Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Cells ; 13(2)2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38247817

RESUMO

The membrane (M) glycoprotein of coronaviruses (CoVs) serves as the nidus for virion assembly. Using a yeast two-hybrid screen, we identified the interaction of the cytosolic tail of Murine Hepatitis Virus (MHV-CoV) M protein with Myosin Vb (MYO5B), specifically with the alternative splice variant of cellular MYO5B including exon D (MYO5B+D), which mediates interaction with Rab10. When co-expressed in human lung epithelial A549 and canine kidney epithelial MDCK cells, MYO5B+D co-localized with the MHV-CoV M protein, as well as with the M proteins from Porcine Epidemic Diarrhea Virus (PEDV-CoV), Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome 2 (SARS-CoV-2). Co-expressed M proteins and MYO5B+D co-localized with endogenous Rab10 and Rab11a. We identified point mutations in MHV-CoV M that blocked the interaction with MYO5B+D in yeast 2-hybrid assays. One of these point mutations (E121K) was previously shown to block MHV-CoV virion assembly and its interaction with MYO5B+D. The E to K mutation at homologous positions in PEDV-CoV, MERS-CoV and SARS-CoV-2 M proteins also blocked colocalization with MYO5B+D. The knockdown of Rab10 blocked the co-localization of M proteins with MYO5B+D and was rescued by re-expression of CFP-Rab10. Our results suggest that CoV M proteins traffic through Rab10-containing systems, in association with MYO5B+D.


Assuntos
Proteínas M de Coronavírus , Animais , Cães , Humanos , Células Madin Darby de Rim Canino/metabolismo , Células Madin Darby de Rim Canino/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio , Miosinas , Proteínas rab de Ligação ao GTP/genética , Saccharomyces cerevisiae , Suínos , Proteínas da Matriz Viral , SARS-CoV-2/metabolismo , Vírus da Hepatite Murina/metabolismo , Células A549/metabolismo , Células A549/virologia , Vírus da Diarreia Epidêmica Suína/metabolismo
2.
Sci Rep ; 12(1): 1005, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046461

RESUMO

The pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a public health emergency, and research on the development of various types of vaccines is rapidly progressing at an unprecedented development speed internationally. Some vaccines have already been approved for emergency use and are being supplied to people around the world, but there are still many ongoing efforts to create new vaccines. Virus-like particles (VLPs) enable the construction of promising platforms in the field of vaccine development. Here, we demonstrate that non-infectious SARS-CoV-2 VLPs can be successfully assembled by co-expressing three important viral proteins membrane (M), envelop (E) and nucleocapsid (N) in plants. Plant-derived VLPs were purified by sedimentation through a sucrose cushion. The shape and size of plant-derived VLPs are similar to native SARS-CoV-2 VLPs without spike. Although the assembled VLPs do not have S protein spikes, they could be developed as formulations that can improve the immunogenicity of vaccines including S antigens, and further could be used as platforms that can carry S antigens of concern for various mutations.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Proteínas M de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas Viroporinas/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Proteínas M de Coronavírus/genética , Proteínas M de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Humanos , Nicotiana/imunologia , Nicotiana/metabolismo , Nicotiana/virologia , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/metabolismo , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo
3.
Cell Death Differ ; 29(7): 1395-1408, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35022571

RESUMO

Deaths caused by coronavirus disease 2019 (COVID-19) are largely due to the lungs edema resulting from the disruption of the lung alveolo-capillary barrier, induced by SARS-CoV-2-triggered pulmonary cell apoptosis. However, the molecular mechanism underlying the proapoptotic role of SARS-CoV-2 is still unclear. Here, we revealed that SARS-CoV-2 membrane (M) protein could induce lung epithelial cells mitochondrial apoptosis. Notably, M protein stabilized B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) via inhibiting its ubiquitination and promoted BOK mitochondria translocation. The endodomain of M protein was required for its interaction with BOK. Knockout of BOK by CRISPR/Cas9 increased cellular resistance to M protein-induced apoptosis. BOK was rescued in the BOK-knockout cells, which led to apoptosis induced by M protein. M protein induced BOK to trigger apoptosis in the absence of BAX and BAK. Furthermore, the BH2 domain of BOK was required for interaction with M protein and proapoptosis. In vivo M protein recombinant lentivirus infection induced caspase-associated apoptosis and increased alveolar-capillary permeability in the mouse lungs. BOK knockdown improved the lung edema due to lentivirus-M protein infection. Overall, M protein activated the BOK-dependent apoptotic pathway and thus exacerbated SARS-CoV-2 associated lung injury in vivo. These findings proposed a proapoptotic role for M protein in SARS-CoV-2 pathogenesis, which may provide potential targets for COVID-19 treatments.


Assuntos
COVID-19 , Proteínas M de Coronavírus , Proteínas Proto-Oncogênicas c-bcl-2 , Edema Pulmonar , Animais , Apoptose , Proteínas M de Coronavírus/metabolismo , Edema/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Edema Pulmonar/metabolismo , SARS-CoV-2 , Proteína X Associada a bcl-2/metabolismo
4.
Front Immunol ; 12: 724060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539660

RESUMO

Thirty-five peptides selected from functionally-relevant SARS-CoV-2 spike (S), membrane (M), and envelope (E) proteins were suitably modified for immunising MHC class II (MHCII) DNA-genotyped Aotus monkeys and matched with HLA-DRß1* molecules for use in humans. This was aimed at producing the first minimal subunit-based, chemically-synthesised, immunogenic molecules (COLSARSPROT) covering several HLA alleles. They were predicted to cover 48.25% of the world's population for 6 weeks (short-term) and 33.65% for 15 weeks (long-lasting) as they induced very high immunofluorescent antibody (IFA) and ELISA titres against S, M and E parental native peptides, SARS-CoV-2 neutralising antibodies and host cell infection. The same immunological methods that led to identifying new peptides for inclusion in the COLSARSPROT mixture were used for antigenicity studies. Peptides were analysed with serum samples from patients suffering mild or severe SARS-CoV-2 infection, thereby increasing chemically-synthesised peptides' potential coverage for the world populations up to 62.9%. These peptides' 3D structural analysis (by 1H-NMR acquired at 600 to 900 MHz) suggested structural-functional immunological association. This first multi-protein, multi-epitope, minimal subunit-based, chemically-synthesised, highly immunogenic peptide mixture highlights such chemical synthesis methodology's potential for rapidly obtaining very pure, highly reproducible, stable, cheap, easily-modifiable peptides for inducing immune protection against COVID-19, covering a substantial percentage of the human population.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Proteínas do Envelope de Coronavírus/imunologia , Proteínas M de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Aotidae , COVID-19/prevenção & controle , Cadeias HLA-DRB1/genética , Humanos , Peptídeos/imunologia , SARS-CoV-2/imunologia
5.
Viruses ; 13(9)2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34578379

RESUMO

A variety of immunolabeling procedures for both light and electron microscopy were used to examine the cellular origins of the host membranes supporting the SARS-CoV-2 replication complex. The endoplasmic reticulum has long been implicated as a source of membrane for the coronavirus replication organelle. Using dsRNA as a marker for sites of viral RNA synthesis, we provide additional evidence supporting ER as a prominent source of membrane. In addition, we observed a rapid fragmentation of the Golgi apparatus which is visible by 6 h and complete by 12 h post-infection. Golgi derived lipid appears to be incorporated into the replication organelle although protein markers are dispersed throughout the infected cell. The mechanism of Golgi disruption is undefined, but chemical disruption of the Golgi apparatus by brefeldin A is inhibitory to viral replication. A search for an individual SARS-CoV-2 protein responsible for this activity identified at least five viral proteins, M, S, E, Orf6, and nsp3, that induced Golgi fragmentation when expressed in eukaryotic cells. Each of these proteins, as well as nsp4, also caused visible changes to ER structure as shown by correlative light and electron microscopy (CLEM). Collectively, these results imply that specific disruption of the Golgi apparatus is a critical component of coronavirus replication.


Assuntos
Retículo Endoplasmático/virologia , Complexo de Golgi/virologia , SARS-CoV-2/fisiologia , Replicação Viral , Animais , Chlorocebus aethiops , Proteínas M de Coronavírus/fisiologia , Proteínas M de Coronavírus/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/ultraestrutura , Humanos , Membranas Intracelulares/ultraestrutura , Membranas Intracelulares/virologia , Microscopia Eletrônica , SARS-CoV-2/ultraestrutura , Células Vero , Proteínas Estruturais Virais/fisiologia , Proteínas Estruturais Virais/ultraestrutura
6.
J Nutr Biochem ; 98: 108821, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34271099

RESUMO

Membrane glycoprotein is the most abundant protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but its role in coronavirus disease 2019 (COVID-19) has not been fully characterized. Mice intranasally inoculated with membrane glycoprotein substantially increased the interleukin (IL)-6, a hallmark of the cytokine storm, in bronchoalveolar lavage fluid (BALF), compared to mice inoculated with green fluorescent protein (GFP). The high level of IL-6 induced by membrane glycoprotein was significantly diminished in phosphodiesterase 4 (PDE4B) knockout mice, demonstrating the essential role of PDE4B in IL-6 signaling. Mycelium fermentation of Lactobacillus rhamnosus (L. rhamnosus) EH8 strain yielded butyric acid, which can down-regulate the PDE4B expression and IL-6 secretion in macrophages. Feeding mice with mycelia increased the relative abundance of commensal L. rhamnosus. Two-week supplementation of mice with L. rhamnosus plus mycelia considerably decreased membrane glycoprotein-induced PDE4B expression and IL-6 secretion. The probiotic activity of L. rhamnosus plus mycelia against membrane glycoprotein was abolished in mice treated with GLPG-0974, an antagonist of free fatty acid receptor 2 (Ffar2). Activation of Ffar2 in the gut-lung axis for down-regulation of the PDE4B-IL-6 signalling may provide targets for development of modalities including probiotics for treatment of the cytokine storm in COVID-19.


Assuntos
Proteínas M de Coronavírus/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Interleucina-6/metabolismo , Lacticaseibacillus rhamnosus/fisiologia , Probióticos/farmacologia , SARS-CoV-2/metabolismo , Animais , Ácido Butírico , Linhagem Celular , Clonagem Molecular , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Feminino , Fermentação , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos ICR , Receptores Acoplados a Proteínas G/metabolismo
7.
J Immunol Methods ; 495: 113071, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33991531

RESUMO

Several diagnostic tools have been developed for clinical and epidemiological assays. RT-PCR and antigen detection tests are more useful for diagnosis of acute disease, while antibody tests allow the estimation of exposure in the population. Currently, there is an urgent need for the development of diagnostic tests for COVID-19 that can be used for large-scale epidemiological sampling. Through a comprehensive strategy, potential 16 mer antigenic peptides suited for antibody-based SARS-CoV-2 diagnosis were identified. A systematic scan of the three structural proteins (S,N and M) and the non-structural proteins (ORFs) present in the SARS-CoV-2 virus was conducted through the combination of immunoinformatic methods, peptide SPOT synthesis and an immunoassay with cellulose-bound peptides (Pepscan). The Pepscan filter paper sheets with synthetic peptides were tested against pools of sera of COVID-19 patients. Antibody recognition showed a strong signal for peptides corresponding to the S, N and M proteins of SARS-CoV-2 virus, but not for the ORFs proteins. The peptides exhibiting higher signal intensity were found in the C-terminal region of the N protein. Several peptides of this region showed strong recognition with all three immunoglobulins in the pools of sera. The differential reactivity observed between the different immunoglobulin isotypes (IgA, IgM and IgG) within different regions of the S and N proteins, can be advantageous for ensuring accurate diagnosis of all infected patients, with different times of exposure to infection. Few peptides of the M protein showed antibody recognition and no recognition was observed for peptides of the ORFs proteins.


Assuntos
Teste Sorológico para COVID-19/métodos , Proteínas M de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Informática/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Antivirais/sangue , Biologia Computacional , Proteínas M de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/genética , Mapeamento de Epitopos , Epitopos de Linfócito B/genética , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Peptídeos/genética , Glicoproteína da Espícula de Coronavírus/genética
8.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573283

RESUMO

The synthesis of α-fluorinated methyl ketones has always been challenging. New methods based on the homologation chemistry via nucleophilic halocarbenoid transfer, carried out recently in our labs, allowed us to design and synthesize a target-directed dipeptidyl α,α-difluoromethyl ketone (DFMK) 8 as a potential antiviral agent with activity against human coronaviruses. The ability of the newly synthesized compound to inhibit viral replication was evaluated by a viral cytopathic effect (CPE)-based assay performed on MCR5 cells infected with one of the four human coronaviruses associated with respiratory distress, i.e., hCoV-229E, showing antiproliferative activity in the micromolar range (EC50 = 12.9 ± 1.22 µM), with a very low cytotoxicity profile (CC50 = 170 ± 3.79 µM, 307 ± 11.63 µM, and 174 ± 7.6 µM for A549, human embryonic lung fibroblasts (HELFs), and MRC5 cells, respectively). Docking and molecular dynamics simulations studies indicated that 8 efficaciously binds to the intended target hCoV-229E main protease (Mpro). Moreover, due to the high similarity between hCoV-229E Mpro and SARS-CoV-2 Mpro, we also performed the in silico analysis towards the second target, which showed results comparable to those obtained for hCoV-229E Mpro and promising in terms of energy of binding and docking pose.


Assuntos
Antivirais/química , Coronavirus Humano 229E/metabolismo , Dipeptídeos/química , Cetonas/química , Células A549 , Antivirais/farmacologia , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Proteínas M de Coronavírus/química , Proteínas M de Coronavírus/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Termodinâmica , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Replicação Viral/efeitos dos fármacos
9.
Biophys Chem ; 269: 106510, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285430

RESUMO

The search for therapeutic drugs that can neutralize the effects of COVID-2019 (SARS-CoV-2) infection is the main focus of current research. The coronavirus main protease (Mpro) is an attractive target for anti-coronavirus drug design. Further, α-ketoamide is proved to be very effective as a reversible covalent-inhibitor against cysteine proteases. Herein, we report on the non-covalent to the covalent adduct formation mechanism of α-ketoamide-based inhibitor with the enzyme active site amino acids by QM/SQM model (QM = quantum mechanical, SQM = semi-empirical QM). To uncover the mechanism, we focused on two approaches: a concerted and a stepwise fashion. The concerted pathway proceeds via deprotonation of the thiol of cysteine (here, Cys145 SγH) and simultaneous reversible nucleophilic attack of sulfur onto the α-ketoamide warhead. In this work, we propose three plausible concerted pathways. On the contrary, in a traditional two-stage pathway, the first step is proton transfer from Cys145 SγH to His41 Nδ forming an ion pair, and consecutively, in the second step, the thiolate ion attacks the α-keto group to form a thiohemiketal. In this reaction, we find that the stability of the tetrahedral intermediate oxyanion/hydroxyl group plays an important role. Moreover, as the α-keto group has two faces Si or Re for the nucleophilic attack, we considered both possibilities of attack leading to S- and R-thiohemiketal. We computed the structural, electronic, and energetic parameters of all stationary points including transition states via ONIOM and pure DFT method. Additionally, to characterize covalent, weak noncovalent interaction (NCI) and hydrogen-bonds, we applied NCI-reduced density gradient (NCI-RDG) methods along with Bader's Quantum Theory of Atoms-in-Molecules (QTAIM) and natural bonding orbital (NBO) analysis.


Assuntos
Amidas/química , Coronavirus/enzimologia , Peptídeo Hidrolases/química , Inibidores de Proteases/química , Proteínas Virais/antagonistas & inibidores , Amidas/metabolismo , Sítios de Ligação , Domínio Catalítico , Coronavirus/isolamento & purificação , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Proteínas M de Coronavírus/antagonistas & inibidores , Proteínas M de Coronavírus/metabolismo , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Teoria Quântica , Termodinâmica , Proteínas Virais/metabolismo
10.
Chembiochem ; 21(23): 3383-3388, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32717117

RESUMO

The global pandemic caused by SARS-CoV-2 calls for the fast development of antiviral drugs against this particular coronavirus. Chemical tools to facilitate inhibitor discovery as well as detection of target engagement by hit or lead compounds from high-throughput screens are therefore in urgent need. We here report novel, selective activity-based probes that enable detection of the SARS-CoV-2 main protease. The probes are based on acyloxymethyl ketone reactive electrophiles combined with a peptide sequence including unnatural amino acids that targets the nonprimed site of the main protease substrate binding cleft. They are the first activity-based probes for the main protease of coronaviruses and display target labeling within a human proteome without background. We expect that these reagents will be useful in the drug-development pipeline, not only for the current SARS-CoV-2, but also for other coronaviruses.


Assuntos
Proteínas M de Coronavírus/química , Cetonas/química , Sondas Moleculares/química , SARS-CoV-2/enzimologia , Sítios de Ligação , COVID-19/diagnóstico , COVID-19/virologia , Domínio Catalítico , Proteínas M de Coronavírus/metabolismo , Humanos , Cetonas/metabolismo , Cinética , Simulação de Acoplamento Molecular , Sondas Moleculares/metabolismo , Peptídeos/química , SARS-CoV-2/isolamento & purificação
11.
Virol J ; 17(1): 71, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493436

RESUMO

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) of the family Coronaviridae has caused substantial economic losses in the swine husbandry industry. There's currently no specific drug available for treatment of coronaviruses or PEDV. METHOD: In the current study, we use coronavirus PEDV as a model to study antiviral agents. Briefly, a fusion inhibitor tHR2, recombinant lentivirus-delivered shRNAs targeted to conserved M and N sequences, homoharringtonine (HHT), and hydroxychloroquine (HCQ) were surveyed for their antiviral effects. RESULTS: Treatment with HCQ at 50 µM and HHT at 150 nM reduced virus titer in TCID50 by 30 and 3.5 fold respectively, and the combination reduced virus titer in TCID50 by 200 fold. CONCLUSION: Our report demonstrates that the combination of HHT and HCQ exhibited higher antiviral activity than either HHT or HCQ exhibited. The information may contribute to the development of antiviral strategies effective in controlling PEDV infection.


Assuntos
Antivirais/farmacologia , Mepesuccinato de Omacetaxina/farmacologia , Hidroxicloroquina/farmacologia , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Animais , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Proteínas M de Coronavírus , Proteínas do Nucleocapsídeo de Coronavírus , Sinergismo Farmacológico , Proteínas do Nucleocapsídeo/genética , Peptídeos/farmacologia , RNA Interferente Pequeno/genética , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/química , Células Vero , Carga Viral/efeitos dos fármacos , Proteínas da Matriz Viral/genética
12.
Nature ; 583(7815): 286-289, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380510

RESUMO

The current outbreak of coronavirus disease-2019 (COVID-19) poses unprecedented challenges to global health1. The new coronavirus responsible for this outbreak-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-shares high sequence identity to SARS-CoV and a bat coronavirus, RaTG132. Although bats may be the reservoir host for a variety of coronaviruses3,4, it remains unknown whether SARS-CoV-2 has additional host species. Here we show that a coronavirus, which we name pangolin-CoV, isolated from a Malayan pangolin has 100%, 98.6%, 97.8% and 90.7% amino acid identity with SARS-CoV-2 in the E, M, N and S proteins, respectively. In particular, the receptor-binding domain of the S protein of pangolin-CoV is almost identical to that of SARS-CoV-2, with one difference in a noncritical amino acid. Our comparative genomic analysis suggests that SARS-CoV-2 may have originated in the recombination of a virus similar to pangolin-CoV with one similar to RaTG13. Pangolin-CoV was detected in 17 out of the 25 Malayan pangolins that we analysed. Infected pangolins showed clinical signs and histological changes, and circulating antibodies against pangolin-CoV reacted with the S protein of SARS-CoV-2. The isolation of a coronavirus from pangolins that is closely related to SARS-CoV-2 suggests that these animals have the potential to act as an intermediate host of SARS-CoV-2. This newly identified coronavirus from pangolins-the most-trafficked mammal in the illegal wildlife trade-could represent a future threat to public health if wildlife trade is not effectively controlled.


Assuntos
Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Eutérios/virologia , Evolução Molecular , Genoma Viral/genética , Homologia de Sequência do Ácido Nucleico , Animais , Betacoronavirus/classificação , COVID-19 , China , Quirópteros/virologia , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Proteínas M de Coronavírus , Proteínas do Nucleocapsídeo de Coronavírus , Reservatórios de Doenças/virologia , Genômica , Especificidade de Hospedeiro , Humanos , Pulmão/patologia , Pulmão/virologia , Malásia , Proteínas do Nucleocapsídeo/genética , Pandemias , Fosfoproteínas , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Reação em Cadeia da Polimerase , Recombinação Genética , SARS-CoV-2 , Alinhamento de Sequência , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética , Zoonoses/transmissão , Zoonoses/virologia
13.
Malays J Pathol ; 42(1): 3-11, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32342926

RESUMO

were identified beginning with the discovery of SARS-CoV in 2002. With the recent detection of SARS-CoV-2, there are now seven human coronaviruses. Those that cause mild diseases are the 229E, OC43, NL63 and HKU1, and the pathogenic species are SARS-CoV, MERS-CoV and SARS-CoV-2 Coronaviruses (order Nidovirales, family Coronaviridae, and subfamily Orthocoronavirinae) are spherical (125nm diameter), and enveloped with club-shaped spikes on the surface giving the appearance of a solar corona. Within the helically symmetrical nucleocapsid is the large positive sense, single stranded RNA. Of the four coronavirus genera (α,ß,γ,δ), human coronaviruses (HCoVs) are classified under α-CoV (HCoV-229E and NL63) and ß-CoV (MERS-CoV, SARS-CoV, HCoVOC43 and HCoV-HKU1). SARS-CoV-2 is a ß-CoV and shows fairly close relatedness with two bat-derived CoV-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21. Even so, its genome is similar to that of the typical CoVs. SARS-CoV and MERS-CoV originated in bats, and it appears to be so for SARS-CoV-2 as well. The possibility of an intermediate host facilitating the emergence of the virus in humans has already been shown with civet cats acting as intermediate hosts for SARS-CoVs, and dromedary camels for MERS-CoV. Human-to-human transmission is primarily achieved through close contact of respiratory droplets, direct contact with the infected individuals, or by contact with contaminated objects and surfaces. The coronaviral genome contains four major structural proteins: the spike (S), membrane (M), envelope (E) and the nucleocapsid (N) protein, all of which are encoded within the 3' end of the genome. The S protein mediates attachment of the virus to the host cell surface receptors resulting in fusion and subsequent viral entry. The M protein is the most abundant protein and defines the shape of the viral envelope. The E protein is the smallest of the major structural proteins and participates in viral assembly and budding. The N protein is the only one that binds to the RNA genome and is also involved in viral assembly and budding. Replication of coronaviruses begin with attachment and entry. Attachment of the virus to the host cell is initiated by interactions between the S protein and its specific receptor. Following receptor binding, the virus enters host cell cytosol via cleavage of S protein by a protease enzyme, followed by fusion of the viral and cellular membranes. The next step is the translation of the replicase gene from the virion genomic RNA and then translation and assembly of the viral replicase complexes. Following replication and subgenomic RNA synthesis, encapsidation occurs resulting in the formation of the mature virus. Following assembly, virions are transported to the cell surface in vesicles and released by exocytosis.


Assuntos
Betacoronavirus/genética , Betacoronavirus/patogenicidade , Coronavirus/classificação , Coronavirus/fisiologia , Genoma Viral , Animais , Betacoronavirus/fisiologia , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Proteínas M de Coronavírus , Proteínas do Nucleocapsídeo de Coronavírus , Humanos , Proteínas do Nucleocapsídeo/genética , Pandemias , Fosfoproteínas , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética , Replicação Viral
14.
J Biotechnol ; 306: 177-184, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31614169

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged in 2012, and over 2000 infections and 800 deaths have been confirmed in 27 countries. However, to date, no commercial vaccine is available. In this study, structural proteins of MERS-CoV were expressed in silkworm larvae and Bm5 cells for the development of vaccine candidates against MERS-CoV and diagnostic methods. The spike (S) protein of MERS-CoV lacking its transmembrane and cytoplasmic domains (SΔTM) was secreted into the hemolymph of silkworm larvae using a bombyxin signal peptide and purified using affinity chromatography. The purified SΔTM forms small nanoparticles as well as the full-length S protein and has the ability to bind human dipeptidyl peptidase 4 (DPP4), which is a receptor of MERS-CoV. These results indicate that bioactive SΔTM was expressed in silkworm larvae. To produce MERS-CoV-like particles (MERS-CoV-LPs), the coexpression of spike proteins was performed in Bm5 cells and envelope (E) and membrane (M) proteins secreted E and M proteins extracellularly, suggesting that MERS-CoV-LPs may be formed. However, this S protein was not displayed on virus-like particles (VLPs) even though E and M proteins were secreted into the culture supernatant. By surfactant treatment and mechanical extrusion using S protein- or three structural protein-expressing Bm5 cells, S protein-displaying nanovesicles with diameters of approximately 100-200 nm were prepared and confirmed by immuno-TEM. The mechanical extrusion method is favorable for obtaining uniform recombinant protein-displaying nanovesicles from cultured cells. The purified SΔTM from silkworm larvae and S protein-displaying nanovesicles from Bm5 cells may lead to the development of nanoparticle-based vaccines against MERS-CoV and the diagnostic detection of MERS-CoV.


Assuntos
Materiais Biomiméticos/metabolismo , Bombyx/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas de Partículas Semelhantes a Vírus/metabolismo , Animais , Materiais Biomiméticos/química , Bombyx/genética , Linhagem Celular , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/prevenção & controle , Proteínas M de Coronavírus , Dipeptidil Peptidase 4/metabolismo , Vesículas Extracelulares/química , Hemolinfa/metabolismo , Humanos , Proteínas de Insetos/genética , Larva/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Tensoativos/farmacologia , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/efeitos dos fármacos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/isolamento & purificação , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/isolamento & purificação , Proteínas da Matriz Viral/metabolismo
15.
Intervirology ; 61(1): 30-35, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30041172

RESUMO

OBJECTIVES: The molecular mechanisms underlying the pathogenesis of human coronavirus OC43 (HCoV-OC43) infection are poorly understood. In this study, we investigated the ability of HCoV-OC43 to antagonize the transcriptional activation of antiviral response elements. METHODS: HCoV-OC43 structural (membrane M and nucleocapsid N) and accessory proteins (ns2a and ns5a) were expressed individually in human embryonic kidney 293 (HEK-293) cells. The transcriptional activation of antiviral response elements was assessed by measuring the levels of firefly luciferase expressed under the control of interferon (IFN)-stimulated response element (ISRE), IFN-ß promoter, or nuclear factor kappa B response element (NF-κB-RE). The antiviral gene expression profile in HEK-293 cells was determined by PCR array. RESULTS: The transcriptional activity of ISRE, IFN-ß promoter, and NF-κB-RE was significantly reduced in the presence of HCoV-OC43 ns2a, ns5a, M, or N protein, following the challenge of cells with Sendai virus, IFN-α or tumor necrosis factor-α. The expression of antiviral genes involved in the type I IFN and NF-κB signaling pathways was also downregulated in the presence of HCoV-OC43 structural or accessory proteins. CONCLUSION: Both structural and accessory HCoV-OC43 proteins are able to inhibit antiviral response elements in HEK-293 cells, and to block the activation of different antiviral signaling pathways.


Assuntos
Infecções por Coronavirus/virologia , Coronavirus Humano OC43/patogenicidade , Proteínas do Nucleocapsídeo/metabolismo , Elementos de Resposta/genética , Proteínas da Matriz Viral/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas M de Coronavírus , Proteínas do Nucleocapsídeo de Coronavírus , Coronavirus Humano OC43/genética , Regulação para Baixo , Genes Reporter , Células HEK293 , Humanos , Interferons/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas do Nucleocapsídeo/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Ativação Transcricional , Proteínas da Matriz Viral/genética , Proteínas Virais Reguladoras e Acessórias/genética
16.
J Clin Microbiol ; 55(5): 1426-1436, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28202790

RESUMO

The development of porcine epidemic diarrhea virus (PEDV) antibody-based assays is important for detecting infected animals, confirming previous virus exposure, and monitoring sow herd immunity. However, the potential cross-reactivity among porcine coronaviruses is a major concern for the development of pathogen-specific assays. In this study, we used serum samples (n = 792) from pigs of precisely known infection status and a multiplex fluorescent microbead-based immunoassay and/or enzyme-linked immunoassay platform to characterize the antibody response to PEDV whole-virus (WV) particles and recombinant polypeptides derived from the four PEDV structural proteins, i.e., spike (S), nucleocapsid (N), membrane (M), and envelope (E). Antibody assay cutoff values were selected to provide 100% diagnostic specificity for each target. The earliest IgG antibody response, mainly directed against S1 polypeptides, was observed at days 7 to 10 postinfection. With the exception of nonreactive protein E, we observed similar antibody ontogenies and patterns of seroconversion for S1, N, M, and WV antigens. Recombinant S1 provided the best diagnostic sensitivity, regardless of the PEDV strain, with no cross-reactivity detected against transmissible gastroenteritis virus (TGEV), porcine respiratory coronavirus (PRCV), or porcine deltacoronavirus (PDCoV) pig antisera. The WV particles showed some cross-reactivity to TGEV Miller and TGEV Purdue antisera, while N protein presented some cross-reactivity to TGEV Miller. The M protein was highly cross-reactive to TGEV and PRCV antisera. Differences in the antibody responses to specific PEDV structural proteins have important implications in the development and performance of antibody assays for the diagnosis of PEDV enteric disease.


Assuntos
Antígenos Virais/imunologia , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína/imunologia , Doenças dos Suínos/diagnóstico , Suínos/virologia , Vírus da Gastroenterite Transmissível/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Proteínas M de Coronavírus , Proteínas do Nucleocapsídeo de Coronavírus , Reações Cruzadas/imunologia , Diagnóstico Diferencial , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Proteínas do Nucleocapsídeo/imunologia , Doenças dos Suínos/virologia , Proteínas da Matriz Viral/imunologia
17.
Emerg Microbes Infect ; 5: e39, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27094905

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) infection has claimed hundreds of lives and has become a global threat since its emergence in Saudi Arabia in 2012. The ability of MERS-CoV to evade the host innate antiviral response may contribute to its severe pathogenesis. Many MERS-CoV-encoded proteins were identified to have interferon (IFN)-antagonizing properties, which correlates well with the reduced IFN levels observed in infected patients and ex vivo models. In this study, we fully characterized the IFN-antagonizing property of the MERS-CoV M protein. Expression of MERS-CoV M protein suppressed type I IFN expression in response to Sendai virus infection or poly(I:C) induction. This suppressive effect was found to be specific for the activation of IFN regulatory factor 3 (IRF3) but not nuclear factor-κB. MERS-CoV M protein interacted with TRAF3 and disrupted TRAF3-TBK1 association leading to reduced IRF3 activation. M proteins from MERS-CoV and SARS-CoV have three highly similar conserved N-terminal transmembrane domains and a C-terminal region. Using chimeric and truncation mutants, the N-terminal transmembrane domains of the MERS-CoV M protein were found to be sufficient for its inhibitory effect on IFN expression, whereas the C-terminal domain was unable to induce this suppression. Collectively, our findings suggest a common and conserved mechanism through which highly pathogenic MERS-CoV and SARS-CoV harness their M proteins to suppress type I IFN expression at the level of TBK1-dependent phosphorylation and activation of IRF3 resulting in evasion of the host innate antiviral response.


Assuntos
Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/biossíntese , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Fosfotransferases , Proteínas Serina-Treonina Quinases/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Proteínas da Matriz Viral/fisiologia , Proteínas M de Coronavírus , Proteína DEAD-box 58/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Evasão da Resposta Imune , Imunidade Inata , Fator Regulador 3 de Interferon/imunologia , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Arábia Saudita , Vírus Sendai/genética , Vírus Sendai/imunologia , Alinhamento de Sequência , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/imunologia , Proteínas da Matriz Viral/genética
18.
mBio ; 7(1): e01872-15, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26861016

RESUMO

UNLABELLED: Most of the intracellular pattern recognition receptors (PRRs) reside in either the endolysosome or the cytoplasm to sense pathogen-derived RNAs, DNAs, or synthetic analogs of double-stranded RNA (dsRNA), such as poly(I:C). However, it remains elusive whether or not a pathogen-derived protein can function as a cytosolic pathogen-associated molecular pattern (PAMP). In this study, we demonstrate that delivering the membrane gene of severe acute respiratory syndrome coronavirus (SARS-CoV) into HEK293T, HEK293ET, and immobilized murine bone marrow-derived macrophage (J2-Mφ) cells significantly upregulates beta interferon (IFN-ß) production. Both NF-κB and TBK1-IRF3 signaling cascades are activated by M gene products. M protein rather than M mRNA is responsible for M-mediated IFN-ß induction that is preferentially associated with the activation of the Toll-like receptor (TLR) adaptor proteins MyD88, TIRAP, and TICAM2 but not the RIG-I signaling cascade. Blocking the secretion of M protein by brefeldin A (BFA) failed to reverse the M-mediated IFN-ß induction. The antagonist of both TLR2 and TLR4 did not impede M-mediated IFN-ß induction, indicating that the driving force for the activation of IFN-ß production was generated from inside the cells. Inhibition of TRAF3 expression by specific small interfering RNA (siRNA) did not prevent M-mediated IFN-ß induction. SARS-CoV pseudovirus could induce IFN-ß production in an M rather than M(V68A) dependent manner, since the valine-to-alanine alteration at residue 68 in M protein markedly inhibited IFN-ß production. Overall, our study indicates for the first time that a pathogen-derived protein is able to function as a cytosolic PAMP to stimulate type I interferon production by activating a noncanonical TLR signaling cascade in a TRAF3-independent manner. IMPORTANCE: Viral protein can serve as a pathogen-associated molecular pattern (PAMP) that is usually recognized by certain pathogen recognition receptors (PRRs) on the cell surface, such as Toll-like receptor 2 (TLR2) and TLR4. In this study, we demonstrate that the membrane (M) protein of SARS-CoV can directly promote the activation of both beta interferon (IFN-ß) and NF-κB through a TLR-related signaling pathway independent of TRAF3. The driving force for M-mediated IFN-ß production is most likely generated from inside the cells. M-mediated IFN-ß induction was confirmed at the viral infection level since a point mutation at the V68 residue of M markedly inhibited SARS-CoV pseudovirally induced IFN-ß production. Thus, the results indicate for the first time that SARS-CoV M protein may function as a cytosolic PAMP to stimulate IFN-ß production by activating a TLR-related TRAF3-independent signaling cascade.


Assuntos
Interferon beta/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Fator 3 Associado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Proteínas da Matriz Viral/imunologia , Animais , Proteínas M de Coronavírus , Células Epiteliais/imunologia , Células Epiteliais/virologia , Humanos , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Transdução de Sinais
19.
Acta Virol ; 59(3): 265-75, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26435150

RESUMO

Porcine epidemic diarrhea (PED) caused by virulent strains of porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric disease of swine characterized by severe enteritis, vomiting, and watery diarrhea. This study investigates the subcellular localization and function of PEDV M protein through examination of its effects on cell growth, cell cycle progression, and interleukin 8 (IL-8) expression. Our results revealed that the PEDV M protein is localized throughout the cytoplasm. The M protein altered swine intestinal epithelial cell line (IEC) growth and induced cell cycle arrest at the S-phase via the cyclin A pathway. The S-phase arrest is associated with a decrease in level of cyclin A. Furthermore, our results revealed that the M protein of PEDV does not induce endoplasmic reticulum (ER) stress and does not activate NF-κB which is responsible for IL-8 and Bcl-2 expression. This is the first report to demonstrate that the PEDV M protein is localized in the whole cell and induces cell cycle arrest at the S-phase. This study provides novel findings in the function of M proteins of PEDV.


Assuntos
Pontos de Checagem do Ciclo Celular , Mucosa Intestinal/virologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Proteínas da Matriz Viral/fisiologia , Animais , Proteínas M de Coronavírus , Ciclina D/fisiologia , Estresse do Retículo Endoplasmático , Interleucina-8/genética , NF-kappa B/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/análise , Fase S , Suínos
20.
Biochem J ; 464(3): 439-47, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25271362

RESUMO

A number of viral gene products are capable of inducing apoptosis by interfering with various cellular signalling cascades. We previously reported the pro-apoptotic property of the SARS-CoV (severe acute respiratory syndrome coronavirus) M (membrane)-protein and a down-regulation of the phosphorylation level of the cell-survival protein PKB (protein kinase B)/Akt in cells expressing M-protein. We also showed that overexpression of PDK1 (3-phosphoinositide-dependent protein kinase 1), the immediate upstream kinase of PKB/Akt, suppressed M-induced apoptosis. This illustrates that M-protein perturbs the PDK1 and PKB/Akt cell survival signalling pathway. In the present study, we demonstrated that the C-terminus of M-protein interacts with the PH (pleckstrin homology) domain of PDK1. This interaction disrupted the association between PDK1 and PKB/Akt, and led to down-regulation of PKB/Akt activity. This subsequently reduced the level of the phosphorylated forkhead transcription factor FKHRL1 and ASK (apoptosis signal-regulating kinase), and led to the activation of caspases 8 and 9. Altogether, our data demonstrate that the SARS-CoV M-protein induces apoptosis through disrupting the interaction of PDK1 with PKB/Akt, and this causes the activation of apoptosis. Our work highlights that the SARS-CoV M protein is highly pro-apoptotic and is capable of simultaneously inducing apoptosis via initiating caspases 8 and 9. Preventing the interaction between M-protein and PDK1 is a plausible therapeutic approach to target the pro-apoptotic property of SARS-CoV.


Assuntos
Apoptose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas da Matriz Viral/metabolismo , Caspases/metabolismo , Proteínas M de Coronavírus , Células HEK293 , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Piruvato Desidrogenase Quinase de Transferência de Acetil , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas da Matriz Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA