene expression exhibited a high significant (p<0.001) positive correlation with the tumor grades and the tumor stages. A high significant negative correlation between AADAC, and CDKN3 gene expression (r = -.760, p<0.001) was found. The three studied parameters showed high significant sensitivity and specificity in the prediction of the presence of GC. PLEKHS1, AADAC, and CDKN3 gene expressions were suggested to be used as diagnostic and predictive biomarkers of GC, additionally, AADAC may be used as a prognostic marker in these patients for further future confirming studies.


Assuntos
Carcinoma , Neoplasias Gástricas , Biomarcadores Tumorais/genética , Hidrolases de Éster Carboxílico/metabolismo , Carcinoma/patologia , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Fosfatases de Especificidade Dupla/genética , Expressão Gênica , Humanos , Gradação de Tumores , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
12.
Cell Cycle ; 21(10): 1103-1119, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35240916

RESUMO

Clear cell renal cell carcinoma (CC-RCC) remains one of the most deadly forms of kidney cancer despite recent advancements in targeted therapeutics, including tyrosine kinase and immune checkpoint inhibitors. Unfortunately, these therapies have not been able to show better than a 16% complete response rate. In this study we evaluated a cyclin-dependent kinase inhibitor, Dinaciclib, as a potential new targeted therapeutic for CC-RCC. In vitro, Dinaciclib showed anti-proliferative and pro-apoptotic effects on CC-RCC cell lines in Cell Titer Glo, Crystal Violet, FACS-based cell cycle analysis, and TUNEL assays. Additionally, these responses were accompanied by a reduction in phospho-Rb and pro-survival MCL-1 cell signaling responses, as well as the induction of caspase 3 and PARP cleavage. In vivo, Dinaciclib efficiently inhibited primary tumor growth in an orthotopic, patient-derived xenograft-based CC-RCC mouse model. Importantly, Dinaciclib targeted both CD105+ cancer stem cells (CSCs) and CD105- non-CSCs in vivo. Moreover, normal cell lines, as well as a CC-RCC cell line with re-expressed von-Hippel Lindau (VHL) tumor suppressor gene, were protected from Dinaciclib-induced cytotoxicity when not actively dividing, indicating an effective therapeutic window due to synthetic lethality of Dinaciclib treatment with VHL loss. Thus, Dinaciclib represents a novel potential therapeutic for CC-RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Óxidos N-Cíclicos , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Feminino , Humanos , Indolizinas , Neoplasias Renais/patologia , Masculino , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Compostos de Piridínio , Mutações Sintéticas Letais , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
13.
Cancer Genomics Proteomics ; 18(4): 543-548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34183387

RESUMO

BACKGROUND/AIM: The long noncoding RNA OIP5 antisense RNA 1 (OIP5-AS1) is overexpressed in various cancer types, such as lung cancer, hepatoblastoma and cervical cancer, and functions to accelerate cell proliferation, invasion and migration. Here, we investigated the roIe of OIP5-AS1 in cell-cycle progression of H1299 and A549 non-small cell lung cancer cells, and FaDu and CAL27 head and neck squamous cell carcinoma cells. MATERIALS AND METHODS: The cells were transfected with small interfering RNA and subjected to cell-cycle analysis and reverse-transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS: Silencing of OIP5-AS1 suppressed the proliferation of H1299, A549, FaDu and CAL27 cells. RT-qPCR and cell-cycle analysis revealed that silencing OIP5-AS1 increased the expression of CDK inhibitors, such as p15, p16, p18 and p19, resulting in G1-phase arrest. CONCLUSION: OIP5-AS1 regulates G1-phase progression by repressing CDK inhibitors and, thus, promotes the proliferation of H1299, A549, FaDu and CAL27 cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias Pulmonares/genética , RNA Longo não Codificante/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
14.
J Cardiothorac Surg ; 16(1): 148, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044866

RESUMO

BACKGROUND AND OBJECTIVES: Each individual studies is limited to multi-factors and potentially lead to a significant difference of results among them. The present study aim to explore the critical genes related to the development of Esophageal squamous cell carcinoma (ESCC) by integrated transcriptomics and to investigate the clinical significance by experimental validation. METHODS: Datasets of protein-coding genes expression which involved in ESCC were downloaded from Gene Expression Omnibus (GEO) database. The "Robustrankaggreg" package in language was used for data integration, and the different expression genes (DEGs) were identified based the cut-off criteria as follows: adjust p-value < 0.05, |fold change (FC)| ≥ 1.5; The protein expression of seed gene in 184 cases of primary ESCC tissues and 50 tumor adjacent normal tissues (at least 5 cm away from the tumor, and defind as the controls) were detected by immunohistochemistry; The relationship between the expression level of seed genes and clinical parameter were analyze. Enumeration data were represented by frequency or percentage (%) and were tested by x2 test. The P value of less than 0.05 was considered statistically significant. RESULTS: A total of 244 DEGs were identified by comparing gene expression patterns between ESCC patients and the controls based on integrating dataset of GSE77861, GSE77861, GSE100942, GSE26886, GSE17351, GSE38129, GSE33426, GSE20347 and GSE23400; The Cyclin-dependent kinase inhibitor 3 (CDKN3) were identified the top 1 seed gene of top cluster by use of protein-protein Interaction network and plug-in Molecular Complex Detection; The level of CDKN3 mRNA was significantly increased in ESCC patients compared to controls; The positive expression rate of CDKN3 protein in ESCC tissue samples was 32 and 61.4% in control, respectively. The correlations between the expression level of CDKN3 and lymph node metastasis or clinical staging of ESCC patients are statistically significant. CONCLUSION: Integrated transcriptomics is an efficient approach to system biology. By this procedure, our study improved the understanding of the transcriptome status of ESCC.


Assuntos
Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Fosfatases de Especificidade Dupla/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Expressão Gênica , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Bases de Dados Genéticas , Fosfatases de Especificidade Dupla/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Esôfago/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Metástase Linfática/genética , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Mapas de Interação de Proteínas , RNA Mensageiro/metabolismo , Transcriptoma
15.
FEBS J ; 288(12): 3813-3833, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33030287

RESUMO

Adapting to changes in nutrient availability and environmental conditions is a fundamental property of cells. This adaptation requires a multi-directional coordination between metabolism, growth, and the cell cycle regulators (consisting of the family of cyclin-dependent kinases (CDKs), their regulatory subunits known as cyclins, CDK inhibitors, the retinoblastoma family members, and the E2F transcription factors). Deciphering the mechanisms accountable for this coordination is crucial for understanding various patho-physiological processes. While it is well established that metabolism and growth affect cell division, this review will focus on recent observations that demonstrate how cell cycle regulators coordinate metabolism, cell cycle progression, and growth. We will discuss how the cell cycle regulators directly regulate metabolic enzymes and pathways and summarize their involvement in the endolysosomal pathway and in the functions and dynamics of mitochondria.


Assuntos
Ciclo Celular/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Valor Nutritivo/fisiologia , Adaptação Fisiológica , Animais , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Regulação da Expressão Gênica , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
16.
Aging (Albany NY) ; 12(24): 24651-24670, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33351778

RESUMO

MYC overexpression is a common phenomenon in gastric carcinogenesis. In this study, we identified genes differentially expressed with a downregulated profile in gastric cancer (GC) cell lines with silenced MYC. The TTLL12, CDKN3, CDC16, PTPRA, MZT2B, UBE2T genes were validated using qRT-PCR, western blot and immunohistochemistry in tissues of 213 patients with diffuse and intestinal GC. We identified high levels of TTLL12, MZT2B, CDC16, UBE2T, associated with early and advanced stages, lymph nodes, distant metastases and risk factors such as H. pylori. Our results show that in the diffuse GC the overexpression of CDC16 and UBE2T indicate markers of poor prognosis higher than TTLL12. That is, patients with overexpression of these two genes live less than patients with overexpression of TTLL12. In the intestinal GC, patients who overexpressed CDC16 had a significantly lower survival rate than patients who overexpressed MZT2B and UBE2T, indicating in our data a worse prognostic value of CDC16 compared to the other two genes. PTPRA and CDKN3 proved to be important for assessing tumor progression in the early and advanced stages. In summary, in this study, we identified diagnostic and prognostic biomarkers of GC under the control of MYC, related to the cell cycle and the neoplastic process.


Assuntos
Adenocarcinoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias Gástricas/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Subunidade Apc6 do Ciclossomo-Complexo Promotor de Anáfase/genética , Subunidade Apc6 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Linhagem Celular Tumoral , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Regulação para Baixo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Feminino , Inativação Gênica , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Prognóstico , RNA Interferente Pequeno , RNA-Seq , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
17.
Anticancer Res ; 40(10): 5667-5671, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988891

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is a common urological cancer, and its risk correlates with environmental factors such as obesity, smoking and hypertension. Microarray technology enables analysis of the expression pattern of the whole phosphatome, members of which are involved in many cellular pathways and may act as either tumour suppressors or oncogenes in cancers. MATERIALS AND METHODS: We analysed data for the expression level of 87 out of 107 known protein phosphatase genes included in the Hugo Gene Nomenclature Committee Website for 72 RCC tissues and paired healthy tissues obtained from the GEO Database. RESULTS: Our analysis revealed overexpression of DUSP1, DUSP4, PTP4A3, PTPRC and PTPRE genes at all examined stages of RCC. Moreover, we found overexpression of PTPN12 at stage 2, overexpression of CDKN3 at stages 3 and 4, and overexpression of DUSP10 and PTPN22 at stages 2, 3 and 4. Lower expression of DUSP9, PTPR9 and PTPRO was also observed at all stages. CONCLUSION: Significant changes in expression patterns of protein tyrosine phosphatase genes confirm the involvement of this group in crucial carcinogenesis pathways underlying RCC. Thus, we postulate that protein tyrosine phosphatases play an important role in RCC promotion and progression, and may be considered as potential therapeutic targets.


Assuntos
Carcinoma de Células Renais/genética , Proliferação de Células/genética , Oncogenes/genética , Proteínas Tirosina Fosfatases/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Fosfatase 1 de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Antígenos Comuns de Leucócito/genética , Masculino , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Proteínas de Neoplasias/genética , Estadiamento de Neoplasias , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Fatores de Risco , Transdução de Sinais/genética , Fumar/efeitos adversos
18.
Adv Protein Chem Struct Biol ; 121: 115-141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32312419

RESUMO

Cyclin-dependent kinases (CDKs) play an integral part in cellular activities. To date, most of the activities have been evaluated in the cell cycle and transcription. Several diseases are affected by abnormalities in CDKs, related-pathways, or proteins that regulate CDK activity. CDKs are primarily dependent on activation by binding other proteins, namely Cyclins. In addition, phosphorylation of key CDK residues also plays a major part in CDK activity. To date, the most successful drugs have been developed against CDK4 and CDK6 and are FDA approved for use in advanced breast cancer. However, this is likely only a small fraction of the potential for targeting CDKs as a strategy against cancer and other diseases. Based on the extensive protein-protein interactions made by CDKs with other proteins (Cyclins and others), there are numerous possibilities for targeting strategies against protein-protein interactions. Here we describe the predominant roles of CDKs in the cell, key interacting proteins, significant 3-dimensional structural characteristics, and summarize the work-to-date in inhibition of CDKs.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/antagonistas & inibidores , Ciclinas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Sítios de Ligação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Humanos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Transdução de Sinais , Transcrição Gênica
19.
Eur Rev Med Pharmacol Sci ; 24(7): 3614-3623, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32329836

RESUMO

OBJECTIVE: The aim of this study was to investigate the level of cyclin-dependent kinase inhibitor 3 (CDKN3) in colorectal cancer (CRC), to explore the underlying mechanism of CDKN3 in modulating cisplatin resistance and promoting the malignant progression of CRC. PATIENTS AND METHODS: 43 pairs of CRC tissues and para-cancerous tissues were collected from CRC patients. CDKN3 expression was detected by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). The relationship between CDKN3 expression and the prognosis of CRC patients was analyzed. Meanwhile, qRT-PCR was performed to verify CDKN3 level in CRC cell lines. Next, CDKN3 knockdown model was constructed in CRC cisplatin-resistant cell lines. The influence of CDKN3 on the biological function of CRC cells was analyzed by Cell Counting Kit-8 (CCK-8) and plate cloning assays. Furthermore, the mechanism of its regulation of TIPE1 affecting cisplatin resistance to CRC was explored. RESULTS: QRT-PCR results showed that CDKN3 level in CRC tissues was remarkably higher than that of the adjacent tissues (p<0.05). Compared with patients with low expression of CDKN3, the prognosis of patients with high expression of CDKN3 was significantly worse (p<0.05). Similarly, the proliferation and colony formation ability of cells in CDKN3 knockdown group remarkably decreased when compared with the sh-NC group (p<0.05). In addition, CDKN3 level was remarkably elevated in CRC patients with cisplatin resistance. In cisplatin-resistant cell lines (including HT28 and HCT-116), the knockdown of CDKN3 remarkably reduced cell viability (p<0.05). Furthermore, TIPE1 expression was remarkably downregulated in CRC tissues (p<0.05). A negative correlation was observed between the expressions of TIPE1 and CDKN3. Cell reverse experiment demonstrated that TIPE1 could reverse the promoting effect of CDKN3 on the malignant progression of CRC. All these findings suggested that there might exist a mutual regulation between CDKN3 and TIPE1. CONCLUSIONS: CDKN3 was highly expressed in CRC, which might be closely correlated with poor prognosis of CRC patients. In addition, CDKN3 regulated cisplatin resistance to CRC by modulating TIPE1, thereby promoting the proliferation of CRC.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Neoplasias Colorretais/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fosfatases de Especificidade Dupla/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Fosfatases de Especificidade Dupla/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética
20.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165715, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32035102

RESUMO

Cancer proliferation and progression involves altered metabolic pathways as a result of continuous demand for energy and nutrients. In the last years, cell cycle regulators have been involved in the control of metabolic processes, such as glucose and insulin pathways and lipid synthesis, in addition to their canonical function controlling cell cycle progression. Here we describe recent data demonstrating the role of cell cycle regulators in the metabolic control especially in studies performed in cancer models. Moreover, we discuss the importance of these findings in the context of current cancer therapies to provide an overview of the relevance of targeting metabolism using inhibitors of the cell cycle regulation.


Assuntos
Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Neoplasias/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Modelos Animais de Doenças , Progressão da Doença , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA