Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.533
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Elife ; 122024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690987

RESUMO

Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.


Assuntos
Condrócitos , Microtia Congênita , Proteínas Quinases Dependentes de AMP Cíclico , Transdução de Sinais , Animais , Condrócitos/metabolismo , Microtia Congênita/genética , Microtia Congênita/metabolismo , Camundongos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Condrogênese/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética
2.
J Agric Food Chem ; 72(17): 9691-9702, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639219

RESUMO

Marine biodiversity offers a wide array of active ingredient resources. Gadus morhua peptides (GMPs) showed excellent osteoprotective effects in ovariectomized mice. However, the potential osteogenesis mechanisms of key osteogenic peptides in GMP were seldom reported. In this study, a novel osteogenic peptide (GETNPADSKPGSIR, P-GM-2) was screened from GMP. P-GM-2 has a high stability coefficient and a strong interaction with epidermal growth factor receptor. Cell culture experiments showed that P-GM-2 stimulated the expression of osteogenic differentiation markers to promote osteoblast proliferation, differentiation, and mineralization. Additionally, P-GM-2 phosphorylates GSK-3ß, leading to the stabilization of ß-catenin and its translocation to the nucleus, thus initiating the activation of the Wnt/ß-catenin signaling pathway. Meanwhile, P-GM-2 could also regulate the osteogenic differentiation of preosteoblasts by triggering the BMP/Smad and mitogen-activated protein kinase signaling pathways. Further validation with specific inhibitors (ICG001 and Noggin) demonstrated that the osteogenic activity of P-GM-2 was revealed by the activation of the BMP and Wnt/ß-catenin pathways. In summary, these results provide theoretical and practical insights into P-GM-2 as an effective antiosteoporosis active ingredient.


Assuntos
Diferenciação Celular , Osteoblastos , Osteogênese , Peptídeos , Via de Sinalização Wnt , beta Catenina , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Camundongos , Osteogênese/efeitos dos fármacos , beta Catenina/metabolismo , beta Catenina/genética , Via de Sinalização Wnt/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Transdução de Sinais/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
3.
J Neurooncol ; 167(3): 455-465, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38446374

RESUMO

PURPOSE: Meningiomas are the most common type of brain tumors and are generally benign, but malignant atypical meningiomas and anaplastic meningiomas frequently recur with poor prognosis. The metabolism of meningiomas is little known, so few effective treatment options other than surgery and radiation are available, and the targets for treatment of recurrence are not well defined. The Aim of this paper is to find the therapeutic target. METHODS: The effects of bone morphogenetic protein (BMP) signal inhibitor (K02288) and upstream regulator Gremlin2 (GREM2) on meningioma's growth and senescence were examined. In brief, we examined as follows: 1) Proliferation assay by inhibiting BMP signaling. 2) Comprehensive analysis of forced expression GREM2.3) Correlation between GREM2 mRNA expression and proliferation marker in 87 of our clinical samples. 4) Enrichment analysis between GREM2 high/low expressed groups using RNA-seq data (42 cases) from the public database GREIN. 5) Changes in metabolites and senescence markers associated with BMP signal suppression. RESULTS: Inhibitors of BMP receptor (BMPR1A) and forced expression of GREM2 shifted tryptophan metabolism from kynurenine/quinolinic acid production to serotonin production in malignant meningiomas, reduced NAD + /NADH production, decreased gene cluster expression involved in oxidative phosphorylation, and caused decrease in ATP. Finally, malignant meningiomas underwent cellular senescence, decreased proliferation, and eventually formed psammoma bodies. Reanalyzed RNA-seq data of clinical samples obtained from GREIN showed that increased expression of GREM2 decreased the expression of genes involved in oxidative phosphorylation, similar to our experimental results. CONCLUSIONS: The GREM2-BMPR1A-tryptophan metabolic pathway in meningiomas is a potential new therapeutic target.


Assuntos
Proteínas Morfogenéticas Ósseas , Calcinose , Neoplasias Meníngeas , Meningioma , Transdução de Sinais , Humanos , Meningioma/metabolismo , Meningioma/patologia , Meningioma/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Calcinose/patologia , Calcinose/metabolismo , Calcinose/genética , Proliferação de Células , Senescência Celular , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética
4.
J Cell Mol Med ; 28(7): e18140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494851

RESUMO

Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP11), has been identified as a key player in various biological processes, including embryonic development, aging, metabolic disorders and cancers. GDF11 has also emerged as a critical component in liver development, injury and fibrosis. However, the effects of GDF11 on liver physiology and pathology have been a subject of debate among researchers due to conflicting reported outcomes. While some studies suggest that GDF11 has anti-aging properties, others have documented its senescence-inducing effects. Similarly, while GDF11 has been implicated in exacerbating liver injury, it has also been shown to have the potential to reduce liver fibrosis. In this narrative review, we present a comprehensive report of recent evidence elucidating the diverse roles of GDF11 in liver development, hepatic injury, regeneration and associated diseases such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma. We also explore the therapeutic potential of GDF11 in managing various liver pathologies.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fibrose , Cirrose Hepática/patologia , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Hepáticas/patologia
5.
Sci Rep ; 14(1): 6524, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499638

RESUMO

Wnt signaling is critically involved in fracture healing. Existing data predominantly relies on rodent models. Here, we explored local and circulating Dickkopf-1 (DKK1) levels in patients with respect to fracture healing and explore its association to sclerostin (SOST). 69 patients after surgical stabilization of long bone fractures of which six patients had impaired fracture healing were included in this study. Life-style and patient related factors with a known effect on DKK1 and SOST were recorded. DKK1 and SOST concentrations were measured using enzyme-linked immunosorbent assay (ELISA) at the fracture site and in circulation. DKK1 and SOST showed a close inverse correlation. In fracture hematoma and immediately after trauma DKK1 levels were significantly reduced while SOST levels were significantly increased, compared to healthy control. Postoperatively, DKK1 peaked at week 2 and SOST at week 8, again demonstrating a close negative correlation. Age and smoking status affected the balance of DKK1 and SOST, while type 2 diabetes and sex did not demonstrate a significant influence. Early postoperative elevation of SOST without compensatory DKK1 decrease was associated with fracture non-union in younger patients (< 50a). The close inverse correlation and very rapid dynamics of DKK1 and SOST locally as well as systemically suggest their critical involvement during human fracture healing. Importantly, as immediate compensatory feedback mechanism are apparent, we provide evidence that dual-blockade of DKK1 and SOST could be critical to allow for therapeutic efficiency of Wnt targeted therapies for fracture healing.


Assuntos
Diabetes Mellitus Tipo 2 , Fraturas Ósseas , Humanos , Proteínas Morfogenéticas Ósseas/genética , Consolidação da Fratura , Marcadores Genéticos , Peptídeos e Proteínas de Sinalização Intercelular
6.
Stem Cell Res Ther ; 15(1): 83, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500216

RESUMO

BACKGROUND: Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease caused by a gain-of-function mutation in ACVR1, which is a bone morphogenetic protein (BMP) type I receptor. Moreover, it causes progressive heterotopic ossification (HO) in connective tissues. Using FOP patient-derived induced pluripotent stem cells (FOP-iPSCs) and mouse models, we elucidated the underlying mechanisms of FOP pathogenesis and identified a candidate drug for FOP. METHODS: In the current study, healthy mesenchymal stem/stromal cells derived from iPSCs (iMSCs) expressing ACVR2B-Fc (iMSCACVR2B-Fc), which is a neutralizing receptobody, were constructed. Furthermore, patient-derived iMSCs and FOP mouse model (ACVR1R206H, female) were used to confirm the inhibitory function of ACVR2B-Fc fusion protein secreted by iMSCACVR2B-Fc on BMP signaling pathways and HO development, respectively. RESULTS: We found that secreted ACVR2B-Fc attenuated BMP signaling initiated by Activin-A and BMP-9 in both iMSCs and FOP-iMSCs in vitro. Transplantation of ACVR2B-Fc-expressing iMSCs reduced primary HO in a transgenic mouse model of FOP. Notably, a local injection of ACVR2B-Fc-expressing iMSCs and not an intraperitoneal injection improved the treadmill performance, suggesting compound effects of ACVR2B-Fc and iMSCs. CONCLUSIONS: These results offer a new perspective for treating FOP through stem cell therapy.


Assuntos
Miosite Ossificante , Ossificação Heterotópica , Feminino , Humanos , Camundongos , Animais , Miosite Ossificante/genética , Miosite Ossificante/terapia , Ossificação Heterotópica/terapia , Ossificação Heterotópica/genética , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/farmacologia , Transdução de Sinais , Camundongos Transgênicos , Mutação , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo II/farmacologia
7.
Angiogenesis ; 27(2): 211-227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38294582

RESUMO

Heterozygous activin receptor-like kinase 1 (ALK1) mutations are associated with two vascular diseases: hereditary hemorrhagic telangiectasia (HHT) and more rarely pulmonary arterial hypertension (PAH). Here, we aimed to understand the impact of ALK1 mutations on BMP9 and BMP10 transcriptomic responses in endothelial cells. Endothelial colony-forming cells (ECFCs) and microvascular endothelial cells (HMVECs) carrying loss of function ALK1 mutations were isolated from newborn HHT and adult PAH donors, respectively. RNA-sequencing was performed on each type of cells compared to controls following an 18 h stimulation with BMP9 or BMP10. In control ECFCs, BMP9 and BMP10 stimulations induced similar transcriptomic responses with around 800 differentially expressed genes (DEGs). ALK1-mutated ECFCs unexpectedly revealed highly similar transcriptomic profiles to controls, both at the baseline and upon stimulation, and normal activation of Smad1/5 that could not be explained by a compensation in cell-surface ALK1 level. Conversely, PAH HMVECs revealed strong transcriptional dysregulations compared to controls with > 1200 DEGs at the baseline. Consequently, because our study involved two variables, ALK1 genotype and BMP stimulation, we performed two-factor differential expression analysis and identified 44 BMP9-dysregulated genes in mutated HMVECs, but none in ECFCs. Yet, the impaired regulation of at least one hit, namely lunatic fringe (LFNG), was validated by RT-qPCR in three different ALK1-mutated endothelial models. In conclusion, ALK1 heterozygosity only modified the BMP9/BMP10 regulation of few genes, including LFNG involved in NOTCH signaling. Future studies will uncover whether dysregulations in such hits are enough to promote HHT/PAH pathogenesis, making them potential therapeutic targets, or if second hits are necessary.


Assuntos
Hipertensão Arterial Pulmonar , Telangiectasia Hemorrágica Hereditária , Adulto , Recém-Nascido , Humanos , Células Endoteliais/metabolismo , Fator 2 de Diferenciação de Crescimento/genética , Fator 2 de Diferenciação de Crescimento/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Mutação/genética , Perfilação da Expressão Gênica , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo
8.
Skelet Muscle ; 14(1): 1, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172960

RESUMO

Myofiber size regulation is critical in health, disease, and aging. MuSK (muscle-specific kinase) is a BMP (bone morphogenetic protein) co-receptor that promotes and shapes BMP signaling. MuSK is expressed at all neuromuscular junctions and is also present extrasynaptically in the mouse soleus, whose predominantly oxidative fiber composition is akin to that of human muscle. To investigate the role of the MuSK-BMP pathway in vivo, we generated mice lacking the BMP-binding MuSK Ig3 domain. These ∆Ig3-MuSK mice are viable and fertile with innervation levels comparable to wild type. In 3-month-old mice, myofibers are smaller in the slow soleus, but not in the fast tibialis anterior (TA). Transcriptomic analysis revealed soleus-selective decreases in RNA metabolism and protein synthesis pathways as well as dysregulation of IGF1-Akt-mTOR pathway components. Biochemical analysis showed that Akt-mTOR signaling is reduced in soleus but not TA. We propose that the MuSK-BMP pathway acts extrasynaptically to maintain myofiber size in slow muscle by promoting protein synthetic pathways including IGF1-Akt-mTOR signaling. These results reveal a novel mechanism for regulating myofiber size in slow muscle and introduce the MuSK-BMP pathway as a target for promoting muscle growth and combatting atrophy.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Camundongos , Humanos , Animais , Lactente , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Músculo Esquelético/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo
9.
Angiogenesis ; 26(Suppl 1): 27-37, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37695357

RESUMO

Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant vascular disorder characterized by small, dilated clustered vessels (telangiectasias) and by larger visceral arteriovenous malformations (AVMs), which directly connect the feeding arteries with the draining veins. These lesions are fragile, prone to rupture, and lead to recurrent epistaxis and/or internal hemorrhage among other complications. Germline heterozygous loss-of-function (LOF) mutations in Bone Morphogenic Protein 9 (BMP9) and BMP10 signaling pathway genes (endoglin-ENG, activin like kinase 1 ACVRL1 aka ALK1, and SMAD4) cause different subtypes of HHT (HHT1, HHT2 and HHT-juvenile polyposis (JP)) and have a worldwide combined incidence of about 1:5000. Expert clinicians and international scientists gathered in Cascais, Portugal from September 29th to October 2nd, 2022 to present the latest scientific research in the HHT field and novel treatment strategies for people living with HHT. During the largest HHT scientific conference yet, participants included 293 in person and 46 virtually. An impressive 209 abstracts were accepted to the meeting and 59 were selected for oral presentations. The remaining 150 abstracts were presented during judged poster sessions. This review article summarizes the basic and clinical abstracts selected as oral presentations with their new observations and discoveries as well as surrounding discussion and debate. Two discussion-based workshops were also held during the conference, each focusing on mechanisms and clinical perspectives in either AVM formation and progression or current and future therapies for HHT. Our hope is that this paper will represent the current progress and the remaining unanswered questions surrounding HHT, in order to serve as an update for those within the field and an invitation to those scientists and clinicians as yet outside of the field of HHT.


Assuntos
Telangiectasia Hemorrágica Hereditária , Humanos , Receptores de Activinas Tipo II/genética , Malformações Arteriovenosas/genética , Malformações Arteriovenosas/patologia , Proteínas Morfogenéticas Ósseas/genética , Mutação , Transdução de Sinais , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/terapia
10.
Bone ; 175: 116860, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37524292

RESUMO

Acromesomelic dysplasia Grebe type (AMD Grebe type) is an autosomal recessive trait characterized by short stature, shortened limbs and malformations of the hands and feet. It is caused by variants in the growth differentiation factor 5 (GDF5) or, in rare cases, its receptor, the bone morphogenetic protein receptor-1B (BMPR1B). Here, we report a novel homozygous BMPR1B variant causing AMD Grebe type in a consanguineous Moroccan family with two affected sibs from BRO Biobank. Remarkably, the affected individuals showed additional features including bilateral simian creases, lumbar hyperlordosis, as well as lower limb length inequality and dislocated hips in one of them, which were never reported previously for AMD Grebe type patients. The identified novel BMPR1B variant (c.1201C>T, p.R401*) is predicted to result in loss of function of the BMPR1B protein either by nonsense-mediated mRNA decay or production of a truncated BMPR1B protein. Thus, these findings expand the phenotypic and mutational spectrum of AMD, and may improve the diagnosis of AMD and enable appropriate genetic counselling to be offered to patients.


Assuntos
Osteocondrodisplasias , Humanos , Consanguinidade , Linhagem , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Receptores de Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética
11.
Genet Med ; 25(11): 100925, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37422716

RESUMO

PURPOSE: Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. Genetic testing is currently recommended for adults diagnosed with heritable, idiopathic, anorexigen-, hereditary hemorrhagic telangiectasia-, and congenital heart disease-associated PAH, PAH with overt features of venous/capillary involvement, and all children diagnosed with PAH. Variants in at least 27 genes have putative evidence for PAH causality. Rigorous assessment of the evidence is needed to inform genetic testing. METHODS: An international panel of experts in PAH applied a semi-quantitative scoring system developed by the NIH Clinical Genome Resource to classify the relative strength of evidence supporting PAH gene-disease relationships based on genetic and experimental evidence. RESULTS: Twelve genes (BMPR2, ACVRL1, ATP13A3, CAV1, EIF2AK4, ENG, GDF2, KCNK3, KDR, SMAD9, SOX17, and TBX4) were classified as having definitive evidence and 3 genes (ABCC8, GGCX, and TET2) with moderate evidence. Six genes (AQP1, BMP10, FBLN2, KLF2, KLK1, and PDGFD) were classified as having limited evidence for causal effects of variants. TOPBP1 was classified as having no known PAH relationship. Five genes (BMPR1A, BMPR1B, NOTCH3, SMAD1, and SMAD4) were disputed because of a paucity of genetic evidence over time. CONCLUSION: We recommend that genetic testing includes all genes with definitive evidence and that caution be taken in the interpretation of variants identified in genes with moderate or limited evidence. Genes with no known evidence for PAH or disputed genes should not be included in genetic testing.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Adulto , Criança , Humanos , Hipertensão Arterial Pulmonar/genética , Mutação , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/genética , Predisposição Genética para Doença , Testes Genéticos , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Membrana Transportadoras/genética , Receptores de Activinas Tipo II/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Morfogenéticas Ósseas/genética
12.
Curr Protein Pept Sci ; 24(7): 610-619, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37317916

RESUMO

BACKGROUND: Despite the promising clinical potential of bone morphogenetic protein (BMP)-related therapies for bone formation, their side effects warrant the need for alternative therapeutic peptides. BMP family members can aid in bone repair; however, peptides derived from BMP2/ 4 have not yet been investigated. METHODS: In this study, three candidates BMP2/4 consensus peptide (BCP) 1, 2, and 3 were identified and their ability to induce osteogenesis in C2C12 cells was analyzed. First, an alkaline phosphatase (ALP) staining assay was performed to evaluate the osteogenic effects of BCPs. Next, the effects of BCPs on RNA expression levels and protein abundances of osteogenic markers were explored. Furthermore, the transcriptional activity of ALP by BCP1 and in silico molecular docking model on BMP type IA receptor (BRIA) were performed. RESULTS: BCP1-3 induced higher RUNX2 expression than BMP2. Interestingly, among them, BCP1 significantly promoted osteoblast differentiation more than BMP2 in ALP staining with no cytotoxicity. BCP1 significantly induced the osteoblast markers, and the highest RUNX2 expression was observed at 100 ng/mL compared to other concentrations. In transfection experiments, BCP1 stimulated osteoblast differentiation via RUNX2 activation and the Smad signaling pathway. Finally, in silico molecular docking suggested the possible binding sites of BCP1 on BRIA. CONCLUSION: These results show that BCP1 promotes osteogenicity in C2C12 cells. This study suggests that BCP1 is the most promising candidate peptide to replace BMP2 for osteoblast differentiation.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteogênese , Osteogênese/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Consenso , Simulação de Acoplamento Molecular , Diferenciação Celular/genética , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/farmacologia , Osteoblastos
13.
Sci Rep ; 13(1): 10426, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369758

RESUMO

Previously, we showed that after Freund's adjuvant-induced peritonitis, rat mesothelial cells regain their epithelial phenotype through mesenchymal-epithelial transition (MET) accompanied by autophagy. Since bone morphogenetic proteins (BMPs) are well-known MET-inducers, we were interested in the potential expression of BMPs and BMP-induced pathways. Although mesothelial cells expressed lower amounts of BMP7, its level in the peritoneal cavity and mesothelial synthesis of BMP4 were significantly increased during inflammation. BMPR1A and BMPR2 were also significantly expressed. Expression of transforming growth factor beta-activated kinase (TAK1) and c-Jun NH2-terminal kinases (JNK1-JNK2) were more intense than that of phosphorylated Mothers Against Decapentaplegic homolog 1/5 (p-SMAD1/5), confirming that the non-canonical pathway of BMPs prevailed in our model. JNK signaling through B-cell lymphoma-2 (Bcl-2) can contribute to Beclin-1 activation. We demonstrated that TAK1-JNK-Bcl-2 signaling was upregulated simultaneously with the autophagy-mediated regeneration. A further goal of our study was to prove the regenerative role of autophagy after inflammation. We used a specific inhibitor, bafilomycin A1 (BafA1), and found that BafA1 treatment decreased the expression of microtubule-associated protein 1A/1B-light chain 3 (LC3B) and resulted in morphological signs of cell death in inflamed mesothelial cells indicating that if autophagy is arrested, regeneration turns into cell death and consequently, mesothelial cells die.


Assuntos
Proteínas Morfogenéticas Ósseas , Diferenciação Celular , Células Epiteliais , Transdução de Sinais , Animais , Ratos , Autofagia/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/farmacologia , Diferenciação Celular/genética , Inflamação/induzido quimicamente , Adjuvante de Freund/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação para Cima , Receptores de Proteínas Morfogenéticas Ósseas/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/ultraestrutura , Apoptose/efeitos dos fármacos , Regeneração/fisiologia , Inibidores Enzimáticos/farmacologia
14.
Arterioscler Thromb Vasc Biol ; 43(7): e231-e237, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37128914

RESUMO

BACKGROUND: The goal of this study was to identify and characterize cell-cell interactions that facilitate endothelial tip cell fusion downstream of BMP (bone morphogenic protein)-mediated venous plexus formation. METHODS: High resolution and time-lapse imaging of transgenic reporter lines and loss-of-function studies were carried out to study the involvement of mesenchymal stromal cells during venous angiogenesis. RESULTS: BMP-responsive stromal cells facilitate timely and precise fusion of venous tip cells during developmental angiogenesis. CONCLUSIONS: Stromal cells are required for anastomosis of venous tip cells in the embryonic caudal hematopoietic tissue.


Assuntos
Proteínas Morfogenéticas Ósseas , Células-Tronco Mesenquimais , Animais , Fusão Celular , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais Geneticamente Modificados , Comunicação Celular , Células Estromais/metabolismo
15.
Angiogenesis ; 26(1): 167-186, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36348215

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is a genetic vascular disorder characterized by the presence of arteriovenous malformation (AVM) in multiple organs. HHT is caused by mutations in genes encoding major constituents for transforming growth factor-ß (TGF-ß) family signaling: endoglin (ENG), activin receptor-like kinase 1 (ALK1), and SMAD4. The identity of physiological ligands for this ENG-ALK1 signaling pertinent to AVM formation has yet to be clearly determined. To investigate whether bone morphogenetic protein 9 (BMP9), BMP10, or both are physiological ligands of ENG-ALK1 signaling involved in arteriovenous network formation, we generated a novel Bmp10 conditional knockout mouse strain. We examined whether global Bmp10-inducible knockout (iKO) mice develop AVMs at neonatal and adult stages in comparison with control, Bmp9-KO, and Bmp9/10-double KO (dKO) mice. Bmp10-iKO and Bmp9/10-dKO mice showed AVMs in developing retina, postnatal brain, and adult wounded skin, while Bmp9-KO did not display any noticeable vascular defects. Bmp10 deficiency resulted in increased proliferation and size of endothelial cells in AVM vessels. The impaired neurovascular integrity in the brain and retina of Bmp10-iKO and Bmp9/10-dKO mice was detected. Bmp9/10-dKO mice exhibited the lethality and vascular malformation similar to Bmp10-iKO mice, but their phenotypes were more pronounced. Administration of BMP10 protein, but not BMP9 protein, prevented retinal AVM in Bmp9/10-dKO and endothelial-specific Eng-iKO mice. These data indicate that BMP10 is indispensable for the development of a proper arteriovenous network, whereas BMP9 has limited compensatory functions for the loss of BMP10. We suggest that BMP10 is the most relevant physiological ligand of the ENG-ALK1 signaling pathway pertinent to HHT pathogenesis.


Assuntos
Malformações Arteriovenosas , Telangiectasia Hemorrágica Hereditária , Animais , Camundongos , Fator 2 de Diferenciação de Crescimento/genética , Fator 2 de Diferenciação de Crescimento/metabolismo , Células Endoteliais/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Telangiectasia Hemorrágica Hereditária/metabolismo , Malformações Arteriovenosas/patologia , Camundongos Knockout , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo
16.
J Gastroenterol ; 58(1): 25-43, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326956

RESUMO

Mutations in Bone Morphogenetic Protein (BMP) Receptor (BMPR)1A and SMAD4 are detected in 50% of juvenile polyposis syndrome (JPS) patients, who develop stroma-rich hamartomatous polyps. The established role of stromal cells in regulating BMP activity in the intestine implies a role for stromal cells in polyp development. We used conditional Cre-LoxP mice to investigate how specific loss of BMPR1A in endothelial cells, fibroblasts, or myofibroblasts/smooth muscle cells affects intestinal homeostasis. Selective loss of BMPR1A in fibroblasts causes severe histological changes in the intestines with a significant increase in stromal cell content and epithelial cell hyperproliferation, leading to numerous serrated polyps. This phenotype suggests that crucial changes occur in the fibroblast secretome that influences polyp development. Analyses of publicly available RNA expression databases identified CXCL12 as a potential candidate. RNAscope in situ hybridization showed an evident increase of Cxcl12-expressing fibroblasts. In vitro, stimulation of fibroblasts with BMPs resulted in downregulation of CXCL12, while inhibition of the BMP pathway resulted in gradual upregulation of CXCL12 over time. Moreover, neutralization of CXCL12 in vivo in the fibroblast-specific BMPR1A KO mice resulted in a significant decrease in polyp formation. Finally, in CRC patient specimens, mRNA-expression data showed that patients with high GREMLIN1 and CXCL12 expression had a significantly poorer overall survival. Significantly higher GREMLIN1, NOGGIN, and CXCL12 expression were detected in the Consensus Molecular Subtype 4 (CMS4) colorectal cancers, which are thought to arise from serrated polyps. Taken together, these data imply that fibroblast-specific BMP signaling-CXCL12 interaction could have a role in the etiology of serrated polyp formation.


Assuntos
Células Endoteliais , Pólipos , Camundongos , Animais , Transdução de Sinais , Fibroblastos , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo
17.
Cancer Rep (Hoboken) ; 6(2): e1707, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054271

RESUMO

BACKGROUND: Prostate cancer is a common cancer in men that annually results in more than 33 000 US deaths. Mortality from prostate cancer is largely from metastatic disease, reflecting on the great strides in the last century of treatments in care for the localized disease. Metastatic castrate resistant prostate cancer (mCRPC) will commonly travel to the bone, creating unique bone pathology that requires nuanced treatments in those sites with surgical, radio and chemotherapeutic interventions. The bone morphogenetic protein (BMP) pathway has been historically studied in the capacity to regulate the osteogenic nature of new bone. New mineralized bone generation is a frequent and common observation in mCRPC and referred to as blastic bone lesions. Less common are bone destructive lesions that are termed lytic. METHODS: We queried the cancer genome atlas (TCGA) prostate cancer databases for the expression of the BMP pathway and found that distinct gene expression of the ligands, soluble antagonists, receptors, and intracellular mediators were altered in localized versus metastatic disease. Human prostate cancer cell lines have an innate ability to promote blastic- or lytic-like bone lesions and we hypothesized that inhibiting BMP signaling in these cell lines would result in a distinct change in osteogenesis gene expression with BMP inhibition. RESULTS: We found unique and common changes by comparing these cell lines response and unique BMP pathway alterations. We treated human PCa cell lines with distinct bone pathologic phenotypes with the BMP inhibitor DMH1 and found distinct osteogenesis responses. We analyzed distinct sites of metastatic PCa in the TCGA and found that BMP signaling was selectively altered in commons sites such as lymph node, bone and liver compared to primary tumors. CONCLUSIONS: Overall we conclude that BMPs in metastatic prostate cancer are important signals and functional mediators of diverse processes that have potential for individualized precision oncology in mCRPC.


Assuntos
Osteogênese , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Medicina de Precisão , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/farmacologia , Linhagem Celular
18.
Nat Cancer ; 3(9): 1105-1122, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35915262

RESUMO

The most lethal subtype of diffuse intrinsic pontine glioma (DIPG) is H3K27M. Although ACVR1 mutations have been implicated in the pathogenesis of this currently incurable disease, the impacts of bone morphogenetic protein (BMP) signaling on more than 60% of H3K27M DIPG carrying ACVR1 wild-type remain unknown. Here we show that BMP ligands exert potent tumor-suppressive effects against H3.3K27M and ACVR1 WT DIPG in a SMAD-dependent manner. Specifically, clinical data revealed that many DIPG tumors have exploited the capacity of CHRDL1 to hijack BMP ligands. We discovered that activation of BMP signaling promotes the exit of DIPG tumor cells from 'prolonged stem-cell-like' state to differentiation by epigenetically regulating CXXC5, which acts as a tumor suppressor and positive regulator of BMP signaling. Beyond showing how BMP signaling impacts DIPG, our study also identified the potent antitumor efficacy of Dacinostat for DIPG. Thus, our study delineates context-dependent features of the BMP signaling pathway in a DIPG subtype.


Assuntos
Astrocitoma , Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Astrocitoma/genética , Proteínas Morfogenéticas Ósseas/genética , Neoplasias do Tronco Encefálico/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Glioma Pontino Intrínseco Difuso/genética , Epigênese Genética , Humanos , Ligantes , Transdução de Sinais/genética , Fatores de Transcrição/genética
19.
J Cell Physiol ; 237(8): 3127-3163, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644005

RESUMO

Over 20 different growth factors belonging to the bone morphogenetic proteins (BMPs) family have been identified, that were initially discovered as growth factors that promote osteogenesis, and play a vital role in bone remodeling and various developmental processes. Numerous studies have explored the aberrance level of BMPs in various cancer types, questioning their role in tumorigenesis. These growth factors have been studied extensively over the decades to define their function during cancer progression and metastasis. Nonetheless, the BMP expression profiles in clinical samples correlate with cancer prognosis. Based on clinical data, various in vitro, and in vivo findings, it has been reported that BMPs have dual roles, that is, they can act as a tumor suppressor, tumor promoter, and both. On contrary, some studies have reported that BMPs have an oncogenic role while others reported their tumor-suppressive role. So, this creates a knowledge gap in the behavior of different types of BMPs. Thus, this review updates and bridges the knowledge gap while considering the dual behavior of various BMPs including BMP-2, 4, 6, 7, 9, and 10. Moreover, the comprehensive analysis provides insight into the role of different BMPs in cancer potential and how the behavior of BMPs alters in the tissue-dependent context in various cancers by modulating canonical SMAD signaling, various noncanonical pathways such as PI3K/AKT, NF-κB, MAPK, STAT, cMYC, cJUN, and so forth. This review also enlightens the role of BMP heterodimers, several ligand-binding proteins (agonists and antagonists), mutational status of BMP receptors, and the tumor microenvironment in relating to the bi-functional aspects of the BMPs in various cancerous tissues by regulating the levels of BMP's canonical and noncanonical signals.


Assuntos
Proteínas Morfogenéticas Ósseas , Neoplasias , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Genes Supressores de Tumor , Humanos , NF-kappa B/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Oncogenes , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Microambiente Tumoral
20.
PLoS Genet ; 18(6): e1010255, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737938

RESUMO

The MCM2-7 complex is a highly conserved hetero-hexameric protein complex, critical for DNA unwinding at the replicative fork during DNA replication. Overexpression or mutation in MCM2-7 genes is linked to and may drive several cancer types in humans. In mice, mutations in MCM2-7 genes result in growth retardation and mortality. All six MCM2-7 genes are also expressed in the developing mouse CNS, but their role in the CNS is not clear. Here, we use the central nervous system (CNS) of Drosophila melanogaster to begin addressing the role of the MCM complex during development, focusing on the specification of a well-studied neuropeptide expressing neuron: the Tv4/FMRFa neuron. In a search for genes involved in the specification of the Tv4/FMRFa neuron we identified Mcm5 and find that it plays a highly specific role in the specification of the Tv4/FMRFa neuron. We find that other components of the MCM2-7 complex phenocopies Mcm5, indicating that the role of Mcm5 in neuronal subtype specification involves the MCM2-7 complex. Surprisingly, we find no evidence of reduced progenitor proliferation, and instead find that Mcm5 is required for the expression of the type I BMP receptor Tkv, which is critical for the FMRFa expression. These results suggest that the MCM2-7 complex may play roles during CNS development outside of its well-established role during DNA replication.


Assuntos
Proteínas Morfogenéticas Ósseas , Proteínas de Ciclo Celular , Proteínas de Drosophila , Neurônios , Proteínas Serina-Treonina Quinases , Receptores de Superfície Celular , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Camundongos , Proteínas de Manutenção de Minicromossomo/genética , Neurônios/citologia , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA