Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 627
Filtrar
1.
Methods Enzymol ; 697: 293-319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38816127

RESUMO

Assembly of de novo peptides designed from scratch is in a semi-rational manner and creates artificial supramolecular structures with unique properties. Considering that the functions of various proteins in living cells are highly regulated by their assemblies, building artificial assemblies within cells holds the potential to simulate the functions of natural protein assemblies and engineer cellular activities for controlled manipulation. How can we evaluate the self-assembly of designed peptides in cells? The most effective approach involves the genetic fusion of fluorescent proteins (FPs). Expressing a self-assembling peptide fused with an FP within cells allows for evaluating assemblies through fluorescence signal. When µm-scale assemblies such as condensates are formed, the peptide assemblies can be directly observed by imaging. For sub-µm-scale assemblies, fluorescence correlation spectroscopy analysis is more practical. Additionally, the fluorescence resonance energy transfer (FRET) signal between FPs is valuable evidence of proximity. The decrease in fluorescence anisotropy associated with homo-FRET reveals the properties of self-assembly. Furthermore, by combining two FPs, one acting as a donor and the other as an acceptor, the heteromeric interaction between two different components can be studied through the FRET signal. In this chapter, we provide detailed protocols, from designing and constructing plasmid DNA expressing the peptide-fused protein to analysis of self-assembly in living cells.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas Luminescentes , Peptídeos , Proteínas Recombinantes de Fusão , Transferência Ressonante de Energia de Fluorescência/métodos , Peptídeos/química , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/química , Plasmídeos/genética
2.
ACS Synth Biol ; 13(6): 1842-1850, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38729919

RESUMO

In-cell self-assembly of natural viral capsids is an event that can be visualized under transmission electron microscopy (TEM) observations. By mimicking the self-assembly of natural viral capsids, various artificial protein- and peptide-based nanocages were developed; however, few studies have reported the in-cell self-assembly of such nanocages. Our group developed a ß-Annulus peptide that can form a nanocage called artificial viral capsid in vitro, but in-cell self-assembly of the capsid has not been achieved. Here, we designed an artificial viral capsid decorated with a fluorescent protein, StayGold, to visualize in-cell self-assembly. Fluorescence anisotropy measurements and fluorescence resonance energy transfer imaging, in addition to TEM observations of the cells and super-resolution microscopy, revealed that StayGold-conjugated ß-Annulus peptides self-assembled into the StayGold-decorated artificial viral capsid in a cell. Using these techniques, we achieved the in-cell self-assembly of an artificial viral capsid.


Assuntos
Proteínas do Capsídeo , Capsídeo , Transferência Ressonante de Energia de Fluorescência , Peptídeos , Peptídeos/química , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética , Microscopia Eletrônica de Transmissão , Polarização de Fluorescência , Montagem de Vírus
3.
Anal Chem ; 96(17): 6802-6811, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38647189

RESUMO

Autophagy is a widely conserved and multistep cellular catabolic process and maintains cellular homeostasis and normal cellular functions via the degradation of some harmful intracellular components. It was reported that high basal autophagic activity may be closely related to tumorigenesis. So far, the fluorescence imaging technique has been widely used to study autophagic processes, but this method is only suitable for distinguishing autophagosomes and autolysosomes. Simultaneously monitoring multiple autophagic processes remains a significant challenge due to the lack of an efficient detection method. Here, we demonstrated a new method for simultaneously monitoring multiple autophagic processes and assessing autophagic flux in single cells based on in situ fluorescence cross-correlation spectroscopy (FCCS). In this study, microtubule-associated protein 1A/1B-light chain 3B (LC3B) was fused with two tandem fluorescent proteins [mCherry red fluorescent protein (mCherry) and enhanced green fluorescent protein (EGFP)] to achieve the simultaneous labeling and distinguishing of multiple autophagic structures based on the differences in characteristic diffusion time (τD). Furthermore, we proposed a new parameter "delivery efficiency of autophagosome (DEAP)" to assess autophagic flux based on the cross correlation (CC) value. Our results demonstrate that FCCS can efficiently distinguish three autophagic structures, assess the induced autophagic flux, and discriminate different autophagy regulators. Compared with the commonly used fluorescence imaging technique, the resolution of FCCS remains unaffected by Brownian motion and fluorescent monomers in the cytoplasm and is well suitable to distinguishing differently colored autophagic structures and monitoring autophagy.


Assuntos
Autofagia , Análise de Célula Única , Espectrometria de Fluorescência , Humanos , Espectrometria de Fluorescência/métodos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/análise , Células HeLa , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/química , Proteína Vermelha Fluorescente , Autofagossomos/metabolismo
4.
J Biol Chem ; 299(3): 102977, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738792

RESUMO

Flavin-binding fluorescent proteins are promising genetically encoded tags for microscopy. However, spectral properties of their chromophores (riboflavin, flavin mononucleotide, and flavin adenine dinucleotide) are notoriously similar even between different protein families, which limits applications of flavoproteins in multicolor imaging. Here, we present a palette of 22 finely tuned fluorescent tags based on the thermostable LOV domain from Chloroflexus aggregans. We performed site saturation mutagenesis of three amino acid positions in the flavin-binding pocket, including the photoactive cysteine, to obtain variants with fluorescence emission maxima uniformly covering the wavelength range from 486 to 512 nm. We demonstrate three-color imaging based on spectral separation and two-color fluorescence lifetime imaging of bacteria, as well as two-color imaging of mammalian cells (HEK293T), using the proteins from the palette. These results highlight the possibility of fine spectral tuning of flavoproteins and pave the way for further applications of flavin-binding fluorescent proteins in fluorescence microscopy.


Assuntos
Flavoproteínas , Proteínas Luminescentes , Riboflavina , Humanos , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo , Flavoproteínas/química , Células HEK293 , Proteínas Luminescentes/química
5.
Science ; 378(6619): eabm8797, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36378956

RESUMO

Genetically encoded fluorescent voltage indicators are ideally suited to reveal the millisecond-scale interactions among and between targeted cell populations. However, current indicators lack the requisite sensitivity for in vivo multipopulation imaging. We describe next-generation green and red voltage sensors, Ace-mNeon2 and VARNAM2, and their reverse response-polarity variants pAce and pAceR. Our indicators enable 0.4- to 1-kilohertz voltage recordings from >50 spiking neurons per field of view in awake mice and ~30-minute continuous imaging in flies. Using dual-polarity multiplexed imaging, we uncovered brain state-dependent antagonism between neocortical somatostatin-expressing (SST+) and vasoactive intestinal peptide-expressing (VIP+) interneurons and contributions to hippocampal field potentials from cell ensembles with distinct axonal projections. By combining three mutually compatible indicators, we performed simultaneous triple-population imaging. These approaches will empower investigations of the dynamic interplay between neuronal subclasses at single-spike resolution.


Assuntos
Potenciais de Ação , Hipocampo , Imagem Molecular , Neurônios , Córtex Visual , Animais , Camundongos , Potenciais de Ação/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Neurônios/classificação , Neurônios/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Imagem Molecular/métodos , Rodopsina/química , Rodopsina/genética , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Córtex Visual/citologia , Córtex Visual/fisiologia , Fluorescência , Medições Luminescentes
6.
Acta Crystallogr D Struct Biol ; 78(Pt 5): 599-612, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35503208

RESUMO

Anthozoan chromoproteins are highly pigmented, diversely coloured and readily produced in recombinant expression systems. While they are a versatile and powerful building block in synthetic biology for applications such as biosensor development, they are not widely used in comparison to the related fluorescent proteins, partly due to a lack of structural characterization to aid protein engineering. Here, high-resolution X-ray crystal structures of four open-source chromoproteins, gfasPurple, amilCP, spisPink and eforRed, are presented. These proteins are dimers in solution, and mutation at the conserved dimer interface leads to loss of visible colour development in gfasPurple. The chromophores are trans and noncoplanar in gfasPurple, amilCP and spisPink, while that in eforRed is cis and noncoplanar, and also emits fluorescence. Like other characterized chromoproteins, gfasPurple, amilCP and eforRed contain an sp2-hybridized N-acylimine in the peptide bond preceding the chromophore, while spisPink is unusual and demonstrates a true sp3-hybridized trans-peptide bond at this position. It was found that point mutations at the chromophore-binding site in gfasPurple that substitute similar amino acids to those in amilCP and spisPink generate similar colours. These features and observations have implications for the utility of these chromoproteins in protein engineering and synthetic biology applications.


Assuntos
Peptídeos , Fluorescência , Proteínas Luminescentes/química , Peptídeos/química
7.
Sci Rep ; 12(1): 7862, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551209

RESUMO

Biphotochromic proteins simultaneously possess reversible photoswitching (on-to-off) and irreversible photoconversion (green-to-red). High photochemical reactivity of cysteine residues is one of the reasons for the development of "mox"-monomeric and oxidation resistant proteins. Based on site-saturated simultaneous two-point C105 and C117 mutagenesis, we chose C21N/C71G/C105G/C117T/C175A as the moxSAASoti variant. Since its on-to-off photoswitching rate is higher, off-to-on recovery is more complete and photoconversion rates are higher than those of mSAASoti. We analyzed the conformational behavior of the F177 side chain by classical MD simulations. The conformational flexibility of the F177 side chain is mainly responsible for the off-to-on conversion rate changes and can be further utilized as a measure of the conversion rate. Point mutations in mSAASoti mainly affect the pKa values of the red form and off-to-on switching. We demonstrate that the microscopic measure of the observed pKa value is the C-O bond length in the phenyl fragment of the neutral chromophore. According to molecular dynamics simulations with QM/MM potentials, larger C-O bond lengths are found for proteins with larger pKa. This feature can be utilized for prediction of the pKa values of red fluorescent proteins.


Assuntos
Corantes , Cisteína , Cisteína/genética , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Mutagênese , Oxirredução , Mutação Puntual
8.
Cell Rep Methods ; 2(3): 100184, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35475219

RESUMO

Proteins assemble into a variety of dynamic and functional structures. Their structural transitions are often challenging to distinguish inside cells, particularly with a high spatiotemporal resolution. Here, we present a fluorescence resonance energy transfer (FRET)-based method for continuous and high-throughput monitoring of protein self-assemblies to reveal well-resolved transient intermediate states. Intermolecular FRET with both the donor and acceptor proteins at the same target protein provides high sensitivity while retaining the advantage of straightforward ratiometric imaging. We apply this method to monitor self-assembly of three proteins. We show that the mutant Huntingtin exon1 (mHttex1) first forms less-ordered assemblies, which develop into fibril-like aggregates, and demonstrate that the chaperone protein DNAJB6b increases the critical saturation concentration of mHttex1. We also monitor the structural changes in fused in sarcoma (FUS) condensates. This method adds to the toolbox for protein self-assembly structure and kinetics determination, and implementation with native or non-native proteins can inform studies involving protein condensation or aggregation.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Luminescentes/química
9.
J Mol Biol ; 434(2): 167359, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34798132

RESUMO

Biliverdin-binding serpins (BBSs) are proteins that are responsible for coloration in amphibians and fluoresce in the near-infrared (NIR) spectral region. Here we produced the first functional recombinant BBS of the polka-dot treefrog Boana punctata (BpBBS), assembled with its biliverdin (BV) chromophore, and report its biochemical and photochemical characterization. We determined the crystal structure of BpBBS at 2.05 Å resolution, which demonstrated its structural homology to the mammalian protease inhibitor alpha-1-antitrypsin. BV interaction with BpBBS was studied and it was found that the N-terminal polypeptide (residues 19-50) plays a critical role in the BV binding. By comparing BpBBS with the available NIR fluorescent proteins and expressing it in mammalian cells, we demonstrated its potential as a NIR imaging probe. These results provide insight into the non-inhibitory function of serpins, provide a basis for improving their performance in mammalian cells, and suggest possible paths for the development of BBS-based fluorescent probes.


Assuntos
Biliverdina/química , Biliverdina/metabolismo , Serpinas/química , Serpinas/metabolismo , Animais , Proteínas de Bactérias/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Fitocromo/química , Tetrapirróis/química
10.
Cytometry A ; 101(5): 387-399, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34935263

RESUMO

Förster resonance energy transfer (FRET) is the direct energy exchange between two-component fluorescent molecules. FRET methods utilize chemically linked molecules or unlinked fluorescent molecules such as fluoresscent protein-protein interactions. FRET is therefore a powerful indicator of molecular proximity, but standardized determination of FRET efficiency is challenged when investigating natural (chemically unlinked) interactions. In this paper, we have examined the interactions of tumor necrosis factor receptor-1 (TNFR1) molecules expressed as recombinant C-terminal fusion proteins of cyan, yellow, or red fluorescent protein (-CFP, -YFP, or -RFP) to evaluate two-molecule chemically unlinked FRET by flow cytometry. We demonstrate three independent FRET pairs of TNFR1 CFP→YFP (FRET-1), YFP→RFP (FRET-2) and CFP→RFP (FRET-3), by comparing TNFR1+TNFR1 with non-interacting TNFR1+CD27 proteins, on both LSR-II and Fortessa X-20 cytometers. We describe genuine FRET activities reflecting TNFR1 homotypic interactions. The FRET events can be visualized during sample acquisition via the use of "spiked" FRET donor cells, together with TNFR1+TNFR1 co-transfected cells, as FRET channel mean fluorescence intensity (MFI) overlays. FRET events can also be indicated by comparing concatenated files of cells expressing either FRET positive events (TNFR1+TNFR1) or FRET negative events (TNFR1+CD27) to generate single-cell scatter plots showing loss of FRET donor brightness. Robust determination of FRET efficiency is then confirmed at the single-cell level by applying matrix calculations based on the measurements of FRET, using donor, acceptor, and FRET fluorescent intensities (I), detector channel emission coefficient (S), fluorescent protein extinction coefficients (ε) and the α factor. In this TNFR1-based system the mean CFP→YFP FRET-1 efficiency is 0.43 (LSR-II) and 0.41 (Fortessa X-20), the mean YFP→RFP FRET-2 efficiency is 0.30 (LSR-II) and 0.29 (Fortessa X-20), and the mean CFP→RFP FRET-3 efficiency is 0.56 (LSR-II) and 0.54 (Fortessa X-20). This study also embraces multi-dimensional clustering using t-SNE, Fit-SNE, UMAP, Tri-Map and PaCMAP to further demonstrate FRET. These approaches establish a robust system for standardized detection of chemically unlinked TNFR1 homotypic interactions with three individual FRET pairs.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Receptores Tipo I de Fatores de Necrose Tumoral , Citometria de Fluxo/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fluorescência Verde , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Recombinantes de Fusão/metabolismo
11.
Cell Chem Biol ; 29(2): 339-350.e10, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34324879

RESUMO

There are many efficient ways to connect proteins at termini. However, connecting at a loop is difficult because of lower flexibility and variable environment. Here, we have developed DogCatcher, a protein that forms a spontaneous isopeptide bond with DogTag peptide. DogTag/DogCatcher was generated initially by splitting a Streptococcus pneumoniae adhesin. We optimized DogTag/DogCatcher through rational design and evolution, increasing reaction rate by 250-fold and establishing millimolar solubility of DogCatcher. When fused to a protein terminus, DogTag/DogCatcher reacts slower than SpyTag003/SpyCatcher003. However, inserted in loops of a fluorescent protein or enzyme, DogTag reacts much faster than SpyTag003. Like many membrane proteins, the ion channel TRPC5 has no surface-exposed termini. DogTag in a TRPC5 extracellular loop allowed normal calcium flux and specific covalent labeling on cells in 1 min. DogTag/DogCatcher reacts under diverse conditions, at nanomolar concentrations, and to 98% conversion. Loop-friendly ligation should expand the toolbox for creating protein architectures.


Assuntos
Proteínas Luminescentes/química , Oxirredutases/química , Peptídeos/química , Células Cultivadas , Escherichia coli/citologia , Humanos , Proteínas Luminescentes/metabolismo , Modelos Moleculares , Oxirredutases/metabolismo , Peptídeos/metabolismo , Conformação Proteica , Solubilidade
12.
Sci Rep ; 11(1): 24314, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934103

RESUMO

Biphotochromic fluorescent protein SAASoti contains five cysteine residues in its sequence and a V127T point mutation transforms it to the monomeric form, mSAASoti. These cysteine residues are located far from the chromophore and might control its properties only allosterically. The influence of individual, double and triple cysteine substitutions of mSAASoti on fluorescent parameters and phototransformation reactions (irreversible green-to-red photoconversion and reversible photoswitching) is studied. A set of mSAASoti mutant forms (C21N, C117S, C71V, C105V, C175A, C21N/C71V, C21N/C175A, C21N/C71G/C175A) is obtained by site-directed mutagenesis. We demonstrate that the C21N variant exists in a monomeric form up to high concentrations, the C71V substitution accelerates photoconversion to the red form and the C105V variant has the maximum photoswitching rate. All C175A-containing variants demonstrate different photoswitching kinetics and decreased photostability during subsequent switching cycles compared with other considered systems. Classical molecular dynamic simulations reveal that the F177 side chain located in the vicinity of the chromophore is considerably more flexible in the mSAASoti compared with its C175A variant. This might be the explanation of the experimentally observed slowdown the thermal relaxation rate, i.e., trans-cis isomerization of the chromophore in mSAASoti upon C175A substitution.


Assuntos
Cisteína/química , Proteínas Luminescentes/química , Processos Fotoquímicos , Mutação Puntual , Rodófitas/metabolismo , Sítio Alostérico , Cisteína/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutagênese Sítio-Dirigida , Conformação Proteica
13.
J Am Chem Soc ; 143(46): 19317-19329, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34762804

RESUMO

GFP-like fluorescent proteins and their molecular mimics have revolutionized bioimaging research, but their emissions are largely limited in the visible to far-red region, hampering the in vivo applications in intact animals. Herein, we structurally modulate GFP-like chromophores using a donor-acceptor-acceptor (D-A-A') molecular configuration to discover a set of novel fluorogenic derivatives with infrared-shifted spectra. These chromophores can be fluorescently elicited by their specific interaction with G-quadruplex (G4), a unique noncanonical nucleic acid secondary structure, via inhibition of the chromophores' twisted-intramolecular charge transfer. This feature allows us to create, for the first time, FP mimics with tunable emission in the near-infrared (NIR) region (Emmax = 664-705 nm), namely, infrared G-quadruplex mimics of FPs (igMFP). Compared with their FP counterparts, igMFPs exhibit remarkably higher quantum yields, larger Stokes shift, and better photostability. In a proof-of-concept application using pathogen-related G4s as the target, we exploited igMFPs to directly visualize native hepatitis C virus (HCV) RNA genome in living cells via their in situ formation by the chromophore-bound viral G4 structure in the HCV core gene. Furthermore, igMFPs are capable of high contrast HCV RNA imaging in living mice bearing a HCV RNA-presenting mini-organ, providing the first application of FP mimics in whole-animal imaging.


Assuntos
Fluorescência , Corantes Fluorescentes/química , Proteínas Luminescentes/química , Ácidos Nucleicos/química , RNA Viral/análise , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/síntese química , Hepacivirus/genética , Humanos , Raios Infravermelhos , Proteínas Luminescentes/síntese química , Camundongos , RNA Viral/genética , Espectrometria de Fluorescência
14.
Adv Sci (Weinh) ; 8(21): e2102474, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34533889

RESUMO

Photoacoustic tomography (PAT) with genetically encoded near-infrared probes enables visualization of specific cell populations in vivo at high resolution deeply in biological tissues. However, because of a lack of proper probes, PAT of cellular dynamics remains unexplored. Here, the authors report a near-infrared Forster resonance energy transfer (FRET) biosensor based on a miRFP670-iRFP720 pair of the near-infrared fluorescent proteins, which enables dynamic functional imaging of active biological processes in deep tissues. By photoacoustically detecting the changes in the optical absorption of the miRFP670 FRET-donor, they monitored cell apoptosis in deep tissue at high spatiotemporal resolution using PAT. Specifically, they detected apoptosis in single cells at a resolution of ≈3 µm in a mouse ear tumor, and in deep brain tumors (>3 mm beneath the scalp) of living mice at a spatial resolution of ≈150 µm with a 20 Hz frame rate. These results open the way for high-resolution photoacoustic imaging of dynamic biological processes in deep tissues using NIR biosensors and PAT.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Técnicas Fotoacústicas , Tomografia Computadorizada por Raios X/métodos , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/diagnóstico por imagem , Caspase 3/metabolismo , Neoplasias da Orelha/diagnóstico por imagem , Células HeLa , Humanos , Proteínas Luminescentes/química , Camundongos , Estaurosporina/farmacologia
15.
Adv Mater ; 33(48): e2105765, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34561928

RESUMO

Regulating stem cell functions by precisely controlling the nanoscale presentation of bioactive ligands has a substantial impact on tissue engineering and regenerative medicine but remains a major challenge. Here it is shown that bioactive ligands can become mechanically "invisible" by increasing their tether lengths to the substrate beyond a critical length, providing a way to regulate mechanotransduction without changing the biochemical conditions. Building on this finding, light switchable tethers are rationally designed, whose lengths can be modulated reversibly by switching a light-responsive protein, pdDronpa, in between monomer and dimer states. This allows the regulation of the adhesion, spreading, and differentiation of stem cells by light on substrates of well-defined biochemical and physical properties. Spatiotemporal regulation of differential cell fates on the same substrate is further demonstrated, which may represent an important step toward constructing complex organoids or mini tissues by spatially defining the mechanical cues of the cellular microenvironment with light.


Assuntos
Ligantes , Luz , Mecanotransdução Celular/fisiologia , Engenharia de Proteínas , Adesão Celular/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Dimerização , Elastina/química , Elastina/metabolismo , Humanos , Integrinas/química , Integrinas/metabolismo , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Mecanotransdução Celular/efeitos da radiação , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microscopia de Força Atômica , Oligopeptídeos/química , Oligopeptídeos/metabolismo
16.
Chembiochem ; 22(23): 3283-3291, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34296494

RESUMO

Genetically encodable fluorescent proteins have revolutionized biological imaging in vivo and in vitro. Despite their importance, their photophysical properties, i. e., brightness, count-rate and photostability, are relatively poor compared to synthetic organic fluorophores or quantum dots. Intramolecular photostabilizers were recently rediscovered as an effective approach to improve photophysical properties of organic fluorophores. Here, direct conjugation of triplet-state quenchers or redox-active substances creates high local concentrations of photostabilizer around the fluorophore. In this paper, we screen for effects of covalently linked photostabilizers on fluorescent proteins. We produced a double cysteine mutant (A206C/L221C) of α-GFP for attachment of photostabilizer-maleimides on the ß-barrel near the chromophore. Whereas labelling with photostabilizers such as trolox, a nitrophenyl group, and cyclooctatetraene, which are often used for organic fluorophores, had no effect on α-GFP-photostability, a substantial increase of photostability was found upon conjugation to azobenzene. Although the mechanism of the photostabilizing effects remains to be elucidated, we speculate that the higher triplet-energy of azobenzene might be crucial for triplet-quenching of fluorophores in the blue spectral range. Our study paves the way for the development of fluorescent proteins with photostabilizers in the protein barrel by methods such as unnatural amino acid incorporation.


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Fármacos Fotossensibilizantes/química , Modelos Moleculares , Processos Fotoquímicos
17.
Biochem Biophys Res Commun ; 567: 143-147, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34153684

RESUMO

LOV domains are widespread photosensory modules that have also found applications in fluorescence microscopy, optogenetics, and light-driven generation of reactive oxygen species. Many of these applications require stable proteins with altered spectra. Here, we report a flavin-based fluorescent protein CisFbFP derived from Chloroflexus islandicus LOV domain-containing protein. We show that CisFbFP is thermostable, and its absorption and fluorescence spectra are red-shifted for ∼6 nm, which has not been observed for other cysteine-substituted natural LOV domains. We also provide a crystallographic structure of CisFbFP at the resolution of 1.2 Å that reveals alterations in the active site due to replacement of conservative asparagine with a serine. Finally, we discuss the possible effects of presence of cis-proline in the Aß-Bß loop on the protein's structure and stability. The findings provide the basis for engineering and color tuning of LOV-based tools for molecular biology.


Assuntos
Proteínas de Bactérias/química , Chloroflexus/química , Flavinas/química , Proteínas Luminescentes/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
18.
Methods Mol Biol ; 2304: 315-337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028725

RESUMO

Oxygen (O2) is a critical metabolite for cellular function as it fuels aerobic cellular metabolism; further, it is a known regulator of gene expression. Monitoring oxygenation within cells and organelles can provide valuable insights into how O2, or lack thereof, both influences and responds to cell processes. In recent years, fluorescence lifetime imaging microscopy (FLIM) has been used to track several probe concentration independent intracellular phenomena, such as pH, viscosity, and, in conjunction with Förster resonance energy transfer (FRET), protein-protein interactions. Here, we describe methods for synthesizing and expressing the novel FLIM-FRET intracellular O2 probe Myoglobin-mCherry (Myo-mCherry) in cultured cell lines, as well as acquiring FLIM images using a laser scanning confocal microscope configured for two-photon excitation and a time-correlated single photon counting (TCSPC) module. Finally, we provide step-by-step protocols for FLIM analysis of Myo-mCherry using the commercial software SPCImage and conversion of fluorescence lifetime values in each pixel to apparent intracellular oxygen partial pressures (pO2).


Assuntos
Proteínas Luminescentes/metabolismo , Mioglobina/metabolismo , Oxigênio/análise , Transferência Ressonante de Energia de Fluorescência , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Proteínas Luminescentes/química , Microscopia de Fluorescência por Excitação Multifotônica , Modelos Moleculares , Mioglobina/química , Proteínas Recombinantes/metabolismo , Software , Proteína Vermelha Fluorescente
19.
J Inorg Biochem ; 221: 111478, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33975250

RESUMO

The measurement of labile CuII in biological samples is fundamental for understanding Cu metabolism and has been emerging as a promising diagnostic marker for Cu-related pathologies such as Wilson's and Alzheimer's diseases. The use of fluorescent chelators may be useful to circumvent separation steps employed by current methods. For this purpose, we recently designed a selective and suited-affinity turn-off luminescent probe based on a peptide bearing the CuII-binding Xxx-Zzz-His (Amino-Terminal CuII- and NiII-binding, ATCUN) motif and a TbIII-DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) complex. Here, we present an analogue probe bearing the ATCUN motif variant Xxx-His-His. This probe showed much faster response in biologically-relevant media and higher stability than the previous motif at low pH. These features could be beneficial to the measurement of dynamic CuII fluctuations and the application in slightly acidic media, such as urine.


Assuntos
Quelantes/química , Cobre/análise , Proteínas Luminescentes/química , Peptídeos/química , Motivos de Aminoácidos , Cobre/química , Concentração de Íons de Hidrogênio , Cinética , Limite de Detecção , Luminescência , Medições Luminescentes
20.
Nat Commun ; 12(1): 2005, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790271

RESUMO

Förster resonant energy transfer (FRET) is a powerful mechanism to probe associations in situ. Simultaneously performing more than one FRET measurement can be challenging due to the spectral bandwidth required for the donor and acceptor fluorophores. We present an approach to distinguish overlapping FRET pairs based on the photochromism of the donor fluorophores, even if the involved fluorophores display essentially identical absorption and emission spectra. We develop the theory underlying this method and validate our approach using numerical simulations. To apply our system, we develop rsAKARev, a photochromic biosensor for cAMP-dependent protein kinase (PKA), and combine it with the spectrally-identical biosensor EKARev, a reporter for extracellular signal-regulated kinase (ERK) activity, to deliver simultaneous readout of both activities in the same cell. We further perform multiplexed PKA, ERK, and calcium measurements by including a third, spectrally-shifted biosensor. Our work demonstrates that exploiting donor photochromism in FRET can be a powerful approach to simultaneously read out multiple associations within living cells.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Proteínas Luminescentes/química , Algoritmos , Animais , Técnicas Biossensoriais/métodos , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Imagem com Lapso de Tempo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA