Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Sci Rep ; 14(1): 12253, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806545

RESUMO

Overexpression of Glycine max disease resistant 1 (GmDR1) exhibits broad-spectrum resistance against Fusarium virguliforme, Heterodera glycines (soybean cyst nematode), Tetranychus urticae (Koch) (spider mites), and Aphis glycines Matsumura (soybean aphids) in soybean. To understand the mechanisms of broad-spectrum immunity mediated by GmDR1, the transcriptomes of a strong and a weak GmDR1-overexpressor following treatment with chitin, a pathogen- and pest-associated molecular pattern (PAMP) common to these organisms, were investigated. The strong and weak GmDR1-overexpressors exhibited altered expression of 6098 and 992 genes, respectively, as compared to the nontransgenic control following chitin treatment. However, only 192 chitin- and 115 buffer-responsive genes exhibited over two-fold changes in expression levels in both strong and weak GmDR1-overexpressors as compared to the control. MapMan analysis of the 192 chitin-responsive genes revealed 64 biotic stress-related genes, of which 53 were induced and 11 repressed as compared to the control. The 53 chitin-induced genes include nine genes that encode receptor kinases, 13 encode nucleotide-binding leucine-rich repeat (NLR) receptor proteins, seven encode WRKY transcription factors, four ethylene response factors, and three MYB-like transcription factors. Investigation of a subset of these genes revealed three receptor protein kinases, seven NLR proteins, and one WRKY transcription factor genes that are induced following F. virguliforme and H. glycines infection. The integral plasma membrane GmDR1 protein most likely recognizes PAMPs including chitin and activates transcription of genes encoding receptor kinases, NLR proteins and defense-related genes. GmDR1 could be a pattern recognition receptor that regulates the expression of several NLRs for expression of PAMP-triggered immunity and/or priming the effector triggered immunity.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Glycine max , Proteínas NLR , Doenças das Plantas , Proteínas de Plantas , Glycine max/parasitologia , Glycine max/genética , Resistência à Doença/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas NLR/metabolismo , Proteínas NLR/genética , Animais , Fusarium , Quitina/metabolismo , Membrana Celular/metabolismo , Transcriptoma , Plantas Geneticamente Modificadas
2.
Nature ; 627(8005): 847-853, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480885

RESUMO

Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain mediate recognition of strain-specific pathogen effectors, typically via their C-terminal ligand-sensing domains1. Effector binding enables TIR-encoded enzymatic activities that are required for TIR-NLR (TNL)-mediated immunity2,3. Many truncated TNL proteins lack effector-sensing domains but retain similar enzymatic and immune activities4,5. The mechanism underlying the activation of these TIR domain proteins remain unclear. Here we show that binding of the TIR substrates NAD+ and ATP induces phase separation of TIR domain proteins in vitro. A similar condensation occurs with a TIR domain protein expressed via its native promoter in response to pathogen inoculation in planta. The formation of TIR condensates is mediated by conserved self-association interfaces and a predicted intrinsically disordered loop region of TIRs. Mutations that disrupt TIR condensates impair the cell death activity of TIR domain proteins. Our data reveal phase separation as a mechanism for the activation of TIR domain proteins and provide insight into substrate-induced autonomous activation of TIR signalling to confer plant immunity.


Assuntos
Trifosfato de Adenosina , Arabidopsis , NAD , Nicotiana , Separação de Fases , Proteínas de Plantas , Domínios Proteicos , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Morte Celular , Mutação , NAD/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/imunologia , Proteínas NLR/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos/genética , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Transdução de Sinais , Receptores Toll-Like/química , Receptores de Interleucina-1/química
3.
Plant Physiol ; 195(1): 832-849, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38306630

RESUMO

Plant innate immunity mediated by the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors plays an important role in defense against various pathogens. Although key biochemical events involving NLR activation and signaling have been recently uncovered, we know very little about the transcriptional regulation of NLRs and their downstream signaling components. Here, we show that the Toll-Interleukin 1 receptor homology domain containing NLR (TNL) gene N (Necrosis), which confers resistance to Tobacco mosaic virus, is transcriptionally induced upon immune activation. We identified two conserved transcription factors, N required C3H zinc finger 1 (NRZ1) and N required MYB-like transcription factor 1 (NRM1), that activate N in an immune responsive manner. Genetic analyses indicated that NRZ1 and NRM1 positively regulate coiled-coil domain-containing NLR- and TNL-mediated immunity and function independently of the signaling component Enhanced Disease Susceptibility 1. Furthermore, NRZ1 functions upstream of NRM1 in cell death signaling, and their gene overexpression induces ectopic cell death and expression of NLR signaling components. Our findings uncovered a conserved transcriptional regulatory network that is central to NLR-mediated cell death and immune signaling in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas NLR , Imunidade Vegetal , Fatores de Transcrição , Imunidade Vegetal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas NLR/genética , Proteínas NLR/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transdução de Sinais/genética , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Morte Celular
4.
Ann Clin Lab Sci ; 53(4): 578-586, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37625833

RESUMO

OBJECTIVE: Sepsis, a life-threatening organ dysfunction, is among the leading causes of mortality in intensive care units. Sepsis occurrence is associated with macrophage pyroptosis, and microRNAs (miRNAs) have emerged as key factors in this process. However, the specific role of miR-122-3p in pyroptosis during sepsis progression and its underlying mechanisms remain to be fully elucidated. METHODS: We established an in vitro sepsis model using lipopolysaccharide (LPS)-activated macrophages, followed by transfection of a miR-122-3p mimic into RAW264.7 macrophages. We subsequently determined the effects of miR-122-3p on cell viability and pyroptosis using cell viability, western blot, and qPCR assays. The binding affinity between miR-122-3p and NLR pyrin domain containing 1 (NLRP1) mRNA was then confirmed using a dual-luciferase reporter assay. Finally, the secretion of pro-inflammatory cytokines (interleukin (IL)-2, IL-6, and tumor necrosis factor-α (TNF-α) was determined using ELISA. RESULTS: The results revealed that LPS treatment lead to a significant increase in the production of pro-inflammatory cytokines including IL-2, IL-6, and TNF-α in RAW264.7 cells. We observed that overexpression of miR-122-3p effectively restored cell viability and attenuated the expression of key inflammatory markers promoted by LPS, such as caspase-1, pro-caspase-1, IL-18, IL-1ß, NLRP3, apoptosis-associated speck-like protein containing CARD, and cleaved- gasdermin-D. Our data indicate that miR-122-3p is capable of directly bounding to NLRP1 and inhibiting its expression. CONCLUSIONS: These results confirmed that miR-122-3p plays a crucial role in the inhibition of sepsis by suppressing macrophage pyroptosis in an NLRP1-dependent manner. Therefore, miR-122-3p presents as a promising therapeutic target for sepsis.


Assuntos
MicroRNAs , Piroptose , Humanos , Caspase 1 , Citocinas , Interleucina-6 , Lipopolissacarídeos/farmacologia , Macrófagos , MicroRNAs/genética , Proteínas NLR/genética , Fator de Necrose Tumoral alfa
5.
Sci Adv ; 9(18): eadg3861, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134163

RESUMO

Parasites counteract host immunity by suppressing helper nucleotide binding and leucine-rich repeat (NLR) proteins that function as central nodes in immune receptor networks. Understanding the mechanisms of immunosuppression can lead to strategies for bioengineering disease resistance. Here, we show that a cyst nematode virulence effector binds and inhibits oligomerization of the helper NLR protein NRC2 by physically preventing intramolecular rearrangements required for activation. An amino acid polymorphism at the binding interface between NRC2 and the inhibitor is sufficient for this helper NLR to evade immune suppression, thereby restoring the activity of multiple disease resistance genes. This points to a potential strategy for resurrecting disease resistance in crop genomes.


Assuntos
Resistência à Doença , Proteínas de Plantas , Humanos , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Imunidade Vegetal/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Bioengenharia
6.
Pediatr Rheumatol Online J ; 21(1): 15, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765385

RESUMO

BACKGROUND: Cryopyrin-associated periodic syndrome (CAPS), a rare genetic autoimmune disease, is composed of familial cold autoinflammatory syndrome (FCAs), Muckle-Wells syndrome (MWS), and neonatal onset multisystem inflammatory disease (NOMID). MWS is caused by dominantly inherited or de novo gain-of-function mutations in the NOD-like receptor 3 (NLRP3) gene. At present, there is no report about the variation of R262W in China. CASE PRESENTATION: We reported a 3-year-old Chinese boy who had recurrent fever without obvious inducement, bilateral conjunctival congestion, and urticarial-like rash. Laboratory examination showed elevation in leukocyte count, neutrophil count, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) and serum amyloid protein (SAA) levels. Whole exome sequencing identified a missense variation c.784-786delinsTGG (p.R262W) in the coding region of the NLRP3 gene. CONCLUSION: A classical variant of the NLRP3 gene in a patient with MWS was first reported in China.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Pré-Escolar , Humanos , Recém-Nascido , Masculino , Síndromes Periódicas Associadas à Criopirina/diagnóstico , Síndromes Periódicas Associadas à Criopirina/genética , Mutação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas NLR/genética , Doenças Raras
7.
Br J Dermatol ; 188(2): 259-267, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763876

RESUMO

BACKGROUND: A trio exome sequencing study identified a previously unreported NLRP1 gene variant resulting in a p.Leu813Pro substitution of the LRR (leucine-rich repeats) domain of the NLRP1 protein (NACHT, LRR and PYD domains-containing protein 1). This homozygous mutation was shared by two sisters with different clinical presentation: the younger sister had generalized inflammatory nodules with keratotic plugs, clinically resembling multiple keratoacanthomas, while the older had manifestations of familial keratosis lichenoides chronica. OBJECTIVES: To analyse the consequences of this NLRP1 variant in two siblings with a different clinical spectrum of severity. METHODS: To demonstrate the pathogenicity, p.Leu813Pro was recombinantly expressed, and its effect on inflammasome assembly was assessed. Exome sequencing and RNA-Seq were performed to identify factors with potentially modifying effects on the severity of the skin manifestation between each sibling. RESULTS: The variant p.Leu813Pro triggered activation of the NLRP1 inflammasome leading to ASC (apoptosis-associated speck-like protein containing a CARD) speck formation and interleukin (IL)-1ß release. The more severely affected sister had several additional genomic variants associated with atopy and psoriasis that were not present in her sibling. IL-5 and IL-17 emerged as dominant cytokines driving prominent inflammation in the skin of the severely affected sibling. CONCLUSIONS: To the best of our knowledge, this is the first report of a NLRP1 variant that leads to a different clinical spectrum of severity within the same sibship. IL-5 and IL-17 were the main cytokines expressed in the inflammatory lesions of the severely affected patient and might be regarded as disease modifying factors, and therefore may be considered as therapeutic targets.


Assuntos
Proteínas Reguladoras de Apoptose , Inflamassomos , Feminino , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Citocinas/metabolismo , Mutação com Ganho de Função , Inflamassomos/metabolismo , Interleucina-17/metabolismo , Interleucina-5/genética , Interleucina-5/metabolismo , Proteínas NLR/genética , Proteínas NLR/metabolismo , Fenótipo , Irmãos
8.
PLoS Genet ; 19(1): e1010500, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656829

RESUMO

The NRC immune receptor network has evolved in asterid plants from a pair of linked genes into a genetically dispersed and phylogenetically structured network of sensor and helper NLR (nucleotide-binding domain and leucine-rich repeat-containing) proteins. In some species, such as the model plant Nicotiana benthamiana and other Solanaceae, the NRC (NLR-REQUIRED FOR CELL DEATH) network forms up to half of the NLRome, and NRCs are scattered throughout the genome in gene clusters of varying complexities. Here, we describe NRCX, an atypical member of the NRC family that lacks canonical features of these NLR helper proteins, such as a functional N-terminal MADA motif and the capacity to trigger autoimmunity. In contrast to other NRCs, systemic gene silencing of NRCX in N. benthamiana markedly impairs plant growth resulting in a dwarf phenotype. Remarkably, dwarfism of NRCX silenced plants is partially dependent on NRCX paralogs NRC2 and NRC3, but not NRC4. Despite its negative impact on plant growth when silenced systemically, spot gene silencing of NRCX in mature N. benthamiana leaves doesn't result in visible cell death phenotypes. However, alteration of NRCX expression modulates the hypersensitive response mediated by NRC2 and NRC3 in a manner consistent with a negative role for NRCX in the NRC network. We conclude that NRCX is an atypical member of the NRC network that has evolved to contribute to the homeostasis of this genetically unlinked NLR network.


Assuntos
Proteínas NLR , Nicotiana , Proteínas NLR/genética , Proteínas NLR/metabolismo , Nicotiana/genética , Imunidade Vegetal/genética , Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas
9.
Inflamm Res ; 72(10-11): 1933-1940, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36416944

RESUMO

OBJECTIVE AND DESIGN: The heterogeneity of response to SARS-CoV-2 infection is directly linked to the individual genetic background. Genetic variants of inflammasome-related genes have been pointed as risk factors for several inflammatory sterile and infectious disease. In the group of inflammasome receptors, NLRP1 stands out as a good novel candidate as severity factor for COVID-19 disease. METHODS: To address this question, we performed an association study of NLRP1, DPP9, CARD8, IL1B, and IL18 single nucleotide variants (SNVs) in a cohort of 945 COVID-19 patients. RESULTS: The NLRP1 p.Leu155His in the linker region, target of viral protease, was significantly associated to COVID-19 severity, which could contribute to the excessive cytokine release reported in severe cases. CONCLUSION: Inflammasome genetic background contributes to individual response to SARS-CoV-2.


Assuntos
COVID-19 , Inflamassomos , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , COVID-19/genética , Proteínas NLR/genética , SARS-CoV-2/metabolismo , Proteínas de Neoplasias/genética , Proteínas Adaptadoras de Sinalização CARD/genética
10.
J Exp Bot ; 74(5): 1372-1388, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36472617

RESUMO

Plant immunity relies on nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) that detect microbial patterns released by pathogens, and activate localized cell death to prevent the spread of pathogens. Tsw is the only identified resistance (R) gene encoding an NLR, conferring resistance to tomato spotted wilt orthotospovirus (TSWV) in pepper species (Capsicum, Solanaceae). However, molecular and cellular mechanisms of Tsw-mediated resistance are still elusive. Here, we analysed the structural and cellular functional features of Tsw protein, and defined a hydrophobic module to improve NLR-mediated virus resistance. The plasma membrane associated N-terminal 137 amino acid in the coiled-coil (CC) domain of Tsw is the minimum fragment sufficient to trigger cell death in Nicotiana benthamiana plants. Transient and transgenic expression assays in plants indicated that the amino acids of the hydrophobic groove (134th-137th amino acid) in the CC domain is critical for its full function and can be modified for enhanced disease resistance. Based on the structural features of Tsw, a super-hydrophobic funnel-like mutant, TswY137W, was identified to confer higher resistance to TSWV in a SGT1 (Suppressor of G-two allele of Skp1)-dependent manner. The same point mutation in a tomato Tsw-like NLR protein also improved resistance to pathogens, suggesting a feasible way of structure-assisted improvement of NLRs.


Assuntos
Vírus de Plantas , Tospovirus , Tospovirus/genética , Resistência à Doença/genética , Imunidade Vegetal/genética , Proteínas NLR/genética , Aminoácidos , Doenças das Plantas , Proteínas de Plantas/genética
11.
Cell Death Dis ; 13(12): 1077, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581625

RESUMO

NLRP1 is the primary inflammasome sensor in human keratinocytes. Sensing of UVB radiation by NLRP1 is believed to underlie the induction of sunburn. Although constitutive NLRP1 activation causes skin inflammation and predisposes patients to the development of cutaneous SCCs, the NLRP1 pathway is suppressed in established SCCs. Here, we identified high levels of the autophagy receptor p62 in SCC cells lines and SCC tumors. Increased NF-κB activity in SCC cells causes p62 up-regulation. Suppression of p62 expression rescues UVB-induced NLRP1 inflammasome activation in early-stage SCC cells. p62 expression protects SCC cells from cytotoxic drugs, whereas NLRP1 sensitizes them. In summary, we identify p62 as a novel negative regulator of the NLRP1 inflammasome in human cutaneous SCC cells, in which suppression of NLRP1 by increased levels of p62 supports stress resistance of skin cancer cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas NLR/genética , Proteínas NLR/metabolismo , Pele/metabolismo
12.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076988

RESUMO

Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) are major elements of the innate immune system that recognize pathogen-associated molecular patterns. Single-nucleotide polymorphisms (SNPs) in the TLR, NLR, and RLR genes may lead to an imbalance in the production of pro- and anti-inflammatory cytokines, changes in susceptibility to infections, the development of diseases, and carcinogenesis. Acute myeloid leukemia (AML) is a bone marrow malignancy characterized by uncontrolled proliferation of transformed myeloid precursors. We retrospectively analyzed 90 AML patients. We investigated the effect of fifteen SNPs located in the genes coding for RLR1 (rs9695310, rs10738889, rs10813831), NOD1 (rs2075820, rs6958571), NOD2 (rs2066845, rs2066847, rs2066844), TLR3 (rs5743305, rs3775296, 3775291), TLR4 (rs4986791, rs4986790), and TLR9 (rs187084, rs5743836). We observed that TLR4 rs4986791, TLR9 rs5743836, and NOD2 rs2066847 were associated with CRP levels, while RLR-1 rs10738889 was associated with LDH level. Furthermore, we found TLR3 rs5743305 AA to be more common in patients with infections. We also found TLR9 rs187084 C to be associated with more favorable risk, and RLR-1 rs9695310 GG with higher age at diagnosis. In conclusion, the current study showed that SNPs in the genes encoding TLRs, NLRs, and RLRs may be potential biomarkers in patients with AML.


Assuntos
Leucemia Mieloide Aguda , Proteínas NLR , Humanos , Leucemia Mieloide Aguda/genética , Proteínas NLR/genética , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos , Receptor 3 Toll-Like/genética , Receptor 4 Toll-Like/genética , Receptor Toll-Like 9/genética , Receptores Toll-Like/genética
13.
Science ; 377(6603): 328-335, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857590

RESUMO

Human NLRP1 (NACHT, LRR, and PYD domain-containing protein 1) is an innate immune sensor predominantly expressed in the skin and airway epithelium. Here, we report that human NLRP1 senses the ultraviolet B (UVB)- and toxin-induced ribotoxic stress response (RSR). Biochemically, RSR leads to the direct hyperphosphorylation of a human-specific disordered linker region of NLRP1 (NLRP1DR) by MAP3K20/ZAKα kinase and its downstream effector, p38. Mutating a single ZAKα phosphorylation site in NLRP1DR abrogates UVB- and ribotoxin-driven pyroptosis in human keratinocytes. Moreover, fusing NLRP1DR to CARD8, which is insensitive to RSR by itself, creates a minimal inflammasome sensor for UVB and ribotoxins. These results provide insight into UVB sensing by human skin keratinocytes, identify several ribotoxins as NLRP1 agonists, and establish inflammasome-driven pyroptosis as an integral component of the RSR.


Assuntos
Inflamassomos , MAP Quinase Quinase Quinases , Proteínas NLR , Piroptose , Ribossomos , Estresse Fisiológico , Anisomicina/toxicidade , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamassomos/efeitos da radiação , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , MAP Quinase Quinase Quinases/metabolismo , Mutação , Proteínas NLR/genética , Proteínas NLR/metabolismo , Proteínas de Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Piroptose/efeitos dos fármacos , Piroptose/efeitos da radiação , Ribossomos/efeitos dos fármacos , Ribossomos/efeitos da radiação , Raios Ultravioleta
14.
Mol Cell ; 82(13): 2385-2400.e9, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35594856

RESUMO

Inflammation observed in SARS-CoV-2-infected patients suggests that inflammasomes, proinflammatory intracellular complexes, regulate various steps of infection. Lung epithelial cells express inflammasome-forming sensors and constitute the primary entry door of SARS-CoV-2. Here, we describe that the NLRP1 inflammasome detects SARS-CoV-2 infection in human lung epithelial cells. Specifically, human NLRP1 is cleaved at the Q333 site by multiple coronavirus 3CL proteases, which triggers inflammasome assembly and cell death and limits the production of infectious viral particles. Analysis of NLRP1-associated pathways unveils that 3CL proteases also inactivate the pyroptosis executioner Gasdermin D (GSDMD). Subsequently, caspase-3 and GSDME promote alternative cell pyroptosis. Finally, analysis of pyroptosis markers in plasma from COVID-19 patients with characterized severe pneumonia due to autoantibodies against, or inborn errors of, type I interferons (IFNs) highlights GSDME/caspase-3 as potential markers of disease severity. Overall, our findings identify NLRP1 as a sensor of SARS-CoV-2 infection in lung epithelia.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Células Epiteliais , Inflamassomos , Proteínas NLR , SARS-CoV-2 , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Caspase 3/metabolismo , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/metabolismo , Células Epiteliais/metabolismo , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Proteínas NLR/genética , Proteínas NLR/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade
15.
Hum Exp Toxicol ; 41: 9603271211061497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187972

RESUMO

BACKGROUND: As a common postoperative complication to elderly patients, postoperative cognitive dysfunction (POCD) is a central nervous system complication, often taking place after anesthesia and surgery. (Su(var)3-9, enhancer-of-zeste, and trithorax) domain-containing protein 7 (SETD7) plays important roles in metabolic-related diseases, viral infections, tumor formation, and some inflammatory reactions. However, the role and mechanism of SETD7 in POCD have not been previously studied. METHODS: RT-PCR and Western blot were performed to evaluate the efficiency of knockdown of SETD7. The pathological changes of hippocampal neurons in isoflurane-anesthetized mice were detected by HE staining, and the Morris water maze experiment was performed to evaluate the learning and memory abilities of mice. The effect of SETD7 on the hippocampus in isoflurane-induced aged mice was examined by Western blot and TUNEL assay. Then ELISA assay was applied to determine the expression of some inflammatory cytokines, followed by the detection of expression of NOD-like receptor protein 3 (NLRP3) inflammasome through Western blot. RESULTS: The data of this research revealed that SETD7 knockdown improved cognitive impairment in isoflurane-anesthetized mice, ameliorated cell pyroptosis, inhibited the release of inflammatory cytokines, and suppressed the activation of NLRP3 inflammasome in the hippocampus in isoflurane-induced aged mice. CONCLUSION: Collectively, these results provided evidence that the inhibition of SETD7 could alleviate neuroinflammation, pyroptosis, and cognitive impairment by suppressing the activation of the NLRP3 inflammasome in isoflurane-induced aged mice.


Assuntos
Anestésicos Inalatórios/efeitos adversos , Técnicas de Silenciamento de Genes , Inflamassomos/metabolismo , Metiltransferases/metabolismo , Proteínas NLR/metabolismo , Domínios PR-SET/genética , Complicações Cognitivas Pós-Operatórias/induzido quimicamente , Envelhecimento/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Inflamassomos/genética , Isoflurano/efeitos adversos , Masculino , Metiltransferases/genética , Camundongos , Proteínas NLR/genética
16.
Gene ; 819: 146243, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35122925

RESUMO

Globally, hepatocellular carcinoma (HCC) has a dismal prognosis and studies have shown that accurate prognostic risk assessment can have clinically significant benefits for patients with HCC patients. After successively performing univariate Cox regression, Lasso regression, and stepwise multivariate Cox regression analysis, three pyroptosis gene (GPX4, NLRP1, and NLRP6) were selected to construct and validate the prognostic model of HCC based on public data. The expression pattern and prognostic implication of GPX4 in HCC was validated by immunohistochemistry staining in HCC specimens collected from Affiliated Hospital of Jining Medical University. A nomogram combined model and clinical characteristics was plotted after the prognostic predictive value of model was validated with receiver operating characteristic curves and Kaplan-Meier survival analysis. Our results indicate that assessing pyroptosis gene expression may be useful to predict the prognosis of HCC patients by enhancing antitumor immunity.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Estatísticos , Proteínas NLR/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Piroptose/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas NLR/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Prognóstico
17.
Plant J ; 110(1): 58-70, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34978118

RESUMO

Multiple bacterial effectors target RPM1-INTERACTING PROTEIN4 (RIN4), the biochemical modifications of which are recognized by several plant nucleotide-binding and leucine-rich repeat immune receptor (NLR) proteins. Recently, a comparative study of Arabidopsis and apple (Malus domestica) RIN4s revealed that the RIN4 specificity motif (RSM) is critical for NLR regulation. Here, we investigated the extent to which the RSM contributes to the functions of natural RIN4 variants. Functional analysis of 33 natural RIN4 variants from 28 plant species showed that the RSM is generally required yet sometimes dispensable for the RIN4-mediated suppression of NLR auto-activity or effector-triggered NLR activation. Association analysis of the sequences and fire blight resistance gene originating from Malus × robusta 5 (FB_MR5) activation functions of the natural RIN4 variants revealed H167 to be an indispensable residue for RIN4 function in the regulation of NLRs. None of the tested natural RIN4 variants could suppress RESISTANCE TO PSEUDOMONAS SYRINGAE PV. MACULICOLA1 (RPM1) auto-activity and activate FB_MR5. To engineer RIN4 to carry broader NLR compatibility, we generated chimeric RIN4 proteins, several of which could regulate RPM1, RESISTANT TO PSEUDOMONAS SYRINGAE2 (RPS2), and FB_MR5. We propose that the intrinsically disordered nature of RIN4 provides a flexible platform to broaden pathogen recognition specificity by establishing compatibility with otherwise incompatible NLRs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Peptídeos e Proteínas de Sinalização Intracelular , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas NLR/genética , Proteínas NLR/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae
18.
Anim Biotechnol ; 33(6): 1255-1267, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33775202

RESUMO

In this study, the genes related to the Downy growth of Liaoning cashmere goats were screened for their expression with simultaneous melatonin administration, so as to investigate the effects of target genes on the proliferation of skin fibroblasts in this animal species. Genes related to the villus growth of skin fibroblasts were screened by in vitro transcriptome sequencing and verified by qPCR. In addition, gene overexpression and interference were used to study the effects of target genes on the proliferation of skin fibroblasts. Groups treated with M1_24H, M2_24H and M2_72H exhibited significant differences compared with the control group. Among them, the differentially expressed transcripts in the M2_72H group were significantly enriched in the TNF and NOD-like receptor signaling pathways, which are associated with the villus. In addition, eight differentially expressed genes were screened from the TNF and the NOD-like receptor signaling pathways. Verification by qPCR showed that the expression of TNF-α, IL-6, TNFAIP3, PYCARD and NFKBIA genes were significantly upregulated, which was consistent with the sequencing results. Melatonin treatments can significantly lead to an increase in the expression of IL-6 and TNF-α genes. Besides, melatonin treatments can affect cashmere growth in Liaoning cashmere goats by regulating several signaling pathways, including TNF, NOD-like receptor and NF-κB.


Assuntos
Cabras , Melatonina , Animais , Melatonina/farmacologia , Transcriptoma , Folículo Piloso/metabolismo , Regulação da Expressão Gênica , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Fibroblastos/metabolismo , Proteínas NLR/genética , Proteínas NLR/metabolismo
19.
Genet Res (Camb) ; 2022: 8548804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619896

RESUMO

Objective: This study aimed to investigate the molecular regulatory mechanisms underpinning Duchenne muscular dystrophy (DMD). Methods: Using microarray data, differentially expressed long noncoding RNAs (DELs) and DMD-related differentially expressed mRNAs (DEMs) were screened based on the comparative toxicogenomics database, using a cutoff of |log2 fold change| > 1 and false discovery rate (FDR) < 0.05. Then, protein-protein interaction (PPI), coexpression network of lncRNA-mRNA, and DMD-related lncRNA-mRNA pathway networks were constructed, and functional analyses of the genes in the network were performed. Finally, the proportions of immune cells infiltrating the muscle tissues in DMD were analyzed, and the correlation between the immune cells and expression of the DELs/DEMs was studied. Results: A total of 46 DELs and 313 DMD-related DEMs were identified. The PPI network revealed STAT1, VEGFA, and CCL2 to be the top three hub genes. The DMD-related lncRNA-mRNA pathway network comprising two pathways, nine DELs, and nine DMD-related DEMs showed that PYCARD, RIPK2, and CASP1 were significantly enriched in the NOD-like receptor signaling pathway, whereas MAP2K2, LUM, RPS6, PDCD4, TWIST1, and HIF1A were significantly enriched with proteoglycans in cancers. The nine DELs in this network were DBET, MBNL1-AS1, MIR29B2CHG, CCDC18-AS1, FAM111A-DT, GAS5, LINC01290, ATP2B1-AS1, and PSMB8-AS1. Conclusion: The nine DMD-related DEMs and DELs identified in this study may play important roles in the occurrence and progression of DMD through the two pathways of the NOD-like receptor signaling pathway and proteoglycans in cancers.


Assuntos
MicroRNAs , Distrofia Muscular de Duchenne , RNA Longo não Codificante , Humanos , Redes Reguladoras de Genes/genética , MicroRNAs/genética , Distrofia Muscular de Duchenne/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Plant Commun ; 2(6): 100236, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34778749

RESUMO

Plant nucleotide-binding leucine-rich repeat (NLR) receptors mediate immune responses by directly or indirectly sensing pathogen-derived effectors. Despite significant advances in the understanding of NLR-mediated immunity, the mechanisms by which pathogens evolve to suppress NLR activation triggered by cognate effectors and gain virulence remain largely unknown. The agronomically important immune receptor RB recognizes the ubiquitous and highly conserved IPI-O RXLR family members (e.g., IPI-O1) from Phytophthora infestans, and this process is suppressed by the rarely present and homologous effector IPI-O4. Here, we report that self-association of RB via the coiled-coil (CC) domain is required for RB activation and is differentially affected by avirulence and virulence effectors. IPI-O1 moderately reduces the self-association of RB CC, potentially leading to changes in the conformation and equilibrium of RB, whereas IPI-O4 dramatically impairs CC self-association to prevent RB activation. We also found that IPI-O1 associates with itself, whereas IPI-O4 does not. Notably, IPI-O4 interacts with IPI-O1 and disrupts its self-association, therefore probably blocking its avirulence function. Furthermore, IPI-O4 enhances the interaction between RB CC and IPI-O1, possibly sequestering RB and IPI-O1 and subsequently blocking their interactions with signaling components. Taken together, these findings considerably extend our understanding of the underlying mechanisms by which emerging virulent pathogens suppress the NLR-mediated recognition of cognate effectors.


Assuntos
Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Proteínas NLR/genética , Nicotiana/genética , Nicotiana/imunologia , Phytophthora infestans/patogenicidade , Doenças das Plantas/imunologia , Virulência/imunologia , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Proteínas NLR/metabolismo , Doenças das Plantas/genética , Plantas Geneticamente Modificadas , Nicotiana/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA