Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
J Bacteriol ; 205(9): e0011023, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37655916

RESUMO

FlhF and FlhG control the location and number of flagella, respectively, in many polar-flagellated bacteria. The roles of FlhF and FlhG are not well characterized in bacteria that have multiple polar flagella, such as Helicobacter pylori. Deleting flhG in H. pylori shifted the flagellation pattern where most cells had approximately four flagella to a wider and more even distribution in flagellar number. As reported in other bacteria, deleting flhF in H. pylori resulted in reduced motility, hypoflagellation, and the improper localization of flagella to nonpolar sites. Motile variants of H. pylori ∆flhF mutants that had a higher proportion of flagella localizing correctly to the cell pole were isolated, but we were unable to identify the genetic determinants responsible for the increased localization of flagella to the cell pole. One motile variant though produced more flagella than the ΔflhF parental strain, which apparently resulted from a missense mutation in fliF (encodes the MS ring protein), which changed Asn-255 to aspartate. Recombinant FliFN255D, but not recombinant wild-type FliF, formed ordered ring-like assemblies in vitro that were ~50 nm wide and displayed the MS ring architecture. We infer from these findings that the FliFN225D variant forms the MS ring more effectively in vivo in the absence of FlhF than wild-type FliF. IMPORTANCE Helicobacter pylori colonizes the human stomach where it can cause a variety of diseases, including peptic ulcer disease and gastric cancer. H. pylori uses flagella for motility, which is required for host colonization. FlhG and FlhF control the flagellation patterns in many bacteria. We found that in H. pylori, FlhG ensures that cells have approximately equal number of flagella and FlhF is needed for flagellum assembly and localization. FlhF is proposed to facilitate the assembly of FliF into the MS ring, which is one of the earliest structures formed in flagellum assembly. We identified a FliF variant that assembles the MS ring in the absence of FlhF, which supports the proposed role of FlhF in facilitating MS ring assembly.


Assuntos
Helicobacter pylori , Proteínas Monoméricas de Ligação ao GTP , Humanos , Proteínas de Bactérias/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Flagelos/genética , Flagelos/metabolismo
2.
ACS Chem Biol ; 18(10): 2200-2210, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37233733

RESUMO

Sterile alpha motif histidine-aspartate domain protein 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase that exists in monomeric, dimeric, and tetrameric forms. It is activated by GTP binding to an A1 allosteric site on each monomer subunit, which induces dimerization, a prerequisite for dNTP-induced tetramerization. SAMHD1 is a validated drug target stemming from its inactivation of many anticancer nucleoside drugs leading to drug resistance. The enzyme also possesses a single-strand nucleic acid binding function that promotes RNA and DNA homeostasis by several mechanisms. To discover small molecule inhibitors of SAMHD1, we screened a custom ∼69 000-compound library for dNTPase inhibitors. Surprisingly, this effort yielded no viable hits and indicated that exceptional barriers for discovery of small molecule inhibitors existed. We then took a rational fragment-based inhibitor design approach using a deoxyguanosine (dG) A1 site targeting fragment. A targeted chemical library was synthesized by coupling a 5'-phosphoryl propylamine dG fragment (dGpC3NH2) to 376 carboxylic acids (RCOOH). Direct screening of the products (dGpC3NHCO-R) yielded nine initial hits, one of which (R = 3-(3'-bromo-[1,1'-biphenyl]), 5a) was investigated extensively. Amide 5a is a competitive inhibitor against GTP binding to the A1 site and induces inactive dimers that are deficient in tetramerization. Surprisingly, 5a also prevented ssDNA and ssRNA binding, demonstrating that the dNTPase and nucleic acid binding functions of SAMHD1 can be disrupted by a single small molecule. A structure of the SAMHD1-5a complex indicates that the biphenyl fragment impedes a conformational change in the C-terminal lobe that is required for tetramerization.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Ácidos Nucleicos , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Ácido Aspártico , Histidina , Motivo Estéril alfa , Guanosina Trifosfato/química , Desoxiguanosina , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo
3.
J Biol Chem ; 299(5): 104644, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965617

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of mammalian cell growth that is dysregulated in a number of human diseases, including metabolic syndromes, aging, and cancer. Structural, biochemical, and pharmacological studies that have increased our understanding of how mTORC1 executes growth control often relied upon purified mTORC1 protein. However, current immunoaffinity-based purification methods are expensive, inefficient, and do not necessarily isolate endogenous mTORC1, hampering their overall utility in research. Here we present a simple tool to isolate endogenous mTORC1 from various cellular sources. By recombinantly expressing and isolating mTORC1-binding Rag GTPases from Escherichia coli and using them as affinity probes, we demonstrate that mTORC1 can be isolated from mouse, bovine, and human sources. Our results indicate that mTORC1 isolated by this relatively inexpensive method is catalytically active and amenable to scaling. Collectively, this tool may be utilized to isolate mTORC1 from various cellular sources, organs, and disease contexts, aiding mTORC1-related research.


Assuntos
Biotecnologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP , Proteínas Recombinantes , Animais , Bovinos , Humanos , Camundongos , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/isolamento & purificação , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escherichia coli/genética , Biotecnologia/métodos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares
4.
Biophys J ; 121(19): 3684-3697, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35614853

RESUMO

KRas is a small GTPase and membrane-bound signaling protein. Newly synthesized KRas is post-translationally modified with a membrane-anchoring prenyl group. KRas chaperones are therapeutic targets in cancer due to their participation in trafficking oncogenic KRas to membranes. SmgGDS splice variants are chaperones for small GTPases with basic residues in their hypervariable domain (HVR), including KRas. SmgGDS-607 escorts pre-prenylated small GTPases, while SmgGDS-558 escorts prenylated small GTPases. We provide a structural description of farnesylated and fully processed KRas (KRas-FMe) in complex with SmgGDS-558 and define biophysical properties of this interaction. Surface plasmon resonance measurements on biomimetic model membranes quantified the thermodynamics of the interaction of SmgGDS with KRas, and small-angle x-ray scattering was used to characterize complexes of SmgGDS-558 and KRas-FMe structurally. Structural models were refined using Monte Carlo and molecular dynamics simulations. Our results indicate that SmgGDS-558 interacts with the HVR and the farnesylated C-terminus of KRas-FMe, but not its G-domain. Therefore, SmgGDS-558 interacts differently with prenylated KRas than prenylated RhoA, whose G-domain was found in close contact with SmgGDS-558 in a recent crystal structure. Using immunoprecipitation assays, we show that SmgGDS-558 binds the GTP-bound, GDP-bound, and nucleotide-free forms of farnesylated and fully processed KRas in cells, consistent with SmgGDS-558 not engaging the G-domain of KRas. We found that the dissociation constant, Kd, for KRas-FMe binding to SmgGDS-558 is comparable with that for the KRas complex with PDEδ, a well-characterized KRas chaperone that also does not interact with the KRas G-domain. These results suggest that KRas interacts in similar ways with the two chaperones SmgGDS-558 and PDEδ. Therapeutic targeting of the SmgGDS-558/KRas complex might prove as useful as targeting the PDEδ/KRas complex in KRas-driven cancers.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Proteínas Monoméricas de Ligação ao GTP , Genes ras , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Trifosfato/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo
5.
Nature ; 596(7871): 281-284, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34290409

RESUMO

The mTOR complex 1 (mTORC1) controls cell growth in response to amino acid levels1. Here we report SAR1B as a leucine sensor that regulates mTORC1 signalling in response to intracellular levels of leucine. Under conditions of leucine deficiency, SAR1B inhibits mTORC1 by physically targeting its activator GATOR2. In conditions of leucine sufficiency, SAR1B binds to leucine, undergoes a conformational change and dissociates from GATOR2, which results in mTORC1 activation. SAR1B-GATOR2-mTORC1 signalling is conserved in nematodes and has a role in the regulation of lifespan. Bioinformatic analysis reveals that SAR1B deficiency correlates with the development of lung cancer. The silencing of SAR1B and its paralogue SAR1A promotes mTORC1-dependent growth of lung tumours in mice. Our results reveal that SAR1B is a conserved leucine sensor that has a potential role in the development of lung cancer.


Assuntos
Leucina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Transdução de Sinais , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sequência Conservada , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Leucina/deficiência , Longevidade/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/agonistas , Camundongos , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/deficiência , Proteínas Monoméricas de Ligação ao GTP/genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Biochemistry ; 60(21): 1682-1698, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33988981

RESUMO

SAMHD1 is a fundamental regulator of cellular dNTPs that catalyzes their hydrolysis into 2'-deoxynucleoside and triphosphate, restricting the replication of viruses, including HIV-1, in CD4+ myeloid lineage and resting T-cells. SAMHD1 mutations are associated with the autoimmune disease Aicardi-Goutières syndrome (AGS) and certain cancers. More recently, SAMHD1 has been linked to anticancer drug resistance and the suppression of the interferon response to cytosolic nucleic acids after DNA damage. Here, we probe dNTP hydrolysis and inhibition of SAMHD1 using the Rp and Sp diastereomers of dNTPαS nucleotides. Our biochemical and enzymological data show that the α-phosphorothioate substitution in Sp-dNTPαS but not Rp-dNTPαS diastereomers prevents Mg2+ ion coordination at both the allosteric and catalytic sites, rendering SAMHD1 unable to form stable, catalytically active homotetramers or hydrolyze substrate dNTPs at the catalytic site. Furthermore, we find that Sp-dNTPαS diastereomers competitively inhibit dNTP hydrolysis, while Rp-dNTPαS nucleotides stabilize tetramerization and are hydrolyzed with similar kinetic parameters to cognate dNTPs. For the first time, we present a cocrystal structure of SAMHD1 with a substrate, Rp-dGTPαS, in which an Fe-Mg-bridging water species is poised for nucleophilic attack on the Pα. We conclude that it is the incompatibility of Mg2+, a hard Lewis acid, and the α-phosphorothioate thiol, a soft Lewis base, that prevents the Sp-dNTPαS nucleotides coordinating in a catalytically productive conformation. On the basis of these data, we present a model for SAMHD1 stereospecific hydrolysis of Rp-dNTPαS nucleotides and for a mode of competitive inhibition by Sp-dNTPαS nucleotides that competes with formation of the enzyme-substrate complex.


Assuntos
Desoxirribonucleotídeos/química , Proteína 1 com Domínio SAM e Domínio HD/antagonistas & inibidores , Proteína 1 com Domínio SAM e Domínio HD/química , Regulação Alostérica , Catálise , Domínio Catalítico , Cristalografia por Raios X/métodos , Nucleotídeos de Desoxiguanina/química , Desoxirribonucleotídeos/metabolismo , Humanos , Hidrólise , Cinética , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Replicação Viral/fisiologia
7.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836580

RESUMO

DNA gyrase, a type II topoisomerase, introduces negative supercoils into DNA using ATP hydrolysis. The highly effective gyrase-targeted drugs, fluoroquinolones (FQs), interrupt gyrase by stabilizing a DNA-cleavage complex, a transient intermediate in the supercoiling cycle, leading to double-stranded DNA breaks. MfpA, a pentapeptide-repeat protein in mycobacteria, protects gyrase from FQs, but its molecular mechanism remains unknown. Here, we show that Mycobacterium smegmatis MfpA (MsMfpA) inhibits negative supercoiling by M. smegmatis gyrase (Msgyrase) in the absence of FQs, while in their presence, MsMfpA decreases FQ-induced DNA cleavage, protecting the enzyme from these drugs. MsMfpA stimulates the ATPase activity of Msgyrase by directly interacting with the ATPase domain (MsGyrB47), which was confirmed through X-ray crystallography of the MsMfpA-MsGyrB47 complex, and mutational analysis, demonstrating that MsMfpA mimics a T (transported) DNA segment. These data reveal the molecular mechanism whereby MfpA modulates the activity of gyrase and may provide a general molecular basis for the action of other pentapeptide-repeat proteins.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Girase/metabolismo , Mimetismo Molecular , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mycobacterium/enzimologia , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Clivagem do DNA , Proteínas Monoméricas de Ligação ao GTP/química , Conformação Proteica
8.
Med Sci (Paris) ; 37(4): 372-378, 2021 Apr.
Artigo em Francês | MEDLINE | ID: mdl-33908855

RESUMO

mTORC1 is a central player in cell growth, a process that is tightly regulated by the availability of nutrients and that controls various aspects of metabolism in the normal cell and in severe diseases such as cancers. mTORC1 is a large multiprotein complex, composed of the kinase subunit mTOR, of Ragulator, which attaches mTOR to the lysosome membrane, of the atypical Rag GTPases and the small GTPase RheB, whose nucleotide states directly dictate its localization to the lysosome and its kinase activity, and of RAPTOR, an adaptor that assembles the complex. The activity of the Rag GTPases is further controlled by the GATOR1 and folliculin complexes, which regulate their GTP/GDP conversion. Here, we review recent structures of important components of the mTORC1 machinery, determined by cryo-electron microscopy for the most part, which allow to reconstitute the architecture of active mTORC1 at near atomic resolution. Notably, we discuss how these structures shed new light on the roles of Rag GTPases and their regulators in mTORC1 regulation, and the perspectives that they open towards understanding the inner workings of mTORC1 on the lysosomal membrane.


TITLE: Une moisson de nouvelles structures de mTORC1 - Coup de projecteur sur les GTPases Rag. ABSTRACT: mTORC1 est un acteur central de la croissance cellulaire, un processus étroitement régulé par la disponibilité de nutriments et qui contrôle diverses étapes du métabolisme dans la cellule normale et au cours de maladies, comme les cancers. mTORC1 est un complexe multiprotéique de grande taille constitué de nombreuses sous-unités, parmi lesquelles deux types de GTPases, Rag et RheB, contrôlent directement sa localisation membranaire et son activité kinase. Dans cette revue, nous faisons le point sur une moisson de structures récentes, déterminées pour la plupart par cryo-microscopie électronique, qui sont en passe de reconstituer le puzzle de l'architecture de mTORC1. Nous discutons ce que ces structures révèlent sur le rôle des GTPases, et ce que leur connaissance ouvre comme perspectives pour comprendre comment mTORC1 fonctionne à la membrane du lysosome.


Assuntos
Proliferação de Células , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Estrutura Quaternária de Proteína , Microscopia Crioeletrônica , GTP Fosfo-Hidrolases/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Proto-Oncogênicas/química , Proteína Enriquecida em Homólogo de Ras do Encéfalo/química , Proteína Regulatória Associada a mTOR/química , Serina-Treonina Quinases TOR/química , Proteínas Supressoras de Tumor/química
9.
ACS Synth Biol ; 10(3): 542-551, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33689308

RESUMO

OptoPB is an optogenetic tool engineered by fusion of the phosphoinositide (PI)-binding polybasic domain of Rit1 (Rit-PB) to a photoreactive light-oxygen-voltage (LOV) domain. OptoPB selectively and reversibly binds the plasma membrane (PM) under blue light excitation, and in the dark, it releases back to the cytoplasm. However, the molecular mechanism of optical regulation and lipid recognition is still unclear. Here using nuclear magnetic resonance (NMR) spectroscopy, liposome pulldown assay, and surface plasmon resonance (SPR), we find that OptoPB binds to membrane mimetics containing di- or triphosphorylated phosphatidylinositols, particularly phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), an acidic phospholipid predominantly located in the eukaryotic PM. In the dark, steric hindrance prevented this protein-membrane interaction, while 470 nm blue light illumination activated it. NMR titration and site-directed mutagenesis revealed that both cationic and hydrophobic Rit-PB residues are essential to the membrane interaction, indicating that OptoPB binds the membrane via a specific PI(4,5)P2-dependent mechanism.


Assuntos
Lipossomos/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/química , Luz , Espectroscopia de Ressonância Magnética , Proteínas Monoméricas de Ligação ao GTP/química , Optogenética , Peptídeos/química , Peptídeos/genética , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica/efeitos da radiação , Ressonância de Plasmônio de Superfície
10.
Biomol NMR Assign ; 14(1): 87-91, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31916136

RESUMO

The Ral proteins (RalA and RalB) are small G proteins of the Ras family that have been implicated in exocytosis, endocytosis, transcriptional regulation and mitochondrial fission, as well as having a role in tumourigenesis. RalA and RalB are activated downstream of the master regulator, Ras, which causes the nucleotide exchange of GDP for GTP. Here we report the 1H, 15 N and 13C resonance assignments of RalA in its active form bound to the GTP analogue GMPPNP. We also report the backbone assignments of RalA in its inactive, GDP-bound form. The assignments give insight into the switch regions, which change conformation upon nucleotide exchange. These switch regions are invisible in the spectra of the active, GMPPNP bound form but the residues proximal to the switches can be monitored. RalA is also an important drug target due to its over activation in some cancers and these assignments will be extremely useful for NMR-based screening approaches.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/química , Ressonância Magnética Nuclear Biomolecular , Proteínas ral de Ligação ao GTP/química , Guanosina Difosfato/química , Conformação Proteica
11.
Science ; 366(6468): 971-977, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31672913

RESUMO

The tumor suppressor folliculin (FLCN) enables nutrient-dependent activation of the mechanistic target of rapamycin complex 1 (mTORC1) protein kinase via its guanosine triphosphatase (GTPase) activating protein (GAP) activity toward the GTPase RagC. Concomitant with mTORC1 inactivation by starvation, FLCN relocalizes from the cytosol to lysosomes. To determine the lysosomal function of FLCN, we reconstituted the human lysosomal FLCN complex (LFC) containing FLCN, its partner FLCN-interacting protein 2 (FNIP2), and the RagAGDP:RagCGTP GTPases as they exist in the starved state with their lysosomal anchor Ragulator complex and determined its cryo-electron microscopy structure to 3.6 angstroms. The RagC-GAP activity of FLCN was inhibited within the LFC, owing to displacement of a catalytically required arginine in FLCN from the RagC nucleotide. Disassembly of the LFC and release of the RagC-GAP activity of FLCN enabled mTORC1-dependent regulation of the master regulator of lysosomal biogenesis, transcription factor E3, implicating the LFC as a checkpoint in mTORC1 signaling.


Assuntos
Lisossomos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Microscopia Crioeletrônica , Citoplasma/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Difosfato/metabolismo , Humanos , Lisossomos/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Transdução de Sinais
12.
Cell ; 179(6): 1319-1329.e8, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31704029

RESUMO

mTORC1 controls anabolic and catabolic processes in response to nutrients through the Rag GTPase heterodimer, which is regulated by multiple upstream protein complexes. One such regulator, FLCN-FNIP2, is a GTPase activating protein (GAP) for RagC/D, but despite its important role, how it activates the Rag GTPase heterodimer remains unknown. We used cryo-EM to determine the structure of FLCN-FNIP2 in a complex with the Rag GTPases and Ragulator. FLCN-FNIP2 adopts an extended conformation with two pairs of heterodimerized domains. The Longin domains heterodimerize and contact both nucleotide binding domains of the Rag heterodimer, while the DENN domains interact at the distal end of the structure. Biochemical analyses reveal a conserved arginine on FLCN as the catalytic arginine finger and lead us to interpret our structure as an on-pathway intermediate. These data reveal features of a GAP-GTPase interaction and the structure of a critical component of the nutrient-sensing mTORC1 pathway.


Assuntos
Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Proteínas Monoméricas de Ligação ao GTP/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Proteínas Proto-Oncogênicas/ultraestrutura , Proteínas Supressoras de Tumor/ultraestrutura , Arginina/metabolismo , Biocatálise , Proteínas de Transporte/química , Proteínas Ativadoras de GTPase/metabolismo , Células HEK293 , Humanos , Hidrólise , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Complexos Multiproteicos/química , Conformação Proteica , Multimerização Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Supressoras de Tumor/química
13.
Science ; 366(6462): 203-210, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31601764

RESUMO

The Rag guanosine triphosphatases (GTPases) recruit the master kinase mTORC1 to lysosomes to regulate cell growth and proliferation in response to amino acid availability. The nucleotide state of Rag heterodimers is critical for their association with mTORC1. Our cryo-electron microscopy structure of RagA/RagC in complex with mTORC1 shows the details of RagA/RagC binding to the RAPTOR subunit of mTORC1 and explains why only the RagAGTP/RagCGDP nucleotide state binds mTORC1. Previous kinetic studies suggested that GTP binding to one Rag locks the heterodimer to prevent GTP binding to the other. Our crystal structures and dynamics of RagA/RagC show the mechanism for this locking and explain how oncogenic hotspot mutations disrupt this process. In contrast to allosteric activation by RHEB, Rag heterodimer binding does not change mTORC1 conformation and activates mTORC1 by targeting it to lysosomes.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Dimerização , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Lisossomos/metabolismo , Espectrometria de Massas , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/sangue , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Ligação Proteica , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteína Regulatória Associada a mTOR/química , Proteínas de Saccharomyces cerevisiae/sangue , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
14.
Molecules ; 24(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514408

RESUMO

Small GTPases are key regulators of cellular events, and their dysfunction causes many types of cancer. They serve as molecular switches by cycling between inactive guanosine diphosphate (GDP)-bound and active guanosine triphosphate (GTP)-bound states. GTPases are deactivated by GTPase-activating proteins (GAPs) and are activated by guanine-nucleotide exchange factors (GEFs). The intrinsic GTP hydrolysis activity of small GTPases is generally low and is accelerated by GAPs. GEFs promote GDP dissociation from small GTPases to allow for GTP binding, which results in a conformational change of two highly flexible segments, called switch I and switch II, that enables binding of the gamma phosphate and allows small GTPases to interact with downstream effectors. For several decades, crystal structures of many GEFs and GAPs have been reported and have shown tremendous structural diversity. In this review, we focus on the latest structural studies of GEFs. Detailed pictures of the variety of GEF mechanisms at atomic resolution can provide insights into new approaches for drug discovery.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Animais , Ativação Enzimática , Retroalimentação Fisiológica , Humanos , Filogenia , Dobramento de Proteína
15.
J Biol Chem ; 294(31): 11793-11804, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31197034

RESUMO

Ras family small GTPases undergo prenylation (such as farnesylation) for proper localization to the plasma membrane, where they can initiate oncogenic signaling pathways. Small GTP-binding protein GDP-dissociation stimulator (SmgGDS) proteins are chaperones that bind and traffic small GTPases, although their exact cellular function is unknown. Initially, SmgGDS proteins were classified as guanine nucleotide exchange factors, but recent findings suggest that SmgGDS proteins also regulate prenylation of small GTPases in vivo in a substrate-selective manner. SmgGDS-607 recognizes the polybasic region and the CAAX box of several small GTPases and inhibits prenylation by impeding their entry into the geranylgeranylation pathway. Here, using recombinant and purified enzymes for prenylation and protein-binding assays, we demonstrate that SmgGDS-607 differentially regulates farnesylation of several small GTPases. SmgGDS-607 inhibited farnesylation of some proteins, such as DiRas1, by sequestering the protein and limiting modification catalyzed by protein farnesyltransferase (FTase). We found that the competitive binding affinities of the small GTPase for SmgGDS-607 and FTase dictate the extent of this inhibition. Additionally, we discovered that SmgGDS-607 increases the rate of farnesylation of HRas by enhancing product release from FTase. Our work indicates that SmgGDS-607 binds to a broad range of small GTPases and does not require a PBR for recognition. Together, these results provide mechanistic insight into SmgGDS-607-mediated regulation of farnesylation of small GTPases and suggest that SmgGDS-607 has multiple modes of substrate recognition.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Motivos de Aminoácidos , Biocatálise , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Cinética , Proteínas Monoméricas de Ligação ao GTP/química , Mutagênese Sítio-Dirigida , Ligação Proteica , Prenilação de Proteína , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Termodinâmica , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo
16.
J Biol Chem ; 294(25): 9937-9948, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31088913

RESUMO

Small GTPases alternatively bind GDP/GTP guanine nucleotides to gate signaling pathways that direct most cellular processes. Numerous GTPases are implicated in oncogenesis, particularly the three RAS isoforms HRAS, KRAS, and NRAS and the RHO family GTPase RAC1. Signaling networks comprising small GTPases are highly connected, and there is some evidence of direct biochemical cross-talk between their functional G-domains. The activation potential of a given GTPase is contingent on a codependent interaction with the nucleotide and a Mg2+ ion, which bind to individual variants with distinct affinities coordinated by residues in the GTPase nucleotide-binding pocket. Here, we utilized a selective-labeling strategy coupled with real-time NMR spectroscopy to monitor nucleotide exchange, GTP hydrolysis, and effector interactions of multiple small GTPases in a single complex system. We provide insight into nucleotide preference and the role of Mg2+ in activating both WT and oncogenic mutant enzymes. Multiplexing revealed guanine nucleotide exchange factor (GEF), GTPase-activating protein (GAP), and effector-binding specificities in mixtures of GTPases and resolved that the three related RAS isoforms are biochemically equivalent. This work establishes that direct quantitation of the nucleotide-bound conformation is required to accurately determine an activation potential for any given GTPase, as small GTPases such as RAS-like proto-oncogene A (RALA) or the G12C mutant of KRAS display fast exchange kinetics but have a high affinity for GDP. Furthermore, we propose that the G-domains of small GTPases behave autonomously in solution and that nucleotide cycling proceeds independently of protein concentration but is highly impacted by Mg2+ abundance.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nucleotídeos/metabolismo , Proteínas ras/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Humanos , Proteínas Monoméricas de Ligação ao GTP/química , Nucleotídeos/química , Ligação Proteica , Conformação Proteica , Proto-Oncogene Mas , Transdução de Sinais , Proteínas ras/química , Proteínas rho de Ligação ao GTP/química
17.
Am J Hum Genet ; 104(6): 1223-1232, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31130282

RESUMO

Aberrant signaling through pathways controlling cell response to extracellular stimuli constitutes a central theme in disorders affecting development. Signaling through RAS and the MAPK cascade controls a variety of cell decisions in response to cytokines, hormones, and growth factors, and its upregulation causes Noonan syndrome (NS), a developmental disorder whose major features include a distinctive facies, a wide spectrum of cardiac defects, short stature, variable cognitive impairment, and predisposition to malignancies. NS is genetically heterogeneous, and mutations in more than ten genes have been reported to underlie this disorder. Despite the large number of genes implicated, about 10%-20% of affected individuals with a clinical diagnosis of NS do not have mutations in known RASopathy-associated genes, indicating that additional unidentified genes contribute to the disease, when mutated. By using a mixed strategy of functional candidacy and exome sequencing, we identify RRAS2 as a gene implicated in NS in six unrelated subjects/families. We show that the NS-causing RRAS2 variants affect highly conserved residues localized around the nucleotide binding pocket of the GTPase and are predicted to variably affect diverse aspects of RRAS2 biochemical behavior, including nucleotide binding, GTP hydrolysis, and interaction with effectors. Additionally, all pathogenic variants increase activation of the MAPK cascade and variably impact cell morphology and cytoskeletal rearrangement. Finally, we provide a characterization of the clinical phenotype associated with RRAS2 mutations.


Assuntos
Mutação com Ganho de Função , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Síndrome de Noonan/etiologia , Adulto , Criança , Feminino , Estudos de Associação Genética , Células HEK293 , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Síndrome de Noonan/patologia , Linhagem , Conformação Proteica
18.
Am J Hum Genet ; 104(6): 1233-1240, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31130285

RESUMO

Noonan syndrome (NS) is characterized by distinctive craniofacial appearance, short stature, and congenital heart disease. Approximately 80% of individuals with NS harbor mutations in genes whose products are involved in the RAS/mitogen-activating protein kinase (MAPK) pathway. However, the underlying genetic causes in nearly 20% of individuals with NS phenotype remain unexplained. Here, we report four de novo RRAS2 variants in three individuals with NS. RRAS2 is a member of the RAS subfamily and is ubiquitously expressed. Three variants, c.70_78dup (p.Gly24_Gly26dup), c.216A>T (p.Gln72His), and c.215A>T (p.Gln72Leu), have been found in cancers; our functional analyses showed that these three changes induced elevated association of RAF1 and that they activated ERK1/2 and ELK1. Notably, prominent activation of ERK1/2 and ELK1 by p.Gln72Leu associates with the severe phenotype of the individual harboring this change. To examine variant pathogenicity in vivo, we generated zebrafish models. Larvae overexpressing c.70_78dup (p.Gly24_Gly26dup) or c.216A>T (p.Gln72His) variants, but not wild-type RRAS2 RNAs, showed craniofacial defects and macrocephaly. The same dose injection of mRNA encoding c.215A>T (p.Gln72Leu) caused severe developmental impairments and low dose overexpression of this variant induced craniofacial defects. In contrast, the RRAS2 c.224T>G (p.Phe75Cys) change, located on the same allele with p.Gln72His in an individual with NS, resulted in no aberrant in vitro or in vivo phenotypes by itself. Together, our findings suggest that activating RRAS2 mutations can cause NS and expand the involvement of RRAS2 proto-oncogene to rare germline disorders.


Assuntos
Mutação com Ganho de Função , Mutação em Linhagem Germinativa , Proteínas de Membrana/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Síndrome de Noonan/etiologia , Peixe-Zebra/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Criança , Pré-Escolar , Exoma , Feminino , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Síndrome de Noonan/patologia , Fenótipo , Conformação Proteica , Proto-Oncogene Mas , Homologia de Sequência , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
19.
J Biol Chem ; 294(8): 2970-2975, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30651352

RESUMO

mTOR complex 1 (mTORC1) is a major regulator of cell growth and proliferation that coordinates nutrient inputs with anabolic and catabolic processes. Amino acid signals are transmitted to mTORC1 through the Rag GTPases, which directly recruit mTORC1 onto the lysosomal surface, its site of activation. The Rag GTPase heterodimer has a unique architecture that consists of two GTPase subunits, RagA or RagB bound to RagC or RagD. Their nucleotide-loading states are strictly controlled by several lysosomal or cytosolic protein complexes that directly detect and transmit the amino acid signals. GATOR1 (GTPase-activating protein (GAP) activity toward Rags-1), a negative regulator of the cytosolic branch of the nutrient-sensing pathway, comprises three subunits, Depdc5 (DEP domain-containing protein 5), Nprl2 (NPR2-like GATOR1 complex subunit), and Nprl3 (NPR3-like GATOR1 complex subunit), and is a GAP for RagA. GATOR1 binds the Rag GTPases via two modes: an inhibitory mode that holds the Rag GTPase heterodimer and has previously been captured by structural determination, and a GAP mode that stimulates GTP hydrolysis by RagA but remains structurally elusive. Here, using site-directed mutagenesis, GTP hydrolysis assays, coimmunoprecipitation experiments, and structural analysis, we probed the GAP mode and found that a critical residue on Nprl2, Arg-78, is the arginine finger that carries out GATOR1's GAP function. Substitutions of this arginine residue rendered mTORC1 signaling insensitive to amino acid starvation and are found frequently in cancers such as glioblastoma. Our results reveal the biochemical bases of mTORC1 inactivation through the GATOR1 complex.


Assuntos
Guanosina Trifosfato , Proteínas Monoméricas de Ligação ao GTP , Proteínas Repressoras , Proteínas Supressoras de Tumor , Substituição de Aminoácidos , Arginina/química , Arginina/genética , Arginina/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação de Sentido Incorreto , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
20.
Semin Cancer Biol ; 54: 149-161, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29307570

RESUMO

Inhibition of Ras signalling has been a goal almost since its central role in cell signalling and its deregulation in disease were discovered. Early attempts at inhibiting its post-translational modification using peptidomimetics were successful in cell culture but failed spectacularly in clinical trials, making industry wary of targeting this critical oncoprotein. Small molecule inhibition of the protein-protein interactions involving Ras has also been difficult due to the nature of the interaction interface. Recent improvements in design, synthesis and selection of stabilised peptides, peptidomimetics and macrocycles have suggested that these biologics may represent a new hope in Ras inhibition. Here we review the various ways in which Ras has been targeted with these molecules. We also describe work on related small G proteins of the Ras superfamily, since many of the principles may be applicable to Ras, and these also provide inhibition of pathways downstream of Ras.


Assuntos
Descoberta de Drogas , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Proteínas Monoméricas de Ligação ao GTP/química , Família Multigênica , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas Son Of Sevenless/química , Proteínas Son Of Sevenless/metabolismo , Relação Estrutura-Atividade , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA