Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.911
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Med Virol ; 96(5): e29659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747016

RESUMO

Hepatitis B virus (HBV) infection is a major global health burden with 820 000 deaths per year. In our previous study, we found that the knockdown of autophagy-related protein 5 (ATG5) significantly upregulated the interferon-stimulated genes (ISGs) expression to exert the anti-HCV effect. However, the regulation of ATG5 on HBV replication and its underlying mechanism remains unclear. In this study, we screened the altered expression of type I interferon (IFN-I) pathway genes using RT² Profiler™ PCR array following ATG5 knock-down and we found the bone marrow stromal cell antigen 2 (BST2) expression was significantly increased. We then verified the upregulation of BST2 by ATG5 knockdown using RT-qPCR and found that the knockdown of ATG5 activated the Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway. ATG5 knockdown or BST2 overexpression decreased Hepatitis B core Antigen (HBcAg) protein, HBV DNA levels in cells and supernatants of HepAD38 and HBV-infected NTCP-HepG2. Knockdown of BST2 abrogated the anti-HBV effect of ATG5 knockdown. Furthermore, we found that ATG5 interacted with BST2, and further formed a ternary complex together with HBV-X (HBx). In conclusion, our finding indicates that ATG5 promotes HBV replication through decreasing BST2 expression and interacting with it directly to antagonize its antiviral function.


Assuntos
Antígenos CD , Proteína 5 Relacionada à Autofagia , Proteínas Ligadas por GPI , Vírus da Hepatite B , Replicação Viral , Humanos , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Células Hep G2 , Transdução de Sinais , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Hepatite B/virologia , Hepatite B/genética
2.
Neurol India ; 72(2): 309-318, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691475

RESUMO

BACKGROUND: Acute cerebral infarction (ACI) is a common neurological disease that is associated with high morbidity, disability and mortality rates. At present, antiplatelet therapy is a necessary treatment for ACI. The present study aimed to investigate the effects of omentin-1 on the intravenous thrombolysis of ACI. OBJECTIVE: The present study aimed to investigate the effects of omentin-1 on the intravenous thrombolysis of ACI. MATERIAL AND METHODS: The mouse model of ACI was induced using male C57BL/6 mice through middle cerebral artery occlusion (MCAO). Meanwhile, the murine BV2 microglial cells were pretreated with 0.1 mg/ml of lipopolysaccharide (LPS), and then induced with 2 mM of adenosine triphosphate (ATP). RESULTS: The omentin-1 mRNA expression in patients receiving intravenous thrombolysis for ACI was down-regulated compared with the normal group. Additionally, the serum level of omentin-1 was negatively correlated with National Institute of Health Stroke Scale (NIHSS) score or serum level of IL-1ß or MMP-2 in patients receiving intravenous thrombolysis for ACI. Meanwhile, the serum mRNA expression of omentin-1 was positively correlated with Barthel index or high-sensitivity C-reactive protein (hs-CRP) in patients undergoing intravenous thrombolysis for ACI. As observed from the in vitro model, Omentin-1 reduced inflammation, promoted cell growth, alleviated ROS-induced oxidative stress, and enhanced AMPK activity through activating NLRP3 ubiquitination. Omentin-1 presented ACI in the mouse model of ACI. Regulating AMPK activity contributed to controlling the effects of Omentin-1 on the in vitro model. CONCLUSIONS: Omentin-1 reduced neuroinflammation and ROS-induced oxidative stress in the mouse model of ACI, which was achieved by inhibiting NLRP3 ubiquitination through regulating AMPK activity. Therefore, omentin-1 may serve as a treatment factor for the intravenous thrombolysis of ACI in further clinical application.


Assuntos
Citocinas , Proteínas Ligadas por GPI , Lectinas , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ubiquitinação , Animais , Citocinas/metabolismo , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Ligadas por GPI/metabolismo , Humanos , Ubiquitinação/efeitos dos fármacos , Modelos Animais de Doenças , Infarto Cerebral/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Terapia Trombolítica/métodos , Pessoa de Meia-Idade , Idoso
3.
Nat Commun ; 15(1): 3900, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724552

RESUMO

By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.


Assuntos
Asma , Proteínas Ligadas por GPI , Interleucina-13 , Lectinas , Mucina-5AC , Muco , Criança , Humanos , Asma/genética , Asma/metabolismo , Citocinas , Células Epiteliais/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Lectinas/genética , Lectinas/metabolismo , Mucina-5AC/genética , Mucina-5AC/metabolismo , Muco/metabolismo , Mucosa Nasal/metabolismo , Polimorfismo Genético , Mucosa Respiratória/metabolismo
4.
Oncol Res ; 32(5): 933-941, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686051

RESUMO

MicroRNA (miR)-200b-3p has been associated with many tumors, but its involvement in pituitary adenoma is unclear. This study investigated the molecular mechanism underlying miR-200b-3p regulation in pituitary adenomas to provide a theoretical basis for treatment. Bioinformatics was used to analyze pituitary adenoma-related genes and screen new targets related to RECK and miRNA. As well, the relationship between miR-200b-3p and RECK protein was verified using a double-luciferase reporter gene assay. The expression of miR-200b-3p in clinical samples was analyzed by in situ hybridization. Transfection of the miR-200b-3p inhibitor and small interfering-RECK (si-RECK) was verified by qPCR. GH3 cell viability and proliferation were detected using CCK8 and EdU assays. Apoptosis was detected by flow cytometry and western blotting. Wound healing and Transwell assays were used to detect cell migration and invasion. The effects of miR-200b-3p and RECK on GH3 cells were verified using salvage experiments. miR-200b-3p was highly expressed in pituitary tumor tissue. Inhibitors of miR-200b-3p inhibited cell proliferation promoted cell apoptosis, inhibited invasion and migration, and inhibited the expression of matrix metalloproteinases. Interestingly, miR-200b-3p negatively regulated RECK. The expression of RECK in pituitary adenoma tissues was lower than that in neighboring tissues. Si-RECK rescued the function of miR-200b-3p inhibitors in the above cellular behaviors, and miR-200b-3p accelerated the development of pituitary adenoma by negatively regulating RECK expression. In summary, this study investigated the molecular mechanism by which miR-200b-3p regulates the progression of pituitary adenoma through the negative regulation of RECK. The findings provide a new target for the treatment of pituitary adenoma.


Assuntos
Adenoma , Apoptose , Proteínas Ligadas por GPI , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias Hipofisárias , Animais , Feminino , Humanos , Masculino , Ratos , Adenoma/genética , Adenoma/patologia , Adenoma/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , MicroRNAs/genética , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Neoplasias Hipofisárias/metabolismo
5.
J Transl Med ; 22(1): 367, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637885

RESUMO

BACKGROUND: Ovarian cancer (OC) is characterized by its rapid growth and spread which, accompanied by a low 5-year survival rate, necessitates the development of improved treatments. In ovarian cancer, the selective overexpression of Mucin-16 (MUC16, CA125) in tumor cells highlights its potential as a promising target for developing anti-tumor therapies. However, the potential effectiveness of CAR-T cell therapy that targets MUC16 in ovarian cancer cells is unknown. METHODS: The expression of MUC16 in viable OC cells was detected using immunofluorescence and flow cytometry techniques. A MSLN-CAR construct, comprising the MUC16-binding polypeptide region of mesothelin (MSLN), a CD8 hinge spacer and transmembrane domain, 4-1BB, and CD3ζ endo-domains; was synthesized and introduced into T cells using lentiviral particles. The cytotoxicity of the resultant CAR-T cells was evaluated in vitro using luciferase assays. Cytokine release by CAR-T cells was measured using enzyme-linked immunosorbent assays. The anti-tumor efficacy of the CAR-T cells was subsequently assessed in mice through both systemic and local administration protocols. RESULTS: MSLN-CAR T cells exhibited potent cytotoxicity towards OVCAR3 cells and their stem-like cells that express high levels of MUC16. Also, MSLN-CAR T cells were inefficient at killing SKOV3 cells that express low levels of MUC16, but were potently cytotoxic to such cells overexpressing MUC16. Moreover, MSLN-CAR T cells delivered via tail vein or peritoneal injection could shrink OVCAR3 xenograft tumors in vivo, with sustained remission observed following peritoneal delivery of MSLN-CAR T cells. CONCLUSIONS: Collectively, these results suggested that MSLN-CAR T cells could potently eliminate MUC16- positive ovarian cancer tumor cells both in vitro and in vivo, thereby providing a promising therapeutic intervention for MUC16-positive patients.


Assuntos
Mesotelina , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Exp Clin Cancer Res ; 43(1): 103, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570866

RESUMO

BACKGROUND: Brain metastasis (BM) is common among cases of advanced non-small cell lung cancer (NSCLC) and is the leading cause of death for these patients. Mesothelin (MSLN), a tumor-associated antigen expressed in many solid tumors, has been reported to be involved in the progression of multiple tumors. However, its potential involvement in BM of NSCLC and the underlying mechanism remain unknown. METHODS: The expression of MSLN was validated in clinical tissue and serum samples using immunohistochemistry and enzyme-linked immunosorbent assay. The ability of NSCLC cells to penetrate the blood-brain barrier (BBB) was examined using an in vitro Transwell model and an ex vivo multi-organ microfluidic bionic chip. Immunofluorescence staining and western blotting were used to detect the disruption of tight junctions. In vivo BBB leakiness assay was performed to assess the barrier integrity. MET expression and activation was detected by western blotting. The therapeutic efficacy of drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) on BM was evaluated in animal studies. RESULTS: MSLN expression was significantly elevated in both serum and tumor tissue samples from NSCLC patients with BM and correlated with a poor clinical prognosis. MSLN significantly enhanced the brain metastatic abilities of NSCLC cells, especially BBB extravasation. Mechanistically, MSLN facilitated the expression and activation of MET through the c-Jun N-terminal kinase (JNK) signaling pathway, which allowed tumor cells to disrupt tight junctions and the integrity of the BBB and thereby penetrate the barrier. Drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) effectively blocked the development of BM and prolonged the survival of mice. CONCLUSIONS: Our results demonstrate that MSLN plays a critical role in BM of NSCLC by modulating the JNK/MET signaling network and thus, provides a potential novel therapeutic target for preventing BM in NSCLC patients.


Assuntos
Benzamidas , Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Imidazóis , Neoplasias Pulmonares , Triazinas , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Mesotelina , Neoplasias Pulmonares/patologia , Proteínas Ligadas por GPI/metabolismo , Crizotinibe , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia
7.
Cell Rep ; 43(4): 114088, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602878

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) features an immunosuppressive tumor microenvironment (TME) that resists immunotherapy. Tumor-associated macrophages, abundant in the TME, modulate T cell responses. Bone marrow stromal antigen 2-positive (BST2+) macrophages increase in KrasG12D/+; Trp53R172H/+; Pdx1-Cre mouse models during PDAC progression. However, their role in PDAC remains elusive. Our findings reveal a negative correlation between BST2+ macrophage levels and PDAC patient prognosis. Moreover, an increased ratio of exhausted CD8+ T cells is observed in tumors with up-regulated BST2+ macrophages. Mechanistically, BST2+ macrophages secrete CXCL7 through the ERK pathway and bind with CXCR2 to activate the AKT/mTOR pathway, promoting CD8+ T cell exhaustion. The combined blockade of CXCL7 and programmed death-ligand 1 successfully decelerates tumor growth. Additionally, cGAS-STING pathway activation in macrophages induces interferon (IFN)α synthesis leading to BST2 overexpression in the PDAC TME. This study provides insights into IFNα-induced BST2+ macrophages driving an immune-suppressive TME through ERK-CXCL7 signaling to regulate CD8+ T cell exhaustion in PDAC.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , Proteínas Ligadas por GPI , Interferon-alfa , Neoplasias Pancreáticas , Macrófagos Associados a Tumor , Animais , Feminino , Humanos , Camundongos , Antígenos CD/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/metabolismo , Tolerância Imunológica , Interferon-alfa/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia
8.
J Clin Invest ; 134(10)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530357

RESUMO

Despite widespread utilization of immunotherapy, treating immune-cold tumors remains a challenge. Multiomic analyses and experimental validation identified the OTUD4/CD73 proteolytic axis as a promising target in treating immune-suppressive triple negative breast cancer (TNBC). Mechanistically, deubiquitylation of CD73 by OTUD4 counteracted its ubiquitylation by TRIM21, resulting in CD73 stabilization inhibiting tumor immune responses. We further demonstrated the importance of TGF-ß signaling for orchestrating the OTUD4/CD73 proteolytic axis within tumor cells. Spatial transcriptomics profiling discovered spatially resolved features of interacting malignant and immune cells pertaining to expression levels of OTUD4 and CD73. In addition, ST80, a newly developed inhibitor, specifically disrupted proteolytic interaction between CD73 and OTUD4, leading to reinvigoration of cytotoxic CD8+ T cell activities. In preclinical models of TNBC, ST80 treatment sensitized refractory tumors to anti-PD-L1 therapy. Collectively, our findings uncover what we believe to be a novel strategy for targeting the immunosuppressive OTUD4/CD73 proteolytic axis in treating immune-suppressive breast cancers with the inhibitor ST80.


Assuntos
5'-Nucleotidase , Proteólise , Neoplasias de Mama Triplo Negativas , Humanos , 5'-Nucleotidase/genética , 5'-Nucleotidase/imunologia , 5'-Nucleotidase/antagonistas & inibidores , Feminino , Camundongos , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Ubiquitinação
9.
BMC Cancer ; 24(1): 354, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504172

RESUMO

Colorectal cancer (CRC) is a worldwide health concern. Chronic inflammation is a risk factor for CRC, and interleukin-6 (IL-6) plays a pivotal role in this process. Arginine-specific mono-ADP-ribosyltransferase-1 (ART1) positively regulates inflammatory cytokines. ART1 knockdown reduces the level of glycoprotein 130 (gp130), a key transducer in the IL-6 signalling pathway. However, the relationship between ART1 and IL-6 and the resulting effects on IL-6-induced proliferation in CRC cells remain unclear. The aims of this study were to investigate the effects of ART1 knockdown on IL-6-induced cell proliferation in vitro and use an in vivo murine model to observe the growth of transplanted tumours. The results showed that compared with the control, ART1-sh cancer cells induced by IL-6 exhibited reduced viability, a lower rate of colony formation, less DNA synthesis, decreased protein levels of gp130, c-Myc, cyclin D1, Bcl-xL, and a reduced p-STAT3/STAT3 ratio (P < 0.05). Moreover, mice transplanted with ART1-sh CT26 cells that had high levels of IL-6 displayed tumours with smaller volumes (P < 0.05). ART1 and gp130 were colocalized in CT26, LoVo and HCT116 cells, and their expression was positively correlated in human CRC tissues. Overall, ART1 may serve as a promising regulatory factor for IL-6 signalling and a potential therapeutic target for human CRC.


Assuntos
Neoplasias Colorretais , Interleucina-6 , Humanos , Animais , Camundongos , Interleucina-6/genética , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , Receptor gp130 de Citocina/genética , Linhagem Celular Tumoral , Poli(ADP-Ribose) Polimerases/genética , Proliferação de Células , Neoplasias Colorretais/patologia , Proteínas Ligadas por GPI/metabolismo
10.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542276

RESUMO

Azacitidine, a DNA methylation inhibitor, is employed for the treatment of acute myeloid leukemia (AML). However, drug resistance remains a major challenge for effective azacitidine chemotherapy, though several studies have attempted to uncover the mechanisms of azacitidine resistance. With the aim to identify the mechanisms underlying acquired azacitidine resistance in cancer cell lines, we developed a computational strategy that can identify differentially regulated gene networks between drug-sensitive and -resistant cell lines by extending the existing method, differentially coexpressed gene sets (DiffCoEx). The technique specifically focuses on cell line-specific gene network analysis. We applied our method to gene networks specific to azacitidine sensitivity and identified differentially regulated gene networks between azacitidine-sensitive and -resistant cell lines. The molecular interplay between the metallothionein gene family, C19orf33, ELF3, GRB7, IL18, NRN1, and RBM47 were identified as differentially regulated gene network in drug resistant cell lines. The biological mechanisms associated with azacitidine and AML for the markers in the identified networks were verified through the literature. Our results suggest that controlling the identified genes (e.g., the metallothionein gene family) and "cellular response"-related pathways ("cellular response to zinc ion", "cellular response to copper ion", and "cellular response to cadmium ion", where the enriched functional-related genes are MT2A, MT1F, MT1G, and MT1E) may provide crucial clues to address azacitidine resistance in patients with AML. We expect that our strategy will be a useful tool to uncover patient-specific molecular interplay that provides crucial clues for precision medicine in not only gastric cancer but also complex diseases.


Assuntos
Leucemia Mieloide Aguda , Neuropeptídeos , Humanos , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Redes Reguladoras de Genes , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Linhagem Celular Tumoral , Metalotioneína/genética , Metalotioneína/metabolismo , Neuropeptídeos/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas de Ligação a RNA/genética
11.
Int J Oral Sci ; 16(1): 26, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548747

RESUMO

SEMA7A belongs to the Semaphorin family and is involved in the oncogenesis and tumor progression. Aberrant glycosylation has been intricately linked with immune escape and tumor growth. SEMA7A is a highly glycosylated protein with five glycosylated sites. The underlying mechanisms of SEMA7A glycosylation and its contribution to immunosuppression and tumorigenesis are unclear. Here, we identify overexpression and aberrant N-glycosylation of SEMA7A in head and neck squamous cell carcinoma, and elucidate fucosyltransferase FUT8 catalyzes aberrant core fucosylation in SEMA7A at N-linked oligosaccharides (Asn 105, 157, 258, 330, and 602) via a direct protein‒protein interaction. A glycosylated statue of SEMA7A is necessary for its intra-cellular trafficking from the cytoplasm to the cytomembrane. Cytokine EGF triggers SEMA7A N-glycosylation through increasing the binding affinity of SEMA7A toward FUT8, whereas TGF-ß1 promotes abnormal glycosylation of SEMA7A via induction of epithelial-mesenchymal transition. Aberrant N-glycosylation of SEMA7A leads to the differentiation of CD8+ T cells along a trajectory toward an exhausted state, thus shaping an immunosuppressive microenvironment and being resistant immunogenic cell death. Deglycosylation of SEMA7A significantly improves the clinical outcome of EGFR-targeted and anti-PD-L1-based immunotherapy. Finally, we also define RBM4, a splice regulator, as a downstream effector of glycosylated SEMA7A and a pivotal mediator of PD-L1 alternative splicing. These findings suggest that targeting FUT8-SEMA7A axis might be a promising strategy for improving antitumor responses in head and neck squamous cell carcinoma patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Semaforinas , Humanos , Glicosilação , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linfócitos T CD8-Positivos/metabolismo , Fucosiltransferases/metabolismo , Microambiente Tumoral , Proteínas de Ligação a RNA/metabolismo , Antígenos CD/metabolismo , Semaforinas/metabolismo , Proteínas Ligadas por GPI/metabolismo
12.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474009

RESUMO

The extracellular matrix (ECM) is a complex non-cellular three-dimensional macromolecular network present within all tissues and organs, forming the foundation on which cells sit, and composed of proteins (such as collagen), glycosaminoglycans, proteoglycans, minerals, and water. The ECM provides a fundamental framework for the cellular constituents of tissue and biochemical support to surrounding cells. The ECM is a highly dynamic structure that is constantly being remodeled. Matrix metalloproteinases (MMPs) are among the most important proteolytic enzymes of the ECM and are capable of degrading all ECM molecules. MMPs play a relevant role in physiological as well as pathological processes; MMPs participate in embryogenesis, morphogenesis, wound healing, and tissue remodeling, and therefore, their impaired activity may result in several problems. MMP activity is also associated with chronic inflammation, tissue breakdown, fibrosis, and cancer invasion and metastasis. The periodontium is a unique anatomical site, composed of a variety of connective tissues, created by the ECM. During periodontitis, a chronic inflammation affecting the periodontium, increased presence and activity of MMPs is observed, resulting in irreversible losses of periodontal tissues. MMP expression and activity may be controlled in various ways, one of which is the inhibition of their activity by an endogenous group of tissue inhibitors of metalloproteinases (TIMPs), as well as reversion-inducing cysteine-rich protein with Kazal motifs (RECK).


Assuntos
Metaloproteinases da Matriz , Periodontite , Humanos , Metaloproteinases da Matriz/metabolismo , Periodontite/metabolismo , Periodonto/metabolismo , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Inflamação/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Proteínas Ligadas por GPI/metabolismo
13.
Matrix Biol ; 129: 1-14, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490466

RESUMO

The coordination between odontoblastic differentiation and directed cell migration of mesenchymal progenitors is necessary for regular dentin formation. The synthesis and degradation of hyaluronan (HA) in the extracellular matrix create a permissive niche that directly regulates cell behaviors. However, the role and mechanisms of HA degradation in dentin formation remain unknown. In this work, we present that HA digestion promotes odontoblastic differentiation and cell migration of mouse dental papilla cells (mDPCs). Hyaluronidase 2 (HYAL2) is responsible for promoting odontoblastic differentiation through degrading HA, while hyaluronidase 1 (HYAL1) exhibits negligible effect. Silencing Hyal2 generates an extracellular environment rich in HA, which attenuates F-actin and filopodium formation and in turn inhibits cell migration of mDPCs. In addition, activating PI3K/Akt signaling significantly rescues the effects of HA accumulation on cytodifferentiation. Taken together, the results confirm the contribution of HYAL2 to HA degradation in dentinogenesis and uncover the mechanism of the HYAL2-mediated HA degradation in regulating the odontoblastic differentiation and migration of mDPCs.


Assuntos
Diferenciação Celular , Movimento Celular , Papila Dentária , Ácido Hialurônico , Hialuronoglucosaminidase , Odontoblastos , Animais , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/genética , Camundongos , Ácido Hialurônico/metabolismo , Odontoblastos/metabolismo , Odontoblastos/citologia , Papila Dentária/citologia , Papila Dentária/metabolismo , Transdução de Sinais , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Células Cultivadas , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética
14.
J Immunol ; 212(7): 1221-1231, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334455

RESUMO

Pulmonary fibrosis is a fatal condition characterized by fibroblast and myofibroblast proliferation and collagen deposition. TGF-ß plays a pivotal role in the development of pulmonary fibrosis. Therefore, modulation of TGF-ß signaling is a promising therapeutic strategy for treating pulmonary fibrosis. To date, however, interventions targeting TGF-ß have not shown consistent efficacy. CD109 is a GPI-anchored glycoprotein that binds to TGF-ß receptor I and negatively regulates TGF-ß signaling. However, no studies have examined the role and therapeutic potential of CD109 in pulmonary fibrosis. The purpose of this study was to determine the role and therapeutic value of CD109 in bleomycin-induced pulmonary fibrosis. CD109-transgenic mice overexpressing CD109 exhibited significantly attenuated pulmonary fibrosis, preserved lung function, and reduced lung fibroblasts and myofibroblasts compared with wild-type (WT) mice. CD109-/- mice exhibited pulmonary fibrosis comparable to WT mice. CD109 expression was induced in variety types of cells, including lung fibroblasts and macrophages, upon bleomycin exposure. Recombinant CD109 protein inhibited TGF-ß signaling and significantly decreased ACTA2 expression in human fetal lung fibroblast cells in vitro. Administration of recombinant CD109 protein markedly reduced pulmonary fibrosis in bleomycin-treated WT mice in vivo. Our results suggest that CD109 is not essential for the development of pulmonary fibrosis, but excess CD109 protein can inhibit pulmonary fibrosis development, possibly through suppression of TGF-ß signaling. CD109 is a novel therapeutic candidate for treating pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Bleomicina/efeitos adversos , Fator de Crescimento Transformador beta/metabolismo , Pulmão/patologia , Fibroblastos/metabolismo , Camundongos Transgênicos , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/metabolismo , Antígenos CD/metabolismo , Proteínas Ligadas por GPI/metabolismo
15.
Int Arch Allergy Immunol ; 185(5): 480-488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38387446

RESUMO

INTRODUCTION: Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), a recently discovered inhibitor of matrix metalloproteinase (MMP). There is a large number of chronic obstructive pulmonary disease (COPD) patients worldwide; however, the role of RECK on COPD has not been studied. This study explored the expression of RECK in COPD patients and its effect on neutrophil function to provide a new scientific basis for the prevention and treatment of COPD. METHOD: Fifty patients with acute exacerbation of COPD and fifty healthy controls were enrolled in the study. RECK was detected in lung tissue, sputum, and plasma of subjects as well as in BEAS-2B cells stimulated with cigarette smoke extract (CSE) by immunohistochemistry, ELISA, and qRT-PCR. Meanwhile, lung function (FEV1%pred) and inflammatory cytokines (IL-6 and IL-8) were examined, and correlation analysis was performed with RECK expression. The effect of RECK on proliferation, apoptosis, migration, and inflammatory cytokines and its potential mechanism was further quantified by neutrophil stimulated with recombinant human RECK protein (rhRECK) combined with CSE using CCK8, flow cytometry, Transwell assay, qRT-PCR, ELISA, and Western analysis. RESULTS: RECK was mainly expressed on airway epithelial cells in normal lung tissue and was significantly diminished in COPD patients. The levels of RECK in sputum and plasma were also significantly decreased in COPD patients. Pearson correlation analysis showed that RECK level in plasma was positively correlated with FEV1%pred (r = 0.458, p < 0.001) and negatively correlated with IL-6 and IL-8 (r = -0.386, -0.437; p = 0.006, 0.002) in COPD patients. The expression of RECK was decreased in BEAS-2B stimulated with CSE. The migration, inflammation, and MMP-9 expression of neutrophils were promoted by CSE, while inhibited by rhRECK. CONCLUSION: RECK is low expressed in COPD patients and negatively correlated with inflammation. It may inhibit the inflammation and migration of neutrophils by downregulating MMP-9.


Assuntos
Proteínas Ligadas por GPI , Neutrófilos , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/imunologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Citocinas/metabolismo , Escarro/metabolismo , Escarro/imunologia , Linhagem Celular , Inflamação/metabolismo , Apoptose , Movimento Celular , Pulmão/imunologia , Pulmão/patologia , Pulmão/metabolismo
16.
Clin Cancer Res ; 30(9): 1859-1877, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38393682

RESUMO

PURPOSE: Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells). EXPERIMENTAL DESIGN: Using a suite of in vitro, in vivo, and ex vivo patient-derived models containing cancer cells and CAF, we examined the ability of mesoFAP CAR-TEAM cells to target PDAC cells and CAF within the TME. We developed and used patient-derived ex vivo models, including patient-derived organoids with patient-matched CAF and patient-derived organotypic tumor spheroids. RESULTS: We demonstrated specific and significant binding of the TEAM to its respective antigens (CD3 and FAP) when released from mesothelin-targeting CAR T cells, leading to T-cell activation and cytotoxicity of the target cell. MesoFAP CAR-TEAM cells were superior in eliminating PDAC and CAF compared with T cells engineered to target either antigen alone in our ex vivo patient-derived models and in mouse models of PDAC with primary or metastatic liver tumors. CONCLUSIONS: CAR-TEAM cells enable modification of tumor stroma, leading to increased elimination of PDAC tumors. This approach represents a promising treatment option for pancreatic cancer.


Assuntos
Complexo CD3 , Endopeptidases , Proteínas Ligadas por GPI , Imunoterapia Adotiva , Mesotelina , Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Camundongos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Complexo CD3/imunologia , Complexo CD3/metabolismo , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/imunologia , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Serina Endopeptidases/imunologia , Serina Endopeptidases/metabolismo , Adenocarcinoma/imunologia , Adenocarcinoma/terapia , Adenocarcinoma/patologia
17.
Gastric Cancer ; 27(2): 263-274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38221567

RESUMO

BACKGROUND: Mucosal gastric atrophy and intestinal metaplasia (IM) increase the risk for the development of gastric cancer (GC) as they represent a field for development of dysplasia and intestinal-type gastric adenocarcinoma. METHODS: We have investigated the expression of two dysplasia markers, CEACAM5 and TROP2, in human antral IM and gastric tumors to assess their potential as molecular markers. RESULTS: In the normal antral mucosa, weak CEACAM5 and TROP2 expression was only observed in the foveolar epithelium, while inflamed antrum exhibited increased expression of both markers. Complete IM exhibited weak CEACAM5 expression at the apical surface, but no basolateral TROP2 expression. On the other hand, incomplete IM demonstrated high levels of both CEACAM5 and TROP2 expression. Notably, incomplete IM with dysplastic morphology (dysplastic incomplete IM) exhibited higher levels of CEACAM5 and TROP2 expression compared to incomplete IM without dysplastic features (simple incomplete IM). In addition, dysplastic incomplete IM showed diminished SOX2 and elevated CDX2 expression compared to simple incomplete IM. CEACAM5 and TROP2 positivity in incomplete IM was similar to that of gastric adenomas and GC. Significant association was found between CEACAM5 and TROP2 positivity and histology of GC. CONCLUSIONS: These findings support the concept that incomplete IM is more likely associated with GC development. Overall, our study provides evidence of the heterogeneity of gastric IM and the distinct expression profiles of CEACAM5 and TROP2 in dysplastic incomplete IM. Our findings support the potential use of CEACAM5 and TROP2 as molecular markers for identifying individuals with a higher risk of GC development in the context of incomplete IM.


Assuntos
Lesões Pré-Cancerosas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Mucosa Gástrica/patologia , Lesões Pré-Cancerosas/patologia , Metaplasia , Antígeno Carcinoembrionário , Proteínas Ligadas por GPI/metabolismo
18.
BMC Cancer ; 24(1): 19, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167030

RESUMO

BACKGROUND: GBM is the most frequent malignant primary brain tumor in humans. The CLEC19A is a member of the C-type lectin family, which has a high expression in brain tissue. Herein, we sought to carry out an in-depth analysis to pinpoint the role of CLEC19A expression in GBM. METHODS: To determine the localization of CLEC19A, this protein was detected using Western blot, Immunocytochemistry/Immunofluorescence, and confocal microscopy imaging. CLEC19A expression in glioma cells and tissues was evaluated by qRT-PCR. Cell viability, proliferation, migration, and apoptosis were examined through MTT assay, CFSE assay, colony formation, wound healing assay, transwell test, and flow cytometry respectively after CLEC19A overexpression. The effect of CLEC19A overexpression on the PI3K/AKT/NF-κB signaling pathway was investigated using Western blot. An in vivo experiment substantiated the in vitro results using the glioblastoma rat models. RESULTS: Our in-silico analysis using TCGA data and measuring CLEC19A expression level by qRT-PCR determined significantly lower expression of CLEC19A in human glioma tissues compared to healthy brain tissues. By employment of ICC/IF, confocal microscopy imaging, and Western blot we could show that CLEC19A is plausibly a secreted protein. Results obtained from several in vitro readouts showed that CLEC19A overexpression in U87 and C6 glioma cell lines is associated with the inhibition of cell proliferation, viability, and migration. Further, qRT-PCR and Western blot analysis showed CLEC19A overexpression could reduce the expression levels of PI3K, VEGFα, MMP2, and NF-κB and increase PTEN, TIMP3, RECK, and PDCD4 expression levels in glioma cell lines. Furthermore, flow cytometry results revealed that CLEC19A overexpression was associated with significant cell cycle arrest and promotion of apoptosis in glioma cell lines. Interestingly, using a glioma rat model we could substantiate that CLEC19A overexpression suppresses glioma tumor growth. CONCLUSIONS: To our knowledge, this is the first report providing in-silico, molecular, cellular, and in vivo evidences on the role of CLEC19A as a putative tumor suppressor gene in GBM. These results enhance our understanding of the role of CLEC19A in glioma and warrant further exploration of CLEC19A as a potential therapeutic target for GBM.


Assuntos
Glioblastoma , Glioma , Lectinas Tipo C , Animais , Humanos , Ratos , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/metabolismo , Glioma/patologia , Proteínas Ligadas por GPI/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo
19.
Glia ; 72(4): 692-707, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38192185

RESUMO

Schwann cells (SCs), the primary glial cells of the peripheral nervous system, which have been identified in many solid tumors, play an important role in cancer development and progression by shaping the tumor immunoenvironment and supporting the development of metastases. Using different cellular, molecular, and genetic approaches with integrated bioinformatics analysis and functional assays, we revealed the role of human SC-derived exosomal miRNAs in lung cancer progression in vitro and in vivo. We found that exosomal miRNA-21 from SCs up-regulated the proliferation, motility, and invasiveness of human lung cancer cells in vitro, which requires functional Rab small GTPases Rab27A and Rab27B in SCs for exosome release. We also revealed that SC exosomal miRNA-21-5p regulated the functional activation of tumor cells by targeting metalloprotease inhibitor RECK in tumor cells. Integrated bioinformatic analyses showed that hsa-miRNA-21-5p is associated with poor prognosis in patients with lung adenocarcinoma and can promote lung cancer progression through multiple signaling pathways including the MAPK, PI3K/Akt, and TNF signaling. Furthermore, in mouse xenograft models, SC exosomes and SC exosomal hsa-miRNA-21-5p augmented human lung cancer cell growth and lymph node metastasis in vivo. Together our data revealed, for the first time, that SC-secreted exosomes and exosomal miRNA-21-5p promoted the proliferation, motility, and spreading of human lung cancer cells in vitro and in vivo. Thus, exosomal miRNA-21 may play an oncogenic role in SC-accelerated progression of lung cancer and this pathway may serve as a new therapeutic target for further evaluation.


Assuntos
Exossomos , Neoplasias Pulmonares , MicroRNAs , Humanos , Camundongos , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células de Schwann/metabolismo , Modelos Animais de Doenças , Proliferação de Células/genética , Proteínas Ligadas por GPI/metabolismo
20.
PLoS Pathog ; 20(1): e1011912, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190411

RESUMO

BST2/Tetherin is a restriction factor with broad antiviral activity against enveloped viruses, including coronaviruses. Specifically, BST2 traps nascent particles to membrane compartments, preventing their release and spread. In turn, viruses have evolved multiple mechanisms to counteract BST2. Here, we examined the interactions between BST2 and SARS-CoV-2. Our study shows that BST2 reduces SARS-CoV-2 virion release. However, the virus uses the Spike (S) protein to downregulate BST2. This requires a physical interaction between S and BST2, which routes BST2 for lysosomal degradation in a Clathtin- and ubiquitination-dependent manner. By surveying different SARS-CoV-2 variants of concern (Alpha-Omicron), we found that Omicron is more efficient at counteracting BST2, and that mutations in S account for its enhanced anti-BST2 activity. Mapping analyses revealed that several surfaces in the extracellular region of BST2 are required for an interaction with the Spike, and that the Omicron variant has changed its patterns of association with BST2 to improve its counteraction. Therefore, our study suggests that, besides enhancing receptor binding and evasion of neutralizing antibodies, mutations accumulated in the Spike afford more efficient counteraction of BST2, which highlights that BST2 antagonism is important for SARS-CoV-2 infectivity and spread.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , COVID-19 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Mutação , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA