Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Scand J Immunol ; 92(1): e12882, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32243627

RESUMO

Intelectin (ITLN) is a new type of glycan-binding lectin. It has been demonstrated to agglutinate bacteria probably due to its carbohydrate-binding capacity, suggesting its role in an innate immune response. It is involved not only in many physiological processes but also in some human diseases such as asthma, heart disease, inflammatory bowel disease, chronic obstructive pulmonary disease and cancer. Up to now, intelectin orthologs have been identified in placozoans, urochordatas, cephalochordates and several vertebrates, such as cyclostomata, fish, amphibians and mammals. Although the sequences of intelectins in different species are conserved, their expression patterns, quaternary structures and functions differ considerably among and within species. We summarize the evolution of the intelectin gene family, the tissue distribution, structure and functions of intelectins. We conclude that intelectin plays a role in innate immune response and there are still potential functions of intelectin awaiting discovery.


Assuntos
Bactérias/imunologia , Citocinas/genética , Citocinas/metabolismo , Imunidade Inata/imunologia , Lectinas/genética , Lectinas/metabolismo , Reconhecimento Fisiológico de Modelo/fisiologia , Sequência de Aminoácidos , Animais , Citocinas/farmacocinética , Evolução Molecular , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/farmacocinética , Humanos , Lectinas/farmacocinética , Estrutura Secundária de Proteína , Alinhamento de Sequência , Distribuição Tecidual/fisiologia
2.
Clin Cancer Res ; 25(15): 4723-4734, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31064781

RESUMO

PURPOSE: Targeted thorium-227 conjugates (TTC) represent a new class of molecules for targeted alpha therapy (TAT). Covalent attachment of a 3,2-HOPO chelator to an antibody enables specific complexation and delivery of the alpha particle emitter thorium-227 to tumor cells. Because of the high energy and short penetration range, TAT efficiently induces double-strand DNA breaks (DSB) preferentially in the tumor cell with limited damage to the surrounding tissue. We present herein the preclinical evaluation of a mesothelin (MSLN)-targeted thorium-227 conjugate, BAY 2287411. MSLN is a GPI-anchored membrane glycoprotein overexpressed in mesothelioma, ovarian, pancreatic, lung, and breast cancers with limited expression in healthy tissue. EXPERIMENTAL DESIGN: The binding activity and radiostability of BAY 2287411 were confirmed bioanalytically. The mode-of-action and antitumor potency of BAY 2287411 were investigated in vitro and in vivo in cell line and patient-derived xenograft models of breast, colorectal, lung, ovarian, and pancreatic cancer. RESULTS: BAY 2287411 induced DSBs, apoptotic markers, and oxidative stress, leading to reduced cellular viability. Furthermore, upregulation of immunogenic cell death markers was observed. BAY 2287411 was well-tolerated and demonstrated significant antitumor efficacy when administered via single or multiple dosing regimens in vivo. In addition, significant survival benefit was observed in a disseminated lung cancer model. Biodistribution studies showed specific uptake and retention of BAY 2287411 in tumors and enabled the development of a mechanistic pharmacokinetic/pharmacodynamic model to describe the preclinical data. CONCLUSIONS: These promising preclinical results supported the transition of BAY 2287411 into a clinical phase I program in mesothelioma and ovarian cancer patients (NCT03507452).


Assuntos
Partículas alfa/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/farmacologia , Neoplasias/tratamento farmacológico , Compostos Radiofarmacêuticos/farmacologia , Tório/farmacologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/farmacocinética , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mesotelina , Mesotelioma/tratamento farmacológico , Mesotelioma/metabolismo , Mesotelioma/patologia , Mesotelioma Maligno , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Compostos Radiofarmacêuticos/farmacocinética , Tório/administração & dosagem , Tório/química , Tório/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Histochem Cell Biol ; 145(1): 53-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26515055

RESUMO

Hyaluronidase 2 (HYAL2) is a membrane-anchored protein that is proposed to initiate the degradation of hyaluronan (HA) in the extracellular matrix. The distribution of HYAL2 in tissues, and of HA in tissues lacking HYAL2, is largely unexplored despite the importance of HA metabolism in several disease processes. Herein, we use immunoblot and histochemical analyses to detect HYAL2 and HA in mouse tissues, as well as agarose gel electrophoresis to examine the size of HA. HYAL2 was detected in all tissues that were examined, including the brain. It was localized to the surface and cytoplasm of endothelial cells, as well as specialized epithelial cells in several tissues, including the skin. Accumulated HA, often of higher molecular mass than that in control tissues, was detected in tissues from Hyal2 (-/-) mice. The accumulating HA was located near to where HYAL2 is normally found, although in some tissues, it was distant from the site of HYAL2 localization. Overall, HYAL2 was highest in tissues that remove HA from the circulation (liver, lymph node and spleen), but the levels of HA accumulation in Hyal2 (-/-) mice were highest in tissues that catabolize locally synthesized HA. Our results support HYAL2's role as an extracellular enzyme that initiates HA breakdown in somatic tissues. However, our findings also suggest that HYAL2 contributes to HA degradation through other routes, perhaps as a soluble or secreted form.


Assuntos
Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/biossíntese , Hialuronoglucosaminidase/farmacocinética , Animais , Eletroforese em Gel de Ágar/métodos , Matriz Extracelular/metabolismo , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/farmacocinética , Hialuronoglucosaminidase/genética , Immunoblotting/métodos , Imuno-Histoquímica/métodos , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA