Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.838
Filtrar
1.
Cell Commun Signal ; 22(1): 417, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192336

RESUMO

Non-muscle myosin heavy chain IIA (MYH9), a member of the non-muscle myosin II (NM II) family, is widely expressed in cells. The interaction of MYH9 with actin in the cytoplasm can hydrolyze ATP, completing the conversion of chemical energy to mechanical motion. MYH9 participates in various cellular processes, such as cell adhesion, migration, movement, and even signal transduction. Mutations in MYH9 are often associated with autosomal dominant platelet disorders and kidney diseases. Over the past decade, tumor-related research has gradually revealed a close relationship between MYH9 and the occurrence and development of tumors. This article provides a review of the research progress on the role of MYH9 in cancer regulation. We also discussed the anti-cancer effects of MYH9 under special circumstances, as well as its regulation of T cell function. In addition, given the importance of MYH9 as a key hub in oncogenic signal transduction, we summarize the current therapeutic strategies targeting MYH9 as well as the ongoing challenges.


Assuntos
Cadeias Pesadas de Miosina , Neoplasias , Humanos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Transdução de Sinais , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/genética
2.
Curr Opin Struct Biol ; 88: 102884, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39053417

RESUMO

Ion-driven membrane motors, essential across all domains of life, convert a gradient of ions across a membrane into rotational energy, facilitating diverse biological processes including ATP synthesis, substrate transport, and bacterial locomotion. Herein, we highlight recent structural advances in the understanding of two classes of ion-driven membrane motors: rotary ATPases and 5:2 motors. The recent structure of the human F-type ATP synthase is emphasised along with the gained structural insight into clinically relevant mutations. Furthermore, we highlight the diverse roles of 5:2 motors and recent mechanistic understanding gained through the resolution of ions in the structure of a sodium-driven motor, combining insights into potential unifying mechanisms of ion selectivity and rotational torque generation in the context of their function as part of complex biological systems.


Assuntos
Proteínas Motores Moleculares , Humanos , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/química , Membrana Celular/metabolismo , Membrana Celular/química , Íons/metabolismo , Íons/química , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Modelos Moleculares , Relação Estrutura-Atividade
4.
Clin Genet ; 106(4): 483-487, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38856159

RESUMO

Arthrogryposis is a clinical feature defined by congenital joint contractures in two or more different body areas which occurs in between 1/3000 and 1/5000 live births. Variants in multiple genes have been associated with distal arthrogryposis syndromes. Heterozygous variants in MYH3 have been identified to cause the dominantly-inherited distal arthrogryposis conditions, Freeman-Sheldon syndrome, Sheldon-Hall syndrome, and multiple pterygium syndrome. In contrast, MYH3 variants underlie both dominantly and recessively inherited Contractures, Pterygia, and Spondylocarpotarsal Fusion syndromes (CPSFS) which are characterized by extensive bony abnormalities in addition to congenital contractures. Here we report two affected sibs with distal arthrogryposis born to unaffected, distantly related parents. Sequencing revealed that both sibs were homozygous for two ultra-rare MYH3 variants, c.3445G>A (p.Glu1149Lys) and c.4760T>C (p.Leu1587Pro). Sequencing and deletion/duplication analysis of 169 other arthrogryposis genes yielded no other compelling candidate variants. This is the first report of biallelic variants in MYH3 being implicated in a distal arthrogryposis phenotype without the additional features of CPSFS. Thus, akin to CPSFS, both dominant and recessively inherited distal arthrogryposis can be caused by variants in MYH3.


Assuntos
Alelos , Artrogripose , Genes Recessivos , Humanos , Artrogripose/genética , Artrogripose/patologia , Masculino , Feminino , Linhagem , Proteínas Motores Moleculares/genética , Mutação/genética , Fenótipo , Predisposição Genética para Doença , Proteínas do Citoesqueleto
6.
Adv Sci (Weinh) ; 11(29): e2306849, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38828676

RESUMO

The material transport system, facilitated by motor proteins, plays a vital role in maintaining a non-equilibrium cellular state. However, understanding the temporal coordination of motor protein activity requires an advanced imaging technique capable of measuring 3D angular displacement in real-time. In this study, a Fourier transform-based plasmonic dark-field microscope has been developed using anisotropic nanoparticles, enabling the prolonged and simultaneous observation of endosomal lateral and rotational motion. A sequence of discontinuous 3D angular displacements has been observed during the pause and run phases of transport. Notably, a serially correlated temporal pattern in the intermittent rotational events has been demonstrated during the tug-of-war mechanism, indicating Markovian switching between the exploitational and explorational modes of motor protein exchange prior to resuming movement. Alterations in transition frequency and the exploitation-to-exploration ratio upon dynein inhibitor treatment highlight the relationship between disrupted motor coordination and reduced endosomal transport efficiency. Collectively, these results suggest the importance of orchestrated temporal motor protein patterns for efficient cellular transport.


Assuntos
Endossomos , Endossomos/metabolismo , Humanos , Microscopia/métodos , Dineínas/metabolismo , Transporte Biológico/fisiologia , Proteínas Motores Moleculares/metabolismo
7.
Nat Commun ; 15(1): 1511, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396042

RESUMO

Inspired by biology, great progress has been made in creating artificial molecular motors. However, the dream of harnessing proteins - the building blocks selected by nature - to design autonomous motors has so far remained elusive. Here we report the synthesis and characterization of the Lawnmower, an autonomous, protein-based artificial molecular motor comprised of a spherical hub decorated with proteases. Its "burnt-bridge" motion is directed by cleavage of a peptide lawn, promoting motion towards unvisited substrate. We find that Lawnmowers exhibit directional motion with average speeds of up to 80 nm/s, comparable to biological motors. By selectively patterning the peptide lawn on microfabricated tracks, we furthermore show that the Lawnmower is capable of track-guided motion. Our work opens an avenue towards nanotechnology applications of artificial protein motors.


Assuntos
Proteínas Motores Moleculares , Nanotecnologia , Movimento (Física) , Proteínas Motores Moleculares/química , Peptídeos
8.
Angew Chem Int Ed Engl ; 63(13): e202316851, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38214887

RESUMO

DNA motors that consume chemical energy to generate processive mechanical motion mimic natural motor proteins and have garnered interest due to their potential applications in dynamic nanotechnology, biosensing, and drug delivery. Such motors translocate by a catalytic cycle of binding, cleavage, and rebinding between DNA "legs" on the motor body and RNA "footholds" on a track. Herein, we address the well-documented trade-off between motor speed and processivity and investigate how these parameters are controlled by the affinity between DNA legs and their complementary footholds. Specifically, we explore the role of DNA leg length and GC content in tuning motor performance by dictating the rate of leg-foothold dissociation. Our investigations reveal that motors with 0 % GC content exhibit increased instantaneous velocities of up to 150 nm/sec, three-fold greater than previously reported DNA motors and comparable to the speeds of biological motor proteins. We also demonstrate that the faster speed and weaker forces generated by 0 % GC motors can be leveraged for enhanced capabilities in sensing. We observe single-molecule sensitivity when programming the motors to stall in response to the binding of nucleic acid targets. These findings offer insights for the design of high-performance DNA motors with promising real-world biosensing applications.


Assuntos
Ácidos Nucleicos , Proteínas Motores Moleculares/metabolismo , DNA/química , Nanotecnologia , Miosinas
9.
J Theor Biol ; 578: 111685, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38061488

RESUMO

Kinesin is a motor protein that can convert chemical energy of ATP hydrolysis into mechanical energy of moving processively on microtubules. Apart from the load and ATP concentration affecting the dynamics of the motor such as velocity, run length, dissociation rate, etc., the increase of solution viscosity by supplementing crowding agents of low molecular weight into the buffer can also affect the dynamics. Here, based on our proposed model for the chemomechanical coupling of the kinesin motor, a systematically theoretical study of the motor dynamics under the variation of the viscosity and load is presented. Both the load on the motor's stalk and that on one of the two heads are considered. The theoretical results provide a consistent explanation of the available contradictory experimental results, with some showing that increasing viscosity decreases sensitively the velocity whereas others showing that increasing viscosity has little effect on the velocity. The theoretical results reproduce quantitatively the puzzling experimental data showing that under different directions of the load on the stalk, increasing viscosity has very different effects on the change of run length or dissociation rate. The theoretical results predict that in both the pure and crowded buffers the dependence of the run length on the load acting one of the two heads has very different feature from that on the load acting on the stalk.


Assuntos
Cinesinas , Modelos Teóricos , Cinesinas/metabolismo , Trifosfato de Adenosina/metabolismo , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo
10.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108771

RESUMO

In single-molecule experiments, the dynamics of molecular motors are often observed indirectly by measuring the trajectory of an attached bead in a motor-bead assay. In this work, we propose a method to extract the step size and stalling force for a molecular motor without relying on external control parameters. We discuss this method for a generic hybrid model that describes bead and motor via continuous and discrete degrees of freedom, respectively. Our deductions are solely based on the observation of waiting times and transition statistics of the observable bead trajectory. Thus, the method is non-invasive, operationally accessible in experiments and can, in principle, be applied to any model describing the dynamics of molecular motors. We briefly discuss the relation of our results to recent advances in stochastic thermodynamics on inference from observable transitions. Our results are confirmed by extensive numerical simulations for parameters values of an experimentally realized F1-ATPase assay.


Assuntos
Fenômenos Mecânicos , Listas de Espera , ATPases Translocadoras de Prótons , Proteínas Motores Moleculares/metabolismo
11.
Methods Mol Biol ; 2646: 71-82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36842107

RESUMO

The bacterial flagellum employs a rotary motor embedded on the cell surface. The motor consists of the stator and rotor elements and is driven by ion influx (typically H+ or Na+) through an ion channel of the stator. Ion influx induces conformational changes in the stator, followed by changes in the interactions between the stator and rotor. The driving force to rotate the flagellum is thought to be generated by changing the stator-rotor interactions. In this chapter, we describe two methods for investigating the interactions between the stator and rotor: site-directed in vivo photo-crosslinking and site-directed in vivo cysteine disulfide crosslinking.


Assuntos
Proteínas de Bactérias , Flagelos , Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Íons/metabolismo , Proteínas Motores Moleculares/metabolismo
12.
Methods Mol Biol ; 2646: 197-208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36842117

RESUMO

Single-molecular techniques have characterized dynamics of molecular motors such as flagellum in bacteria and myosin, kinesin, and dynein in eukaryotes. We can apply these techniques to a motility machine of archaea, namely, the archaellum, composed of a thin helical filament and a rotary motor. Although the size of the motor hinders the characterization of its motor function under a conventional optical microscope, fluorescence-labeling techniques allow us to visualize the architecture and function of the archaellar filaments in real time. Furthermore, a tiny polystyrene bead attached to the filament enables the visualization of motor rotation through the bead rotation and quantification of biophysical properties such as speed and torque produced by the rotary motor imbedded in the cell membrane. In this chapter, I describe the details of the above biophysical method based on an optical microscope.


Assuntos
Microscopia , Proteínas Motores Moleculares , Proteínas Motores Moleculares/metabolismo , Rotação , Dineínas/metabolismo , Bactérias/metabolismo , Flagelos/metabolismo
13.
Sci Adv ; 9(8): eabg3015, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812329

RESUMO

Cells orchestrate the motion and force of hundreds of protein motors to perform various mechanical tasks over multiple length scales. However, engineering active biomimetic materials from protein motors that consume energy to propel continuous motion of micrometer-sized assembling systems remains challenging. Here, we report rotary biomolecular motor-powered supramolecular (RBMS) colloidal motors that are hierarchically assembled from a purified chromatophore membrane containing FOF1-ATP synthase molecular motors, and an assembled polyelectrolyte microcapsule. The micro-sized RBMS motor with asymmetric distribution of FOF1-ATPases can autonomously move under light illumination and is collectively powered by hundreds of rotary biomolecular motors. The propulsive mechanism is that a transmembrane proton gradient generated by a photochemical reaction drives FOF1-ATPases to rotate for ATP biosynthesis, which creates a local chemical field for self-diffusiophoretic force. Such an active supramolecular architecture endowed with motility and biosynthesis offers a promising platform for intelligent colloidal motors resembling the propulsive units in swimming bacteria.


Assuntos
Bactérias , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Movimento (Física) , Bactérias/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Motores Moleculares/metabolismo
14.
Clin Nephrol ; 99(3): 153-160, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36602281

RESUMO

A 35-year-old man with persistent urine abnormalities and renal dysfunction was referred to our hospital. May-Hegglin anomaly was suspected, and a renal biopsy showed focal segmental glomerulosclerosis (FSGS) with IgA deposition. Electron microscopy revealed foot process effacements and intense bleb-like morphological changes in podocytes. Nonmuscle myosin heavy chain IIA (NMMHCIIA) staining of granulocytes revealed a localized, type II pattern, and genomic DNA sequencing of MYH9 exon 40 revealed MYH9 5773delG mutation (c.5773delG [p.(Asp1925Thrfs*23)]). Podocytes were significantly stained by an antibody specific for NMMHC-IIA abnormalities associated with this mutation. Colocalization observation of vimentin and NMMHC-IIA demonstrated a diminished form of NMMHC-IIA in podocytes. Taking these observations into account, it was determined that the present case was likely associated with MYH9 disorder. Treatment was started with olmesartan, followed by methylprednisolone pulse therapy 3 times bi-monthly. Finally, the patient began hemodialysis 18 months later. This is the first known report of renal phenotype expression associated with this MYH9 mutation. FSGS can occur in association with MYH9 mutations at the 3' regions, such as exon 40. Abnormal expression or metabolism of NMMHC-IIA in podocytes might be related to the formation of FSGS lesions due to this MYH9 mutation.


Assuntos
Glomerulosclerose Segmentar e Focal , Trombocitopenia , Humanos , Glomerulosclerose Segmentar e Focal/patologia , Rim/patologia , Glomérulos Renais/patologia , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Mutação , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Trombocitopenia/genética , Trombocitopenia/patologia , Masculino , Adulto
15.
Biophys J ; 122(3): 554-564, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36560882

RESUMO

F1-ATPase is the world's smallest biological rotary motor driven by ATP hydrolysis at three catalytic ß subunits. The 120° rotational step of the central shaft γ consists of 80° substep driven by ATP binding and a subsequent 40° substep. In order to correlate timing of ATP cleavage at a specific catalytic site with a rotary angle, we designed a new F1-ATPase (F1) from thermophilic Bacillus PS3 carrying ß(E190D/F414E/F420E) mutations, which cause extremely slow rates of both ATP cleavage and ATP binding. We produced an F1 molecule that consists of one mutant ß and two wild-type ßs (hybrid F1). As a result, the new hybrid F1 showed two pausing angles that are separated by 200°. They are attributable to two slowed reaction steps in the mutated ß, thus providing the direct evidence that ATP cleavage occurs at 200° rather than 80° subsequent to ATP binding at 0°. This scenario resolves the long-standing unclarified issue in the chemomechanical coupling scheme and gives insights into the mechanism of driving unidirectional rotation.


Assuntos
Bacillus , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/química , Bacillus/metabolismo , Trifosfato de Adenosina/metabolismo , Catálise , Proteínas Motores Moleculares/metabolismo , Hidrólise
16.
J Biomol Struct Dyn ; 41(20): 10368-10376, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36495307

RESUMO

F-type ATP synthase (F-ATPase) and vacuolar ATP hydrolase (V-ATPase) are well-known biomolecular motors, which play significant catalytic roles in ATP synthesis and ATP hydrolysis reactions. Their rotational torques are important factors involved in their rotational behavior that can be measured experimentally but with considerable difficulty. To overcome this difficulty and thereby provide an in-depth understanding of their operation mechanism, we herein carry out simple and fast computer modelling to study the two proteins, using our torque approach that relies on interatomic forces and coordinates of unequilibrated configurations taken from brief molecular dynamics (MD) simulations. As predicted by the torque approach, F-ATPase is demonstrated to be a random rotor, but it prefers to rotate in clockwise direction (as seen from the membrane toward the protein) for ATP synthesis, owing to the predominantly negative angle-averaged torques. By contrast, V-ATPase tends to rotate only in counterclockwise direction for ATP hydrolysis, due to the almost uniform averaged positive torques generated by the unidirectional rotation near the three catalytic sites. The rotational behaviors of both proteins are also affected by the surrounding solvent which can promote or hinder the internal rotation. By combining the torque approach with classic force-field MD simulations, the torques of two biomolecular motors can be calculated economically, and are found to agree with previous experiments and theoretical calculations. This work demonstrates that our torque approach can be extended to the field of biology and can help gain a deeper insight into the mechanistic rotation of biomolecular motors with modest computation time.Communicated by Ramaswamy H. Sarma.


Assuntos
ATPases Translocadoras de Prótons , ATPases Vacuolares Próton-Translocadoras , ATPases Translocadoras de Prótons/metabolismo , Proteínas Motores Moleculares/metabolismo , Torque , ATPases Vacuolares Próton-Translocadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Hidrólise
17.
J Phys Chem Lett ; 13(51): 11844-11849, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36520417

RESUMO

F1-ATPase is a rotary molecular motor that in vivo is subject to strong nonequilibrium driving forces. There is great interest in understanding the operational principles governing its high efficiency of free-energy transduction. Here we use a near-equilibrium framework to design a nontrivial control protocol to minimize dissipation in rotating F1 to synthesize adenosine triphosphate. We find that the designed protocol requires much less work than a naive (constant-velocity) protocol across a wide range of protocol durations. Our analysis points to a possible mechanism for energetically efficient driving of F1 in vivo and provides insight into free-energy transduction for a broader class of biomolecular and synthetic machines.


Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/metabolismo , Proteínas Motores Moleculares/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(46): e2208083119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343226

RESUMO

Molecular motors, kinesin and myosin, are dimeric consisting of two linked identical monomeric globular proteins. Fueled by the free energy generated by ATP hydrolysis, they walk on polar tracks (microtubule or filamentous actin) processively, which means that only one head detaches and executes a mechanical step while the other stays bound to the track. One motor head must regulate the chemical state of the other, referred to as "gating", a concept that is still not fully understood. Inspired by experiments, showing that only a fraction of the energy from ATP hydrolysis is used to advance the kinesin motors against load, we demonstrate that the rest of the energy is associated with chemical transitions in the two heads. The coordinated chemical transitions involve communication between the two heads - a feature that characterizes gating. We develop a general framework, based on information theory and stochastic thermodynamics, and establish that gating could be quantified in terms of information flow between the motor heads. Applications to kinesin-1 and Myosin V show that information flow, with positive cooperativity, at external resistive loads less than a critical value, Fc. When force exceeds Fc, effective information flow ceases. Interestingly, Fc, which is independent of the input energy generated through ATP hydrolysis, coincides with the force at which the probability of backward steps starts to increase. Our findings suggest that transport efficiency is optimal only at forces less than Fc, which implies that these motors must operate at low loads under in vivo conditions.


Assuntos
Trifosfato de Adenosina , Cinesinas , Trifosfato de Adenosina/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Termodinâmica , Proteínas Motores Moleculares/metabolismo
19.
J Phys Chem Lett ; 13(31): 7336-7341, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35920721

RESUMO

In intracellular transport, the cargo is usually simultaneously carried by two types of motor proteins that move oppositely, widely described as a "tug-of-war". We show theoretically that apart from the apparent competition, there is also a unintuitive cooperation between motors with opposite directionality. The model reproduces the in vivo experimental data with high accuracy. Under certain conditions, the cooperation can significantly increase the transport distance, rationalizing the choice of bidirectional over unidirectional transport in evolution. We further derive the exact analytical solution for the transport distance. Our results pave the road to understanding the physical nature of intracellular transport by motor proteins.


Assuntos
Dineínas , Proteínas Motores Moleculares , Transporte Biológico , Dineínas/metabolismo , Cinesinas , Modelos Biológicos , Proteínas Motores Moleculares/metabolismo
20.
Nature ; 607(7919): 492-498, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859200

RESUMO

To impart directionality to the motions of a molecular mechanism, one must overcome the random thermal forces that are ubiquitous on such small scales and in liquid solution at ambient temperature. In equilibrium without energy supply, directional motion cannot be sustained without violating the laws of thermodynamics. Under conditions away from thermodynamic equilibrium, directional motion may be achieved within the framework of Brownian ratchets, which are diffusive mechanisms that have broken inversion symmetry1-5. Ratcheting is thought to underpin the function of many natural biological motors, such as the F1F0-ATPase6-8, and it has been demonstrated experimentally in synthetic microscale systems (for example, to our knowledge, first in ref. 3) and also in artificial molecular motors created by organic chemical synthesis9-12. DNA nanotechnology13 has yielded a variety of nanoscale mechanisms, including pivots, hinges, crank sliders and rotary systems14-17, which can adopt different configurations, for example, triggered by strand-displacement reactions18,19 or by changing environmental parameters such as pH, ionic strength, temperature, external fields and by coupling their motions to those of natural motor proteins20-26. This previous work and considering low-Reynolds-number dynamics and inherent stochasticity27,28 led us to develop a nanoscale rotary motor built from DNA origami that is driven by ratcheting and whose mechanical capabilities approach those of biological motors such as F1F0-ATPase.


Assuntos
DNA , Difusão Facilitada , Proteínas Motores Moleculares , DNA/química , Concentração de Íons de Hidrogênio , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Movimento (Física) , Movimento , Concentração Osmolar , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Processos Estocásticos , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA