Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.652
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(9): 8019-8030, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38713155

RESUMO

Aurora kinase B (AURKB) initiates the phosphorylation of serine 10 on histone H3 (pH3S10), a crucial process for chromosome condensation and cytokinesis in mammalian mitosis. Nonetheless, the precise mechanisms through which AURKB regulates the cell cycle and contributes to tumorigenesis as an oncogenic factor in colorectal cancer (CRC) remain unclear. Here, we report that AURKB was highly expressed and positively correlated with Ki-67 expression in CRC. The abundant expression of AURKB promotes the growth of CRC cells and xenograft tumors in animal model. AURKB knockdown substantially suppressed CRC proliferation and triggered cell cycle arrest in G2/M phase. Interestingly, cyclin E1 (CCNE1) was discovered as a direct downstream target of AURKB and functioned synergistically with AURKB to promote CRC cell proliferation. Mechanically, AURKB activated CCNE1 expression by triggering pH3S10 in the promoter region of CCNE1. Furthermore, it was showed that the inhibitor specific for AURKB (AZD1152) can suppress CCNE1 expression in CRC cells and inhibit tumor cell growth. To conclude, this research demonstrates that AURKB accelerated the tumorigenesis of CRC through its potential to epigenetically activate CCNE1 expression, suggesting AURKB as a promising therapeutic target in CRC.


Assuntos
Aurora Quinase B , Proliferação de Células , Neoplasias Colorretais , Ciclina E , Histonas , Proteínas Oncogênicas , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Ciclina E/metabolismo , Ciclina E/genética , Histonas/metabolismo , Aurora Quinase B/metabolismo , Aurora Quinase B/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fosforilação , Animais , Proliferação de Células/genética , Camundongos , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Serina/metabolismo , Progressão da Doença , Masculino , Camundongos Nus , Feminino
2.
Exp Dermatol ; 33(4): e15071, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566477

RESUMO

Circular RNAs (circRNAs) play important roles in cancer occurrence and progression. To explore and elucidate the clinical significance of specific circular RNA in melanoma and its potential molecular mechanism. CircROR1 expression in melanoma cells and tissues was confirmed by qRT-PCR and ISH. qRT-PCR and Western blotting were performed to measure the levels of CCNE1, KAT2A, MMP9 and TIMP2. MTT, Transwell and wound healing assays were performed to evaluate cell proliferation, invasion and metastasis. A xenograft mouse model was established to further verify the CircROR1/CCNE1 axis in vivo. RNA pull-down and RIP assays were performed to detect the direct interaction KAT2A and CircROR1. A ChIP assay was used to investigate the enrichment of H3K9ac acetylation in the CCNE1 promoter. CircROR1 was significantly upregulated in metastatic melanoma cells and tissues, promoting proliferation, invasion and metastasis in vitro and tumour growth in vivo. CircROR1 overexpression increased CCNE1 and MMP9 protein expression and decreased TIMP2 protein expression. Functional rescue assays demonstrated that CircROR1 played a role in promoting malignant progression through CCNE1. CircROR1 specifically bound to the KAT2A protein without affecting its expression. CircROR1 overexpression increased the level of H3K9ac modification in the CCNE1 promoter region by recruiting KAT2A, thus upregulating CCNE1 expression. CircROR1 upregulates CCNE1 expression through KAT2A-mediated histone acetylation. Our research confirms the critical role of CircROR1 in melanoma invasion and metastasis, and CircROR1 could serve as a potential therapeutic target for melanoma treatment.


Assuntos
Melanoma , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Melanoma/metabolismo , Linhagem Celular Tumoral , RNA Circular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ciclina E/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo
3.
Cell Rep ; 43(4): 114116, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625790

RESUMO

Overexpression of Cyclin E1 perturbs DNA replication, resulting in DNA lesions and genomic instability. Consequently, Cyclin E1-overexpressing cancer cells increasingly rely on DNA repair, including RAD52-mediated break-induced replication during interphase. We show that not all DNA lesions induced by Cyclin E1 overexpression are resolved during interphase. While DNA lesions upon Cyclin E1 overexpression are induced in S phase, a significant fraction of these lesions is transmitted into mitosis. Cyclin E1 overexpression triggers mitotic DNA synthesis (MiDAS) in a RAD52-dependent fashion. Chemical or genetic inactivation of MiDAS enhances mitotic aberrations and persistent DNA damage. Mitosis-specific degradation of RAD52 prevents Cyclin E1-induced MiDAS and reduces the viability of Cyclin E1-overexpressing cells, underscoring the relevance of RAD52 during mitosis to maintain genomic integrity. Finally, analysis of breast cancer samples reveals a positive correlation between Cyclin E1 amplification and RAD52 expression. These findings demonstrate the importance of suppressing mitotic defects in Cyclin E1-overexpressing cells through RAD52.


Assuntos
Ciclina E , Instabilidade Genômica , Mitose , Proteínas Oncogênicas , Proteína Rad52 de Recombinação e Reparo de DNA , Humanos , Ciclina E/metabolismo , Ciclina E/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética , Replicação do DNA , Linhagem Celular Tumoral , Dano ao DNA , DNA/metabolismo , DNA/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia
4.
J Cell Mol Med ; 28(7): e18182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498903

RESUMO

Chromosome instability (CIN) is a common contributor driving the formation and progression of anaplastic thyroid cancer (ATC), but its mechanism remains unclear. The BUB1 mitotic checkpoint serine/threonine kinase (BUB1) is responsible for the alignment of mitotic chromosomes, which has not been thoroughly studied in ATC. Our research demonstrated that BUB1 was remarkably upregulated and closely related to worse progression-free survival. Knockdown of BUB1 attenuated cell viability, invasion, migration and induced cell cycle arrests, whereas overexpression of BUB1 promoted the cell cycle progression of papillary thyroid cancer cells. BUB1 knockdown remarkably repressed tumour growth and tumour formation of nude mice with ATC xenografts and suppressed tumour metastasis in a zebrafish xenograft model. Inhibition of BUB1 by its inhibitor BAY-1816032 also exhibited considerable anti-tumour activity. Further studies showed that enforced expression of BUB1 evoked CIN in ATC cells. BUB1 induced CIN through phosphorylation of KIF14 at serine1292 (Ser1292 ). Overexpression of the KIF14ΔSer1292 mutant was unable to facilitate the aggressiveness of ATC cells when compared with that of the wild type. Collectively, these findings demonstrate that the BUB1/KIF14 complex drives the aggressiveness of ATC by inducing CIN.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Camundongos , Humanos , Carcinoma Anaplásico da Tireoide/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Camundongos Nus , Peixe-Zebra/metabolismo , Instabilidade Cromossômica , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral , Proteínas Oncogênicas/genética , Cinesinas/genética
5.
Biochem Biophys Res Commun ; 709: 149818, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38555840

RESUMO

Oncoprotein SE translocation (SET) is frequently overexpressed in different types of tumors and correlated with poor prognosis of cancer patients. Targeting SET has been considered a promising strategy for cancer intervention. However, the mechanisms by which SET is regulated under cellular conditions are largely unknown. Here, by performing a tandem affinity purification-mass spectrometry (TAP-MS), we identify that the ubiquitin-specific protease 7 (USP7) forms a stable protein complex with SET in cancer cells. Further analyses reveal that the acidic domain of SET directly binds USP7 while both catalytic domain and ubiquitin-like (UBL) domains of USP7 are required for SET binding. Knockdown of USP7 has no effect on the mRNA level of SET. However, we surprisingly find that USP7 depletion leads to a dramatic elevation of SET protein levels, suggesting that USP7 plays a key role in destabilizing oncoprotein SET, possibly through an indirect mechanism. To our knowledge, our data report the first deubiquitinase (DUB) that physically associates with oncoprotein SET and imply an unexpected regulatory effect of USP7 on SET stability.


Assuntos
Proteínas Oncogênicas , Peptidase 7 Específica de Ubiquitina , Humanos , Domínio Catalítico , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ubiquitina/química , Peptidase 7 Específica de Ubiquitina/genética
6.
J Biol Chem ; 300(4): 107153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462163

RESUMO

The innate immune system features a web of interacting pathways that require exquisite regulation. To identify novel nodes in this immune landscape, we conducted a gain-of-function, genome-wide CRISPR activation screen with influenza A virus. We identified both appreciated and novel antiviral genes, including Jade family PHD zinc finger 3 (JADE3) a protein involved in directing the histone acetyltransferase histone acetyltransferase binding to ORC1 complex to modify chromatin and regulate transcription. JADE3 is both necessary and sufficient to restrict influenza A virus infection. Our results suggest a distinct function for JADE3 as expression of the closely related paralogs JADE1 and JADE2 does not confer resistance to influenza A virus infection. JADE3 is required for both constitutive and inducible expression of the well-characterized antiviral gene interferon-induced transmembrane protein 3 (IFITM3). Furthermore, we find JADE3 activates the NF-kB signaling pathway, which is required for the promotion of IFITM3 expression by JADE3. Therefore, we propose JADE3 activates an antiviral genetic program involving NF-kB-dependent IFITM3 expression to restrict influenza A virus infection.


Assuntos
Regulação da Expressão Gênica , Imunidade Inata , Proteínas de Membrana , NF-kappa B , Proteínas Oncogênicas , Proteínas de Ligação a RNA , Animais , Humanos , Sistemas CRISPR-Cas , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Células HEK293 , Imunidade Inata/genética , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Transdução de Sinais , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/imunologia
7.
J Med Virol ; 96(3): e29534, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38501356

RESUMO

Human endogenous retrovirus sequences (HERVs) constitute up to 8% of the human genome, yet not all HERVs remain silent passengers within our genomes. Some HERVs, especially the HERV type K (HERV-K), have been found to be frequently transactivated in a variety of inflammatory diseases and human cancers. Np9, a 9-kDa HERV-K encoded protein, has been reported as an oncoprotein and found present in a variety of tumors and transformed cells. In the current study, we for the first time reported that ectopic expression of Np9 protein was able to induce DNA damage response from host cells especially through upregulation of γH2AX. Furthermore, we found that direct knockdown of Np9 by RNAi in Kaposi's Sarcoma-associated herpesvirus (KSHV) infected cells effectively reduced LANA expression, the viral major latent oncoprotein in vitro and in vivo, which may represent a novel strategy against virus-associated malignancies.


Assuntos
Retrovirus Endógenos , Herpesvirus Humano 8 , Neoplasias , Humanos , Retrovirus Endógenos/genética , Herpesvirus Humano 8/fisiologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Reparo do DNA
8.
Br J Cancer ; 130(4): 513-516, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38316994

RESUMO

The "undruggable" MYC oncoproteins are deregulated in 70% human cancers. The approval of DFMO, an irreversible inhibitor of ornithine oxidase (ODC1) that is a direct transcriptional target of MYC, demonstrates that patients can benefit from targeting MYC activity via an indirect approach. However, the mechanism of action of DFMO needs further studies to understand how it works in post-immunotherapy neuroblastomas. Efforts to develop a more potent and safer drug to block MYC function will continue despite challenges.


Assuntos
Neuroblastoma , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Oncogênicas/genética , Regulação Neoplásica da Expressão Gênica , Eflornitina/metabolismo , Eflornitina/farmacologia , Eflornitina/uso terapêutico
9.
Histopathology ; 84(6): 1061-1067, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409827

RESUMO

AIMS: The histological subtype of intrahepatic cholangiocarcinoma (iCCA) is associated with different mutational characteristics that impact clinical management. So far, data are lacking on the presence of small duct iCCA (SD-iCCA) and large duct iCCA (LD-iCCA) in a single patient. The aim of the current study was to determine the presence and degree of intratumoural heterogeneity of SD- and LD-iCCA features in different tumour regions. METHODS AND RESULTS: All patients treated with surgically resected iCCA at Frankfurt University Hospital between December 2005 and March 2023 were retrospectively analysed. Histomorphological features of SD- and LD-iCCA were evaluated by an expert hepatobiliary pathologist. Tissue samples suspicious for subtype heterogeneity were further investigated. Immunohistochemistry for N-cadherin, S100P, MUC5AC, MUC6, TFF1 and AGR2 and mutational profiling with the Illumina TruSight Oncology 500 (TSO500) assay were performed separately for the SD- and LD-iCCA regions. Of 129 patients with surgically resected iCCA, features of either SD- or LD-iCCA were present in 67.4% (n = 87) and 24.8% of the patients (n = 32), respectively; 7.8% (n = 10) had histomorphological features of both SD- and LD-iCCA, seven patients (5.4%) of which had sufficient formalin-fixed, paraffin-embedded tissue for further analysis. Heterogeneity of both subtypes could be confirmed with immunohistochemistry. In five of seven (71.4%) patients, molecular profiling revealed intratumoural differences in genetic alterations between the SD- and LD-iCCA region. In one patient, a BRAF mutation (p.V600E) was found in the SD-iCCA but not in the LD-iCCA region of the tumour. CONCLUSIONS: A marked portion of patients with iCCA exhibits both SD- and LD-iCCA in different tumour regions. In case of the presence of histopathological heterogeneity, mutational profiling should be considered to avoid missing therapeutically relevant genetic alterations.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Estudos Retrospectivos , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Mutação , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Mucoproteínas/genética , Proteínas Oncogênicas/genética
12.
Biomed Pharmacother ; 171: 116165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237348

RESUMO

Cancer development is a complex process that primarily results from the combination of genetic alterations and the dysregulation of major signalling pathways due to interference with the epigenetic machinery. As major epigenetic regulators, miRNAs are central players in the control of many key tumour development factors. These miRNAs have been classified as oncogenic miRNAs (oncomiRs) when they target tumour suppressor genes and tumour suppressor miRNAs (TS miRNAs) when they inhibit oncogene protein expression. Most of the mechanisms that modulate oncomiR expression are linked to transcriptional or posttranscriptional regulation. However, non-transcriptional processes, such as gene amplification, have been described as alternative processes that are responsible for increasing oncomiR expression. The current review summarises the different mechanisms controlling the upregulation of oncomiR expression in cancer cells and the tumour microenvironment (TME). Detailed knowledge of the mechanism underlying the regulation of oncomiR expression in cancer may pave the way for understanding the critical role of oncomiRs in cancer development and progression.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Neoplasias/metabolismo , Genes Supressores de Tumor , Oncogenes , Proteínas Oncogênicas/genética , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
13.
J Biol Chem ; 300(1): 105522, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043798

RESUMO

Notch signaling plays a critical role in cell fate decisions in all cell types. Furthermore, gain-of-function mutations in NOTCH1 have been uncovered in many human cancers. Disruption of Notch signaling has recently emerged as an attractive disease treatment strategy. However, the nuclear interaction landscape of the oncoprotein NOTCH1 remains largely unexplored. We therefore employed here a proximity-dependent biotin identification approach to identify in vivo protein associations with the nuclear Notch1 intracellular domain in live cells. We identified a large set of previously reported and unreported proteins that associate with NOTCH1, including general transcription and elongation factors, DNA repair and replication factors, coactivators, corepressors, and components of the NuRD and SWI/SNF chromatin remodeling complexes. We also found that Notch1 intracellular domain associates with protein modifiers and components of other signaling pathways that may influence Notch signal transduction and protein stability such as USP7. We further validated the interaction of NOTCH1 with histone deacetylase 1 or GATAD2B using protein network analysis, proximity-based ligation, in vivo cross-linking and coimmunoprecipitation assays in several Notch-addicted cancer cell lines. Through data mining, we also revealed potential drug targets for the inhibition of Notch signaling. Collectively, these results provide a valuable resource to uncover the mechanisms that fine-tune Notch signaling in tumorigenesis and inform therapeutic targets for Notch-addicted tumors.


Assuntos
Carcinogênese , Neoplasias , Proteínas Oncogênicas , Receptor Notch1 , Humanos , Diferenciação Celular , Linhagem Celular , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Peptidase 7 Específica de Ubiquitina/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
14.
J Cell Sci ; 136(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37997922

RESUMO

The correct inheritance of chromatin structure is key for maintaining genome function and cell identity and preventing cellular transformation. DEK, a conserved non-histone chromatin protein, has recognized tumor-promoting properties, its overexpression being associated with poor prognosis in various cancer types. At the cellular level, DEK displays pleiotropic functions, influencing differentiation, apoptosis and stemness, but a characteristic oncogenic mechanism has remained elusive. Here, we report the identification of DEK bodies, focal assemblies of DEK that regularly occur at specific, yet unidentified, sites of heterochromatin replication exclusively in late S-phase. In these bodies, DEK localizes in direct proximity to active replisomes in agreement with a function in the early maturation of heterochromatin. A high-throughput siRNA screen, supported by mutational and biochemical analyses, identifies SUMO as one regulator of DEK body formation, linking DEK to the complex SUMO protein network that controls chromatin states and cell fate. This work combines and refines our previous data on DEK as a factor essential for heterochromatin integrity and facilitating replication under stress, and delineates an avenue of further study for unraveling the contribution of DEK to cancer development.


Assuntos
Heterocromatina , Neoplasias , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Cromatina
15.
Cancer Biol Ther ; 24(1): 2271212, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906510

RESUMO

Anaplastic lymphoma kinase-positive large B-cell lymphoma (ALK+ LBCL) is a rare subtype of non-Hodgkin lymphoma. ALK inhibitors are being tried to treat recurrent/refractory ALK+ LBCL. A majority of patients with ALK+ tumors respond to crizotinib, but partial cases ultimately develop resistance about a year later. Here, we report a case of ALK+ LBCL carrying a new fusion gene involving CDK14 and ALK, CLTC-ALK gene rearrangements and MTOR gene mutation. The patient had progressive disease after combination of crizotinib and chemotherapy treatment about 5.5 months later, accompanied by reduced abundance of CDK14-ALK, increased abundance of CLTC-ALK and a novel MFHAS1 gene mutation. However, MTOR mutation turned negative. The patient received alectinib combined with hyper-CVAD, then followed by alectinib as monotherapy for 21 months. The patient achieved partial response and remained in a stable condition. This case suggests that CDK14-ALK fusion gene may be more sensitive to crizotinib than CLTC-ALK fusion gene. MTOR is associated with the anti-tumor mechanism of ALK inhibitors. MFHAS1 gene mutation and/or CLTC-ALK gene copy number amplification may involve resistance to crizotinib. Furthermore, alectinib may inhibit the carcinogenicity of these gene changes and improve the prognosis of ALK+ LBCL.


The novel CDK14-ALK fusion gene in ALK+ LBCL was sensitive to crizotinib.MFHAS1 gene mutation and/or CLTC-ALK gene copy number amplification may involve resistance to crizotinib.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Linfoma de Células B , Humanos , Quinase do Linfoma Anaplásico/genética , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular/genética , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Pulmonares/patologia , Linfoma de Células B/tratamento farmacológico , Mutação , Proteínas Oncogênicas/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Serina-Treonina Quinases TOR/genética
16.
Physiol Res ; 72(S3): S277-S286, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37888971

RESUMO

Neuroblastoma represents 8-10 % of all malignant tumors in childhood and is responsible for 15 % of cancer deaths in the pediatric population. Aggressive neuroblastomas are often resistant to chemotherapy. Canonically, neuroblastomas can be classified according to the MYCN (N-myc proto-oncogene protein) gene amplification, a common marker of tumor aggressiveness and poor prognosis. It has been found that certain compounds with chelating properties may show anticancer activity, but there is little evidence for the effect of chelators on neuroblastoma. The effect of new chelators characterized by the same functional group, designated as HLZ (1-hydrazino phthalazine), on proliferation (WST-1 and methylene blue assay), cell cycle (flow cytometry), apoptosis (proliferation assay after use of specific pharmacological inhibitors and western blot analysis) and ROS production (fluorometric assay based on dichlorofluorescein diacetate metabolism) was studied in three neuroblastoma cell lines with different levels of MYCN amplification. The molecules were effective only on MYCN-non-amplified cells in which they arrested the cell cycle in the G0/G1 phase. We investigated the mechanism of action and identified the activation of cell signaling that involves protein kinase C.


Assuntos
Neuroblastoma , Proteínas Oncogênicas , Criança , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/uso terapêutico , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/farmacologia , Proteínas Nucleares/genética , Quelantes/farmacologia , Quelantes/uso terapêutico , Neuroblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Apoptose , Proliferação de Células
17.
Oncogene ; 42(45): 3331-3343, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37752234

RESUMO

The internal tandem duplication of the FMS-like tyrosine kinase 3 (FLT3-ITD) is one of the most frequent genetic alterations in acute myeloid leukemia (AML). Limited and transient clinical benefit of FLT3 kinase inhibitors (FLT3i) emphasizes the need for alternative therapeutic options for this subset of myeloid malignancies. Herein, we showed that FLT3-ITD mutant (FLT3-ITD+) AML cells were susceptible toward inhibitors of DHODH, a rate-limiting enzyme of de novo pyrimidine biosynthesis. Genetic and pharmacological blockade of DHODH triggered downregulation of FLT3-ITD protein, subsequently suppressed activation of downstream ERK and STAT5, and promoted cell death of FLT3-ITD+ AML cells. Mechanistically, DHODH blockade triggered autophagy-mediated FLT3-ITD degradation via inactivating mTOR, a potent autophagy repressor. Notably, blockade of DHODH synergized with an FDA-approved FLT3i quizartinib in significantly impairing the growth of FLT3-ITD+ AML cells and improving tumor-bearing mice survival. We further demonstrated that DHODH blockade exhibited profound anti-proliferation effect on quizartinib-resistant cells in vitro and in vivo. In summary, this study demonstrates that the induction of degradation of FLT3-ITD protein by DHODH blockade may offer a promising therapeutic strategy for AML patients harboring FLT3-ITD mutation.


Assuntos
Di-Hidro-Orotato Desidrogenase , Leucemia Mieloide Aguda , Animais , Humanos , Camundongos , Autofagia , Tirosina Quinase 3 Semelhante a fms/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação , Proteínas Oncogênicas/genética , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/biossíntese , Pirimidinas/metabolismo
18.
Sci Rep ; 13(1): 12749, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550322

RESUMO

Epigenetic dysregulation of chromatin is one of the hallmarks of cancer development and progression, and it is continuously investigated as a potential general bio-marker of this complex disease. One of the nuclear factors involved in gene regulation is the unique DEK protein-a histone chaperon modulating chromatin topology. DEK expression levels increase significantly from normal to cancer cells, hence raising the possibility of using DEK as a tumor marker. Although DEK is known to be implicated in epigenetic and transcriptional regulation, the details of these interactions and their relevance in cancer development remain largely elusive. In this work, we investigated the spatial correlation between the nuclear distribution of DEK and chromatin patterns-alongside breast cancer progression-leveraging image cross-correlation spectroscopy (ICCS) coupled with Proximity Ligation Assay (PLA) analysis. We performed our study on the model based on three well-established human breast cell lines to consider this tumor's heterogeneity (MCF10A, MCF7, and MDA-MB-231 cells). Our results show that overexpression of DEK correlates with the overall higher level of spatial proximity between DEK and histone marks corresponding to gene promoters regions (H3K9ac, H3K4me3), although it does not correlate with spatial proximity between DEK and gene enhancers (H3K27ac). Additionally, we observed that colocalizing fractions of DEK and histone marks are lower for the non-invasive cell subtype than for the highly invasive cell line (MDA-MB-231). Thus, this study suggests that the role of DEK on transcriptionally active chromatin regions varies depending on the subtype of the breast cancer cell line.


Assuntos
Neoplasias da Mama , Proteínas Cromossômicas não Histona , Proteínas Oncogênicas , Proteínas de Ligação a Poli-ADP-Ribose , Feminino , Humanos , Neoplasias da Mama/patologia , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética , Células MCF-7 , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo
19.
Cell Biochem Biophys ; 81(3): 569-576, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572218

RESUMO

Colorectal cancer is a malignant tumor with higher morbidity and mortality. The purpose of this study is to investigate whether inhibition of Protein Kinase, Membrane Associated Tyrosine/Threonine 1 (PKMYT1) affects tumor cell proliferation, survival and migration in colon tumors with high Cyclin E1 (CCNE1) expression. PcDNA3.1-CCNE1 vector and si-PKMYT1 were transfected in SW480 cells by Lipofectamine 2000. Q-PCR and western blot assay were processed to detect the expression. Transwell assay and Edu assay were undertaken to verify the migration and proliferation. CCNE1 promotes the proliferation and migration of SW480. Silencing of PKMYT1 inhibited the proliferation of tumor cells. Silencing the expression of PKMYT1 under the premise of overexpression of CCNE1, the level of Cyclin Dependent Kinase 1 (CDK1)-PT14 was reduced, indicating that the cell cycle was blocked. The expression of γH2AX increased significantly, indicating that the DDR pathway of tumor cells was activated and DNA damage accumulated. The results of immunofluorescence microscopy showed significantly increased expression of DNA damage-associated marker (γH2AX: H2AX Variant Histone). In CCNE1 amplificated colorectal tumor cells, knockdown of PKMYT1 reduced cells in S phase, inhibited cell proliferation and promoted cell apoptosis, confirming that PKMYT1 was a potential therapeutic target for colorectal tumor. This study may verify a potential therapeutic target and provide a new idea for the treatment of colorectal cancer in the future.


Assuntos
Neoplasias Colorretais , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
20.
Sci Rep ; 13(1): 10935, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414794

RESUMO

Naturally occurring canine cancers have remarkable similarities to their human counterparts. To better understand these similarities, we investigated 671 client-owned dogs from 96 breeds with 23 common tumor types, including those whose mutation profile are unknown (anal sac carcinoma and neuroendocrine carcinoma) or understudied (thyroid carcinoma, soft tissue sarcoma and hepatocellular carcinoma). We discovered mutations in 50 well-established oncogenes and tumor suppressors, and compared them to those reported in human cancers. As in human cancer, TP53 is the most commonly mutated gene, detected in 22.5% of canine tumors overall. Canine tumors share mutational hotspots with human tumors in oncogenes including PIK3CA, KRAS, NRAS, BRAF, KIT and EGFR. Hotspot mutations with significant association to tumor type include NRAS G61R and PIK3CA H1047R in hemangiosarcoma, ERBB2 V659E in pulmonary carcinoma, and BRAF V588E (equivalent of V600E in humans) in urothelial carcinoma. Our findings better position canines as a translational model of human cancer to investigate a wide spectrum of targeted therapies.


Assuntos
Mutação , Neoplasias , Animais , Cães , Proteínas Oncogênicas/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Humanos , Antineoplásicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA